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ABSTRACT 

The problem of finding a global minimum of a real function on a set S  Rn occurs in many real world problems. 
Since its computational complexity is exponential, its solution can be a very expensive computational task. In this paper, 
we introduce a parallel algorithm that exploits the latest computers in the market equipped with more than one proces-
sor, and used in clusters of computers. The algorithm belongs to the improvement of local minima algorithm family, 
and carries on local minimum searches iteratively but trying not to find an already found local optimizer. Numerical 
experiments have been carried out on two computers equipped with four and six processors; fourteen configurations of 
the computing resources have been investigated. To evaluate the algorithm performances the speedup and the efficiency 
are reported for each configuration. 


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1. Introduction 

In this paper we consider the following global optimiza-
tion problem. 
Problem 1 

   * *find , such that , ,x S f x f x x  S   

where f: S→R is a function defined on a set S  Rn . 
In order to solve Problem 1 a very large variety of al-

gorithms has been proposed; several books that des- 
cribe the research trends from different points of view, 
have appeared in the literature [1-8]. Numerical tech- 
niques for finding solutions to such problems by using 
parallel schemes have been discussed in the literature 
(see, e.g. [9-13]. To generalize the investigation of the 
properties of the algorithms, these are classified in fami- 
lies whose components share common strategies or tech- 
niques. In [14] five basic families are defined: partition 
and search, approximation and search, global decrease, 
improvement of local minima, enumeration of local mi- 
nima. Nemirovsky and Yudin [15], and Vavasis [16] have 
proved, under suitable assumptions, that the computa- 
tional complexity of the global optimization problem is 
exponential; hence, the number of function evaluations 
required to solve problem 1 grows dramatically as the 
number of variables of the problem increases. This fea- 
ture makes the search of a global minimum of a given 
function a very expensive computational task. On the other 
hand the latest computers in the market, equipped with  

more than one processor, and clusters of computers can 
be exploited. In [17] a sequential algorithm, called Glob 
was presented; this belongs to the improvement local 
minima family and carries on local search procedures. 
Specifically, a local minimum finder algorithm is run 
iteratively and in order to avoid to find the same local 
minimizer, a local search execution rule was introduced; 
this was chosen such that the average number of function 
evaluations needed to move from a local minimum to a 
new one, is minimal. The parameters used to define the 
execution rule at a given iteration were computed taking 
into account the previous history of the minimization 
process. 

In this paper we present a parallel algorithm that dis-
tributes the computations carried out by Glob across two 
or more processors. To reduce to a low level the data 
passing operations between processors, the sequential 
algorithm is run on each processor, but the parameters of 
the execution rule are updated either after a fixed number 
of iterations are completed or straight as soon as new 
local minimizer is found. The new algorithm has been 
tested for solving several test functions commonly used 
in the literature. The numerical experiments have been 
carried out on two computers equipped with four and six 
processors; fourteen configurations of the computing 
resources have been investigated. To evaluate the algo- 
rithm performances the speedup and the efficiency are 
reported for each configuration. 
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2. Preliminaries 

In this section we recall some results established in [17]. 
For Problem 1 we consider the following assumption. 

Assumption 1 
1)  f   has m local minimum points , 1, ,il i m   

and    1i if l f l  ; 
2) meas (S) = 1, with meas (S) denoting the measure of 

S. 
Consider the following algorithm scheme. 
Algorithm 1 (Algorithm Glob) 
Choose 0x  uniformly on S; 

1; 1;i j     1 1 0, _ ;x fx local search x
; ;

 

1 1ii

repeat 
l x fl fx   

1;j j   
choose x0 uniformly on S; 
if 
 0 if x f l i or     0 > and 1 <if x fl rand d

 0_ ;
 

 1 1,x fx  loca
<

l search x  
if 1 ifx fl  
   1;i i 
   1 1; ;i il x fl fx 
end if 
end if 

until a stop rule is met; 
end 

The function rand (1) denotes a generator of random 
numbers in the interval [0, . Further, we denote by 
local_search (xo) any procedure that starting from a point 

0

1]

x  returns both a local minimum  of problem 1 and 
its function value. 

il

In algorithm Glob a sequence of local searches is car-
ried out. Once a local search has been completed and a 
new local minimum lj is found, a point x0 at random uni-
formly on S is chosen. Whenever f(x0) is less than f (lj) a 
new search is performed from x0; otherwise a local 
search is performed with probability di. 

We assume that Problem 1 satisfies all the conditions 
required to make the procedure local_search (x0) con-
vergent. We have the following proposition. 

Proposition 1. Let assumption 1 hold and consider a 
run of algorithm Glob. Then the probability that  is a 
global minimum of problem 1 tends to one as . 

il
j

First, we settle the following notation. 
Definition 1 

 0, |jA x S   starting from x, _ ( )local search   re-
turns local minimum jl ; 

 i  , |i jA x S  f x
_local search 

f l ; starting from x,  
   returns local minimum jl ; 

  0, 0,=j j

=p meas A
p meas A ;  

  i j . , ,i j

We have 

 0,
=1

= =
m

i
i

p meas S 1.  

We consider the following definitions for algorithm 
Glob. 

Definition 2 
 it   the probability that having found the local mini-

mum il , in a subsequent iteration no new local 
minimum is detected; 

  ,i j iProb d   the probability that the algorithm, hav- 
ing found the local minimum il , can find the local 
minimum jl  in a subsequent iteration. 

We calculate the average number of function evalua-
tions so that algorithm Glob having found a local mini-
mum, finds any new one. We assume that algorithm Glob 
can run an infinite number of iterations. Further it is as-
sumed that the values p0,j and pi,j, i = 1, ···, m − 1 and j = 
1, ···, m, are known and that the number of function 
evaluations required by local_search is  constant. =k

The following holds. 
Theorem 1. The average number of function evalua-

tions so that algorithm Glob, having found a local mini-
mum , finds any new one is given by il

 1
,*

1
= , = 1, ,i i

i

evals d f i m
Prob

 1,

j

,

m

i j


 

with 

,* , 0, ,
= 1 = 1 = 1

= ,
m m m

i i j i j i
j i j i j i

Prob p d p p
  

 
  

 
    

 , ,
= 1 = 1 = 1

= 1 1 1
m m

i i j i i j i
j i j i j i

f k p kd p d p
 

   
       

   
    

Problem 2. Let us consider problem 1 and let the values 

k, 0, jp  and  be given. Find value  such that ,i jp *
id

   *
1 1= min .

i
i i

d
evals d evals d  

We calculate which value of  gives the minimum 
of such a function. We have as  

id
= 1, , 1,i m 

 
   , ,

= 1 = 1

1

, 0, ,
= 1 = 1 = 1

1 1

= .

m m

i j i i j
j i j i

i m m m

i j i j i j
j i j i j i

k p d p k

evals d

p d p p

 

  

 
1 1     

 
 

  
 

 

  
 

The derivative sign of  is greater than or 

equal to zero for 

 1 ievals d

0, ,
= 1 = 1

, 0
= 1 = 1

1

.

1

m m

j i
j i j i

m m

i j j
j i j i

p p

k

p p

 

 

 
 

 
 

 
 

 

  ,

j








         (1) 
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The condition (1) links the probability pi,j with the 
number k of function evaluations performed at each local 
search in order to choose the most convenient value of di: 
if the condition is met, we must take di = 0 otherwise di = 
1. 

In real problems usually we don’t know the values p0,j 
and pi,j; hence the choice of probabilities d1, d2, ···, dm in 
the optimization of the function in problem 2 cannot be 
calculated exactly. By making the following approxima-
tion of the values 

2 0, 3
= 1 = 1

= , =
m m

, ,j i j
j i j i

p p p p
 
   

which appear in the definition of evals1 in problem 2, we 
can device a rule for choosing the values di, I = 1, ···, m 
in algorithm Glob. Specifically, from (1) we get 

     2 3 3 20 if > 1 1 ,
=

1 otherwise,
i

k p p p p
d

    



 

where ,  and k are approximated as follows 2p 3p

 
 

2

3

= 1 ,

=1 . ,

p number of searches carried out

p no of iterations already carried out
      (2) 

= . .k no of function evaluations in the local searches  

Hence the line 
      0 0if or  and 1i if x fl f x > fl rand < d i  

of algorithm Glob is replaced by the line 

   0if or  1if x fl yes_box =        (3) 

where yes_box ( ) is a procedure that returns zero or 1 
and is defined by 

Procedure 1 (yes-box()) 

 2 = 1 .p no of searches already carried out
 3 = 1 .p no of iterations already carried out

= .k no of function evals in the local searches ; 
if   2

= 2
= 1p

2 3

end if 
p p ;  

if   2

ratio = 
< 1p

     2 3 31 1p p p p    2 ;  
else  

ratio = inf; 
end if  
if k > ratio 

yes = 0; 
else  

yes = 1; 
end if 
end. 

In the sequel we shall denote by Globnew algorithm 
Glob completed with procedure 1. 

3. The Parallel Algorithm 

The message passing model will be used in the design of 
the algorithm we are going to introduce. This model is 
suitable for running computations on MIMD computers 
for which according to the classification of parallel sys-
tems due to Michael J. Flynn each processor operates 
under the control of an instruction stream issued by its 
control unit. The main point in this model is the com- 
munication where messages are sent from a sender to one 
or more recipients. To each send operation there must 
correspond a receive operation. Further the sender either 
will not continue until the receiver has received the mes-
sage or will continue without waiting for the receiver to 
be ready.  

In order to design our parallel algorithm in an envi- 
ronment of N processors we separate functions in two 
parts: server and client. The server task will executed by 
just one processor, while the remaining ones will execute 
the same code. The server will accomplish the following 
task. 
 reads all the initial data and sends them to each client;  
 receives the intermediate data from a sender client;  
 combines them with all the data already received;  
 sends back the updated data to the client sender;  
 gathers the final data from each client. 

Each client accomplishes the following tasks 
 receives initial data from server;  
 runs algorithm Globnew; 
 sends intermediate data to server;  
 receives updated values from server;  
 stops running Globnew whenever its stop rule is met in 

any client execution; 
 sends final data to server. 

The communication that takes place between the server 
and each client concerns mainly the parameters in (2), 
that is, p2, p3 and k. Each client, as soon as he either finds 
a new local minimizer or a fixed number of iterations 
have been executed, sends a message to the server con- 
taining data gathered after the last sent message; that is. 
 last minimum found;  
 the number of function evaluations since last message 

sending;  
 the number of iterations since last message sending;  
 the number of local searches carried out since last 

message sending;  
 status variable of value 0 or 1 denoting that the stop 

rule has been met. 
The server combines each set of intermediate data re-

ceived with the ones stored in its memory and sends to 
the client the new data. If the server receives as status 
variable 1 in the subsequent messages sent to clients the 
status variable will keep the same value, meaning that the 
client has to stop running Globnew and has to send the 
final data to the server. The initial data and intermediate 
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data are embodied in the following data structures. 
 Data_start = struct (“x”, [ ], “fx”, [ ], “sum_ev”, [ ], 

“sum_tr”, [ ], “sum_ls”, [ ], “fun”, [ ], “call_interval”, 
[ ]). 

 Data_mid = struct (“stop_flag”, [ ], “client”,[ ], “x”, 
[ ], “fx”, [ ], “sum_ev”, [ ], “sum_tr” [ ], “sum_ls”, 
[ ])  

where the strings within single quotes denote the names 
of the members of the structure and [ ] its values. 

In Data_start the members “x” and “fx” refer to the 
algorithm starting point as defined by the user; “sum_ 
ev”, “sum_tr”, “sum_ls” initialize the number of function 
evaluations, iterations and local searches. “fun” and 
“call_interval” denote the problem to solve and the 
number of iterations to be completed before an inter- 
mediate data passing has to take place. 

In Data_mid “stop_ flag” and “client” refer to the sta- 
tus variable and to the client sender while the remaining 
members denote values as in Data_start but if the sender 
is a client the values refer to values gathered since the 
last message sending, while if the sender is the server the 
values concern the overall minimization process. 

In the Appendix we report in pseudocode the basic in-
structions of the procedures to be executed in the server 
and client processors respectively. 

4. Numerical Results 

In this section we report the numerical results we got in 
the implementation of the algorithm outlined in the pre- 
vious sections. First we describe the paradigm of our 
experiments. 

Four test problems have been solved; to test the per- 
formance of our algorithm each problem has been chosen 
with specific features. 

Test problem 1 

 

     

  

1
22

1
=1

2

min

π
= 10sin π 1 1 10sin π

1

n

i
i

n

f x

y y y
n

y




  

 

 2
1i


  

with 

 



1
= 100, = 1 1 ,

4

| 10 10, = 1, , ;

i i

n
i

n y x

S x R x i n

 

      

1



 

Test problem 2 

     22 2
1

=2

min = 1 2
n

i i
i

f x x i x x     

with 

= 25, | 10 10, = 1, , ;n
in S x R x i n       

Test problem 3 

    2

=1

min = 10 10cos 2π
n

j j
i

f x n x x   

with 

 = 8, | 2.56 2.56, = 1, , ;n
in S x R x i n       

Test problem 4 

 

 

 

2

2 3

3

2

2

2

2

min

,2 2
4

,4 3
1 4

, for

4, for , ,

i t i
t i i

ii i

i

i t i
t i i

i i i

i i i

t i

f x

x m x m
x m f

x m

x m

x m x m

,

x m f
x m

x m f x B

x x x

 

 

    
      


 


               

   


   



B i

 

with , = 20n  |n
i i iB x R x m     , for  

, = 1i , ,9  | 1 1, = 1, ,n
jS x R x j n      ,  

 ,9, = 1,i , and tm i x  denoting ten points uniformly 
chosen in S such that the i  balls do not overlap each 
other, 

B

iJ  real values to be taken as the values of  f   
at . i

Test problems 1, 2, and 3 appeared in [18-20] respec-
tively. Test problems 4 belongs to a set of problems in-
troduced in [21] and implemented in the software GKLS 
(cfr. [22]). 

m

We have been working in a Linux operating system 
environment according to the Ubuntu 10.04 LT imple-
mentation. All codes have been written in the C language 
in conjunction with the OpenMPI message passing li-
brary (version 1.4.2). The local minimization has been 
carried out by a code, called cgtrust, written by C. T. 
Kelley [23]. This code implements a trust region type 
algorithm that uses a polynomial procedure to compute 
the step size along a search direction. Since the cgtrust 
code was written according to the MatLab programming 
language, this has been converted in the C language. All 
software used is Open Source.  

Two desktop computers have been used; the first 
equipped with an Intel Quad CPU Q9400 based on four 
processors, the second with an AMD PHENOM II X6 
1090T based on six processors. Experiments have been 
carried out both on each single computer and on the two 
connected to a local network. In Table 1 we report the 
fourteen configurations of the computing resources used 
in each of our experiments. 

Whenever we have being exploiting just one processor 
of a computer, the running code was written leaving out  
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Table 1. Configurations of the computing resources. 

No. CPU 1 CPU 2 Procs in 1 Procs in 2 

1 Quad 1  

2 Quad 2  

3 Quad 3  

4 Quad 4  

5 Phenom 1  

6 Phenom 2  

7 Phenom 4  

8 Phenom 6  

9 Quad Phenom 2 2 

10 Quad Phenom 4 4 

11 Quad Phenom 4 6 

12 Phenom Quad 2 2 

13 Phenom Quad 4 4 

14 Phenom Quad 6 4 

 
any reference to the OpenMPI library. Hence the code is 
largely simpler than the one used for using more than one 
processor. Since our algorithm makes use of random pro- 
cedures, to get significant results in solving the test 
problems, 100 runs of the algorithm have been done on 
each problem. The data reported in the tables are all 
mean values. The parameter k that evaluates the com- 
putational cost of local searches has been computed as 
the sum of function and gradient evaluations of the cur-
rent objective function. The algorithm stops whenever 
the global minimum has been found within a fixed accu-
racy. That is the stop rule is 

* * 3
1 2 1 2| |< | | , = 10 , = 10f f f      5  

with *f  and f  the function values at the global mini- 
mum point and at the last local minimum found. 

To evaluate the performance of our algorithm we con-
sider two indices, the speedup and the efficiency; the first 
estimates the decrease of the time of a parallel execution 
with respect to a sequential run. The second index esti-
mates how much the parallel execution exploit the com-
puter resources. In Tables 2-5 we report the results gath-
ered for each configuration given in Table 1; in each 
table for each function we report the computational ex-
pired time, the speedup and the efficiency. The function 
evaluation is done in two ways: 1) We evaluate the func-
tion as it is defined, 2) We introduce an extra computa-
tion that consists of a loop of 5000 iterations where at 
each iteration the square root of 10.99 is calculated. 
Hence we carried out our experiments by assigning dif-
ferent weights to the function evaluations. Note that the 
columns in Tables 4 and 5 referring to one processor has 
been calculated as the means of the values in the corre-
sponding columns in 2, and 3. From the data in the tables 
we can state the following remarks.   

1) Whenever the function evaluation cost is evaluated  

Table 2. Results working with Intel Quad. 

Processors No extra 
computation 1 2 3 4 
 Secs 0.08 0.11 0.08 0.08 

Fun1
 

Speed
 

 0.73 1.00 1.00 
 Eff

 
 0.36 0.33 0.25 

 Secs 17.77 20.42 12.35 7.94 
Fun2

 
Speed

 
 0.87 1.44 2.24 

 Eff
 

 0.44 0.48 0.56 
 Secs 22.39 33.25 21.69 11.76 

Fun3
 

Speed
 

 0.67 1.03 1.90 
 Eff

 
 0.34 0.34 0.48 

 Secs 19.52 11.27 6.19 4.49 
Fun4

 
Speed

 
 1.73 3.15 4.35 

 Eff
 

 0.87 1.05 1.09 

Processors Extra 
computation 1 2 3 4 
 Secs 0.18 0.14 0.09 0.09 

Fun1
 

Speed
 

 1.29 2.00 2.00 
 Eff

 
 0.64 0.67 0.50 

 Secs 167.92 208.62 104.15 85.01 
Fun2

 
Speed

 
 0.80 1.61 1.98 

 Eff
 

 0.40 0.54 0.49 
 Secs 305.63 294.49 185.17 90.14 

Fun3
 

Speed
 

 1.04 1.65 3.39 
 Eff

 
 0.52 0.55 0.85 

 Secs 103.59 55.04 23.33 15.88 
Fun4

 
Speed

 
 1.88 4.44 6.52 

 Eff
 

 0.94 1.48 1.63 

 
Table 3. Results working with AMD Phenom 6. 

Processors No extra 
computation 1 2 4 64 
 Secs 0.1 0.1 0.07 0.07 

Fun1
 

Speed
 

 1.00 1.43 1.43 
 Eff

 
 0.50 0.36 0.24 

 Secs 12.15 28.3 11.48 7.38 
Fun2

 
Speed

 
 0.43 1.06 1.65 

 Eff
 

 0.21 0.26 0.27 
 Secs 21.84 57.1 19.73 15.24 

Fun3
 

Speed
 

 0.38 1.11 1.43 
 Eff

 
 0.19 0.28 0.24 

 Secs 19.96 17.27 5.25 3.3 
Fun4

 
Speed

 
 1.16 3.80 6.05 

 Eff
 

 0.58 0.95 1.01 
Processors Extra 

computation 1 2 4 6 
 Secs 0.11 0.16 0.08 0.08 

Fun1
 

Speed
 

 0.69 1.38 1.38 
 Eff

 
 0.34 0.34 0.23 

 Secs 133.32 176.87 64.36 40.41 
Fun2

 
Speed

 
 0.75 2.07 3.30 

 Eff
 

 0.38 0.52 0.55 
 Secs 256.75 288.45 104.45 63.89 

Fun3
 

Speed
 

 0.89 2.46 4.02 
 Eff

 
 0.45 0.61 0.67 

 Secs 94.42 41.01 15.18 10.49 
Fun4

 
Speed

 
 2.30 6.22 9.00 

 Eff
 

 1.15 1.56 1.50 
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Table 4. Results working with Intel Quad and AMD Phenom 
6. 

Processors No extra 
computation 1 2 + 2 4 + 4 4 + 6 

 Secs 0.09 0.07 0.07 0.07 

Fun1
 

Speed
 

 0.29 1.29 1.29 

 Eff
 

 0.32 0.16 0.13 

 Secs 14.96 9.15 4.75 4.54 

Fun2
 

Speed
 

 1.63 3.15 3.30 

 Eff
 

 0.41 0.39 0.33 

 Secs 22.115 27.26 11.06 11.49 

Fun3
 

Speed
 

 0.81 2.00 1.92 

 Eff
 

 0.20 0.25 0.19 

 Secs 19.74 6.3 3.36 2.52 

Fun4
 

Speed
 

 3.13 5.88 7.83 

 Eff
 

 0.78 0.73 0.78 

Processors Extra 
computation 1 2 + 2 4 + 4 4 + 6 

 Secs 0.145 0.08 0.08 0.09 

Fun1
 

Speed
 

 1.81 1.81 1.61 

 Eff
 

 0.45 0.23 0.16 

 Secs 150.62 57.82 26.27 29.23 

Fun2
 

Speed
 

 2.60 5.73 5.15 

 Eff
 

 0.65 0.72 0.52 

 Secs 281.19 70.62 52.5 45.71 

Fun3
 

Speed
 

 3.98 5.36 6.15 

 Eff
 

 1.00 0.67 0.62 

 Secs 99.01 17.75 8.94 6.63 

Fun4
 

Speed
 

 5.58 11.07 14.93 

 Eff
 

 1.39 1.38 1.49 

 
according to 1) The use of more than one processor does 
not give significant improvements only for the first test 
problem. Indeed this is a very easy problem to solve and 
does not require a large computational cost.  

2) Working with two processors the speedup becomes 
less than one. Clearly this has to be related to the fact that 
the complexity of the multi processor code is not bal-
anced by the use of additional processors.  

3) As the function is evaluated according to 2) the ad-
vantage of the multiprocessor code becomes clear. 

4) The output of the four test problems is quite dif- 
ferent; while problem 1 even with the extra computa- 
tional cost does not exhibits a good efficiency, the re- 
maining problems show significant improvements. For 
problem 4, the parallel algorithm improves a great deal 
its performances with respect to the serial version. 

5. Conclusion 

In order to find the global minimum of a real function of 
n variables, a new parallel algorithm of the multi-start 
and local search type is proposed. The algorithm dis- 
tributes the computations across two or more processors. 
The data passing between cores is minimal. Numerical  

Table 5. Results working with AMD Phenom 6 and Intel 
Quad. 

Processors No extra 
computation 1 2 + 2 4 + 4 6 + 4 

 Secs 0.09 0.07 0.07 0.07 

Fun1
 

Speed
 

 1.29 1.29 1.29 

 Eff
 

 0.32 0.16 0.13 

 Secs 14.96 12.57 5.12 6.4 

Fun2
 

Speed
 

 1.19 2.92 2.34 

 Eff
 

 0.30 0.37 0.23 

 Secs 22.115 33.85 15.62 19.57 

Fun3
 

Speed
 

 0.65 1.42 1.13 

 Eff
 

 0.67 0.18 0.11 

 Secs 19.74 8.53 3.42 3.37 

Fun4
 

Speed
 

 2.31 5.77 5.86 

 Eff
 

 0.58 0.72 0.59 

Processors Extra 
computation 1 2 + 2 4 + 4 6 + 4 

 Secs 0.145 0.09 0.09 0.09 

Fun1
 

Speed
 

 1.61 1.61 1.61 

 Eff
 

 0.40 0.20 0.16 

 Secs 150.62 77.74 33.58 26.67 

Fun2
 

Speed
 

 1.94 4.49 5.65 

 Eff
 

 0.48 0.56 0.56 

 Secs 281.19 137.94 53.14 46.18 

Fun3
 

Speed
 

 2.04 5.29 6.09 

 Eff
 

 0.51 0.66 0.61 

 Secs 99.01 21.57 8.64 6.45 

Fun4
 

Speed
 

 4.59 11.46 15.35 

 Eff
 

 1.15 1.43 1.53 

 
experiments are carried out in a linux environment and 
all code has been written in the C language linked to the 
Open Mpi libraries. Two desktop computers have been 
used; the first equipped with an Intel Quad CPU Q9400 
based on four processors, the second with a AMD Phe-
nom II X6 1090T based on six processors. Numerical 
experiments for solving four well-known test problems, 
have been carried out both on each single computer and 
on the two connected to a local network. Several con-
figurations with up to ten processors have considered; for 
each configuration, speedup and efficiency are evaluated. 
The results show that the new algorithm has a good per-
formance especially in the case of problems that require a 
large amount of computations. 
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Appendix 

Procedure (Glob_server) fun=function to minimize; 
np=number of processors; 
call_interval=max interval between two server-client 

messages; 
x1=starting point; fx1=fun(x1); 
sum_ev=1; sum_tr=0; sum_ls=0; 
Data_start=struct(’x’,x1,’fx’,fx1,’sum_ev’,sum_ev, 
’sum_tr’,sum_tr,’sum_ls’,sum_ls,’fun’,fun,’call_ in-

terval’,[ ]). 
stop_flag=0; 
no_stop=0; 
Send Data_start to all clients. 
while no_stop<np-1 
 Receive Data_Mid from any client 
 sum_ev=sum_ev+Data_mid.sum_ev; 
 sum_ls=sum_ls+Data_mid.sum_ls; 
 sum_tr=sum_tr+Data_mid.sum_tr; 
 if Data_mid.fx>fx1; 
  Data_mid.x=x1; data_mid.fx=fx1. 
 else 
  x1=Data_mid.x; fx1=Data_mid.fx; 
 end 
 if Data_mid.stop_flag==1;  
  no_stops=no_stops+1; 
  stop_flag=1; 
  continue  
 elseif stop_flag==1 
  Data_mid.stop_flag=1; 
  no_stops=no_stops+1; 
 end 
 send to client Data_mid 
end. 
Procedure (Glob_client)  
client=client_name; 
Receive Data_start from server; 
x1=Data_start.x;  fx1=Data_start.fx; 
sum_ls=sum_ls+Data_start.sum_ls; 
sum_tr=sum_tr+Data_start.sum_tr; 
sum_ev=sum_ev+Data_start.sum_ev; 
call_interval=Data_start.call_interval; 
buf=struct(’sum_ls’, 0, ’sum_tr’, 0,’sum_ev’, 0); 
stop_flag=0; 
iter_client=0; 
yes=1; 

while stop_flag==0 
 flag_min=0; 
 iter_client=iter_client+1; 
 Choose 0x  uniformly on S; 
 fx=fun(x0); 
 buf.sum_ev=buf.sum_ev+1; 
 buf.sum_tr=buf.sum_tr+1; 
 if fx<fx1 | yes 
  (x2,fx2,evals)=local_search(x) 
  buf.sum_ls=buf.sum_ls+1; 
  buf.sum_ev=buf.sum_ev+evals; 
  if fx2<fx1 
    x1=x2; fx1=fx2; 
   flag_min=1; 
  end 
 end 
 if stop condition satisfied 
  stop_flag=1; 
 end 
 if   iter_client==call_interval or flag_min==1 or  

  stop_flag==1; 
  Data_mid.stop_flag= stop_flag; 
  Data_mid.sum_ls=buf.sum_ls; 
  Data_mid.sum_tr=buf.sum_tr; 
  Data_mid.sum_ev=buf.sum_ev; 
  Data_mid.x=x1; Data_mid.fx=fx1; 
  Data_mid.client=client; 
  Send Data_mid to server; 
  Receive Data_mid from server 
  sum_ls=Data_mid.sum_ls; 
  sum_tr=Data_mid.sum_tr; 
  sum_ev=Data_mid.sum_ev; 
  x1=Data_mid.x; 
  fx1=Data_mid.fx1; 
  stop_flag=Data_mid.stop_flag; 
  buf.sum_ev=0; 
  buf.sum_tr=0; 
  buf.sum_ls=0; 
  iter_client=0; 
 end  
 [yes,p2,p3]=yes_box(1,sum_ls,sum_tr,sum_ev, 
 prob_value,iter,itmax); 
end. 
Send final data to server.
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