
Applied Mathematics, 2012, 3, 1380-1387
http://dx.doi.org/10.4236/am.2012.330194 Published Online October 2012 (http://www.SciRP.org/journal/am)

A Parallel Algorithm for Global Optimization Problems in
a Distribuited Computing Environment

Marco Gaviano, Daniela Lera, Elisabetta Mereu
Department of Mathematics and Informatics, University of Cagliari, Cagliari, Italy

Email: gaviano@unica.it, lera@unica.it, elisabetta.mereu@hotmail.it

Received July 4, 2012; revised August 4, 2012; accepted August 11, 2012

ABSTRACT

The problem of finding a global minimum of a real function on a set S Rn occurs in many real world problems.
Since its computational complexity is exponential, its solution can be a very expensive computational task. In this paper,
we introduce a parallel algorithm that exploits the latest computers in the market equipped with more than one proces-
sor, and used in clusters of computers. The algorithm belongs to the improvement of local minima algorithm family,
and carries on local minimum searches iteratively but trying not to find an already found local optimizer. Numerical
experiments have been carried out on two computers equipped with four and six processors; fourteen configurations of
the computing resources have been investigated. To evaluate the algorithm performances the speedup and the efficiency
are reported for each configuration.



Keywords: Random Search; Global Optimization; Parallel Computing

1. Introduction

In this paper we consider the following global optimiza-
tion problem.
Problem 1

   * *find , such that , ,x S f x f x x  S 

where f: S→R is a function defined on a set S Rn . 
In order to solve Problem 1 a very large variety of al-

gorithms has been proposed; several books that des-
cribe the research trends from different points of view,
have appeared in the literature [1-8]. Numerical tech-
niques for finding solutions to such problems by using
parallel schemes have been discussed in the literature
(see, e.g. [9-13]. To generalize the investigation of the
properties of the algorithms, these are classified in fami-
lies whose components share common strategies or tech-
niques. In [14] five basic families are defined: partition
and search, approximation and search, global decrease,
improvement of local minima, enumeration of local mi-
nima. Nemirovsky and Yudin [15], and Vavasis [16] have
proved, under suitable assumptions, that the computa-
tional complexity of the global optimization problem is
exponential; hence, the number of function evaluations
required to solve problem 1 grows dramatically as the
number of variables of the problem increases. This fea-
ture makes the search of a global minimum of a given
function a very expensive computational task. On the other
hand the latest computers in the market, equipped with

more than one processor, and clusters of computers can
be exploited. In [17] a sequential algorithm, called Glob
was presented; this belongs to the improvement local
minima family and carries on local search procedures.
Specifically, a local minimum finder algorithm is run
iteratively and in order to avoid to find the same local
minimizer, a local search execution rule was introduced;
this was chosen such that the average number of function
evaluations needed to move from a local minimum to a
new one, is minimal. The parameters used to define the
execution rule at a given iteration were computed taking
into account the previous history of the minimization
process.

In this paper we present a parallel algorithm that dis-
tributes the computations carried out by Glob across two
or more processors. To reduce to a low level the data
passing operations between processors, the sequential
algorithm is run on each processor, but the parameters of
the execution rule are updated either after a fixed number
of iterations are completed or straight as soon as new
local minimizer is found. The new algorithm has been
tested for solving several test functions commonly used
in the literature. The numerical experiments have been
carried out on two computers equipped with four and six
processors; fourteen configurations of the computing
resources have been investigated. To evaluate the algo-
rithm performances the speedup and the efficiency are
reported for each configuration.

Copyright © 2012 SciRes. AM

M. GAVIANO ET AL. 1381

2. Preliminaries

In this section we recall some results established in [17].
For Problem 1 we consider the following assumption.

Assumption 1
1)  f  has m local minimum points , 1, ,il i m 

and    1i if l f l  ;
2) meas (S) = 1, with meas (S) denoting the measure of

S.
Consider the following algorithm scheme.
Algorithm 1 (Algorithm Glob)
Choose 0x uniformly on S;

1; 1;i j     1 1 0, _ ;x fx local search x
; ;

1 1ii

repeat
l x fl fx 

1;j j 
choose x0 uniformly on S;
if
 0 if x f l i or     0 > and 1 <if x fl rand d

 0_ ;

 1 1,x fx  loca
<

l search x
if 1 ifx fl
 1;i i 
 1 1; ;i il x fl fx 
end if
end if

until a stop rule is met;
end

The function rand (1) denotes a generator of random
numbers in the interval [0, . Further, we denote by
local_search (xo) any procedure that starting from a point

0

1]

x returns both a local minimum of problem 1 and
its function value.

il

In algorithm Glob a sequence of local searches is car-
ried out. Once a local search has been completed and a
new local minimum lj is found, a point x0 at random uni-
formly on S is chosen. Whenever f(x0) is less than f (lj) a
new search is performed from x0; otherwise a local
search is performed with probability di.

We assume that Problem 1 satisfies all the conditions
required to make the procedure local_search (x0) con-
vergent. We have the following proposition.

Proposition 1. Let assumption 1 hold and consider a
run of algorithm Glob. Then the probability that is a
global minimum of problem 1 tends to one as .

il
j

First, we settle the following notation.
Definition 1

 0, |jA x S  starting from x, _ ()local search  re-
turns local minimum jl ;

 i  , |i jA x S  f x
_local search 

f l ; starting from x,
  returns local minimum jl ;

  0, 0,=j j

=p meas A
p meas A ;

  i j . , ,i j

We have

 0,
=1

= =
m

i
i

p meas S 1.

We consider the following definitions for algorithm
Glob.

Definition 2
 it  the probability that having found the local mini-

mum il , in a subsequent iteration no new local
minimum is detected;

  ,i j iProb d  the probability that the algorithm, hav-
ing found the local minimum il , can find the local
minimum jl in a subsequent iteration.

We calculate the average number of function evalua-
tions so that algorithm Glob having found a local mini-
mum, finds any new one. We assume that algorithm Glob
can run an infinite number of iterations. Further it is as-
sumed that the values p0,j and pi,j, i = 1, ···, m − 1 and j =
1, ···, m, are known and that the number of function
evaluations required by local_search is constant. =k

The following holds.
Theorem 1. The average number of function evalua-

tions so that algorithm Glob, having found a local mini-
mum , finds any new one is given by il

 1
,*

1
= , = 1, ,i i

i

evals d f i m
Prob

 1,

j

,

m

i j


with

,* , 0, ,
= 1 = 1 = 1

= ,
m m m

i i j i j i
j i j i j i

Prob p d p p
  

 
  

 
  

 , ,
= 1 = 1 = 1

= 1 1 1
m m

i i j i i j i
j i j i j i

f k p kd p d p
 

   
       

   
  

Problem 2. Let us consider problem 1 and let the values

k, 0, jp and be given. Find value such that ,i jp *
id

   *
1 1= min .

i
i i

d
evals d evals d

We calculate which value of gives the minimum
of such a function. We have as

id
= 1, , 1,i m 

 
   , ,

= 1 = 1

1

, 0, ,
= 1 = 1 = 1

1 1

= .

m m

i j i i j
j i j i

i m m m

i j i j i j
j i j i j i

k p d p k

evals d

p d p p

 

  

 
1 1     

 
 

  
 

 

  

The derivative sign of is greater than or

equal to zero for

 1 ievals d

0, ,
= 1 = 1

, 0
= 1 = 1

1

.

1

m m

j i
j i j i

m m

i j j
j i j i

p p

k

p p

 

 

 
 

 
 

 
 

 

  ,

j








 (1)

Copyright © 2012 SciRes. AM

M. GAVIANO ET AL. 1382

The condition (1) links the probability pi,j with the
number k of function evaluations performed at each local
search in order to choose the most convenient value of di:
if the condition is met, we must take di = 0 otherwise di =
1.

In real problems usually we don’t know the values p0,j
and pi,j; hence the choice of probabilities d1, d2, ···, dm in
the optimization of the function in problem 2 cannot be
calculated exactly. By making the following approxima-
tion of the values

2 0, 3
= 1 = 1

= , =
m m

, ,j i j
j i j i

p p p p
 
 

which appear in the definition of evals1 in problem 2, we
can device a rule for choosing the values di, I = 1, ···, m
in algorithm Glob. Specifically, from (1) we get

     2 3 3 20 if > 1 1 ,
=

1 otherwise,
i

k p p p p
d

    



where , and k are approximated as follows 2p 3p

 
 

2

3

= 1 ,

=1 . ,

p number of searches carried out

p no of iterations already carried out
 (2)

= . .k no of function evaluations in the local searches

Hence the line
      0 0if or and 1i if x fl f x > fl rand < d i

of algorithm Glob is replaced by the line

   0if or 1if x fl yes_box = (3)

where yes_box () is a procedure that returns zero or 1
and is defined by

Procedure 1 (yes-box())

 2 = 1 .p no of searches already carried out
 3 = 1 .p no of iterations already carried out

= .k no of function evals in the local searches ;
if 2

= 2
= 1p

2 3

end if
p p ;

if 2

ratio =
< 1p

     2 3 31 1p p p p    2 ;
else

ratio = inf;
end if
if k > ratio

yes = 0;
else

yes = 1;
end if
end.

In the sequel we shall denote by Globnew algorithm
Glob completed with procedure 1.

3. The Parallel Algorithm

The message passing model will be used in the design of
the algorithm we are going to introduce. This model is
suitable for running computations on MIMD computers
for which according to the classification of parallel sys-
tems due to Michael J. Flynn each processor operates
under the control of an instruction stream issued by its
control unit. The main point in this model is the com-
munication where messages are sent from a sender to one
or more recipients. To each send operation there must
correspond a receive operation. Further the sender either
will not continue until the receiver has received the mes-
sage or will continue without waiting for the receiver to
be ready.

In order to design our parallel algorithm in an envi-
ronment of N processors we separate functions in two
parts: server and client. The server task will executed by
just one processor, while the remaining ones will execute
the same code. The server will accomplish the following
task.
 reads all the initial data and sends them to each client;
 receives the intermediate data from a sender client;
 combines them with all the data already received;
 sends back the updated data to the client sender;
 gathers the final data from each client.

Each client accomplishes the following tasks
 receives initial data from server;
 runs algorithm Globnew;
 sends intermediate data to server;
 receives updated values from server;
 stops running Globnew whenever its stop rule is met in

any client execution;
 sends final data to server.

The communication that takes place between the server
and each client concerns mainly the parameters in (2),
that is, p2, p3 and k. Each client, as soon as he either finds
a new local minimizer or a fixed number of iterations
have been executed, sends a message to the server con-
taining data gathered after the last sent message; that is.
 last minimum found;
 the number of function evaluations since last message

sending;
 the number of iterations since last message sending;
 the number of local searches carried out since last

message sending;
 status variable of value 0 or 1 denoting that the stop

rule has been met.
The server combines each set of intermediate data re-

ceived with the ones stored in its memory and sends to
the client the new data. If the server receives as status
variable 1 in the subsequent messages sent to clients the
status variable will keep the same value, meaning that the
client has to stop running Globnew and has to send the
final data to the server. The initial data and intermediate

Copyright © 2012 SciRes. AM

M. GAVIANO ET AL. 1383

data are embodied in the following data structures.
 Data_start = struct (“x”, [], “fx”, [], “sum_ev”, [],

“sum_tr”, [], “sum_ls”, [], “fun”, [], “call_interval”,
[]).

 Data_mid = struct (“stop_flag”, [], “client”,[], “x”,
[], “fx”, [], “sum_ev”, [], “sum_tr” [], “sum_ls”,
[])

where the strings within single quotes denote the names
of the members of the structure and [] its values.

In Data_start the members “x” and “fx” refer to the
algorithm starting point as defined by the user; “sum_
ev”, “sum_tr”, “sum_ls” initialize the number of function
evaluations, iterations and local searches. “fun” and
“call_interval” denote the problem to solve and the
number of iterations to be completed before an inter-
mediate data passing has to take place.

In Data_mid “stop_ flag” and “client” refer to the sta-
tus variable and to the client sender while the remaining
members denote values as in Data_start but if the sender
is a client the values refer to values gathered since the
last message sending, while if the sender is the server the
values concern the overall minimization process.

In the Appendix we report in pseudocode the basic in-
structions of the procedures to be executed in the server
and client processors respectively.

4. Numerical Results

In this section we report the numerical results we got in
the implementation of the algorithm outlined in the pre-
vious sections. First we describe the paradigm of our
experiments.

Four test problems have been solved; to test the per-
formance of our algorithm each problem has been chosen
with specific features.

Test problem 1

 

     

  

1
22

1
=1

2

min

π
= 10sin π 1 1 10sin π

1

n

i
i

n

f x

y y y
n

y




  

 

 2
1i




with

 



1
= 100, = 1 1 ,

4

| 10 10, = 1, , ;

i i

n
i

n y x

S x R x i n

 

      

1



Test problem 2

     22 2
1

=2

min = 1 2
n

i i
i

f x x i x x   

with

= 25, | 10 10, = 1, , ;n
in S x R x i n     

Test problem 3

    2

=1

min = 10 10cos 2π
n

j j
i

f x n x x 

with

 = 8, | 2.56 2.56, = 1, , ;n
in S x R x i n     

Test problem 4

 

 

 

2

2 3

3

2

2

2

2

min

,2 2
4

,4 3
1 4

, for

4, for , ,

i t i
t i i

ii i

i

i t i
t i i

i i i

i i i

t i

f x

x m x m
x m f

x m

x m

x m x m

,

x m f
x m

x m f x B

x x x

 

 

    
      


 


               

   


   



B i

with , = 20n  |n
i i iB x R x m     , for

, = 1i , ,9  | 1 1, = 1, ,n
jS x R x j n      ,

 ,9, = 1,i , and tm i x denoting ten points uniformly
chosen in S such that the i balls do not overlap each
other,

B

iJ real values to be taken as the values of  f 
at . i

Test problems 1, 2, and 3 appeared in [18-20] respec-
tively. Test problems 4 belongs to a set of problems in-
troduced in [21] and implemented in the software GKLS
(cfr. [22]).

m

We have been working in a Linux operating system
environment according to the Ubuntu 10.04 LT imple-
mentation. All codes have been written in the C language
in conjunction with the OpenMPI message passing li-
brary (version 1.4.2). The local minimization has been
carried out by a code, called cgtrust, written by C. T.
Kelley [23]. This code implements a trust region type
algorithm that uses a polynomial procedure to compute
the step size along a search direction. Since the cgtrust
code was written according to the MatLab programming
language, this has been converted in the C language. All
software used is Open Source.

Two desktop computers have been used; the first
equipped with an Intel Quad CPU Q9400 based on four
processors, the second with an AMD PHENOM II X6
1090T based on six processors. Experiments have been
carried out both on each single computer and on the two
connected to a local network. In Table 1 we report the
fourteen configurations of the computing resources used
in each of our experiments.

Whenever we have being exploiting just one processor
of a computer, the running code was written leaving out

Copyright © 2012 SciRes. AM

M. GAVIANO ET AL. 1384

Table 1. Configurations of the computing resources.

No. CPU 1 CPU 2 Procs in 1 Procs in 2

1 Quad 1

2 Quad 2

3 Quad 3

4 Quad 4

5 Phenom 1

6 Phenom 2

7 Phenom 4

8 Phenom 6

9 Quad Phenom 2 2

10 Quad Phenom 4 4

11 Quad Phenom 4 6

12 Phenom Quad 2 2

13 Phenom Quad 4 4

14 Phenom Quad 6 4

any reference to the OpenMPI library. Hence the code is
largely simpler than the one used for using more than one
processor. Since our algorithm makes use of random pro-
cedures, to get significant results in solving the test
problems, 100 runs of the algorithm have been done on
each problem. The data reported in the tables are all
mean values. The parameter k that evaluates the com-
putational cost of local searches has been computed as
the sum of function and gradient evaluations of the cur-
rent objective function. The algorithm stops whenever
the global minimum has been found within a fixed accu-
racy. That is the stop rule is

* * 3
1 2 1 2| |< | | , = 10 , = 10f f f      5

with *f and f the function values at the global mini-
mum point and at the last local minimum found.

To evaluate the performance of our algorithm we con-
sider two indices, the speedup and the efficiency; the first
estimates the decrease of the time of a parallel execution
with respect to a sequential run. The second index esti-
mates how much the parallel execution exploit the com-
puter resources. In Tables 2-5 we report the results gath-
ered for each configuration given in Table 1; in each
table for each function we report the computational ex-
pired time, the speedup and the efficiency. The function
evaluation is done in two ways: 1) We evaluate the func-
tion as it is defined, 2) We introduce an extra computa-
tion that consists of a loop of 5000 iterations where at
each iteration the square root of 10.99 is calculated.
Hence we carried out our experiments by assigning dif-
ferent weights to the function evaluations. Note that the
columns in Tables 4 and 5 referring to one processor has
been calculated as the means of the values in the corre-
sponding columns in 2, and 3. From the data in the tables
we can state the following remarks.

1) Whenever the function evaluation cost is evaluated

Table 2. Results working with Intel Quad.

Processors No extra
computation 1 2 3 4
 Secs 0.08 0.11 0.08 0.08

Fun1

Speed

 0.73 1.00 1.00
 Eff

 0.36 0.33 0.25

 Secs 17.77 20.42 12.35 7.94
Fun2

Speed

 0.87 1.44 2.24

 Eff

 0.44 0.48 0.56
 Secs 22.39 33.25 21.69 11.76

Fun3

Speed

 0.67 1.03 1.90
 Eff

 0.34 0.34 0.48

 Secs 19.52 11.27 6.19 4.49
Fun4

Speed

 1.73 3.15 4.35

 Eff

 0.87 1.05 1.09

Processors Extra
computation 1 2 3 4
 Secs 0.18 0.14 0.09 0.09

Fun1

Speed

 1.29 2.00 2.00
 Eff

 0.64 0.67 0.50

 Secs 167.92 208.62 104.15 85.01
Fun2

Speed

 0.80 1.61 1.98

 Eff

 0.40 0.54 0.49
 Secs 305.63 294.49 185.17 90.14

Fun3

Speed

 1.04 1.65 3.39
 Eff

 0.52 0.55 0.85

 Secs 103.59 55.04 23.33 15.88
Fun4

Speed

 1.88 4.44 6.52

 Eff

 0.94 1.48 1.63

Table 3. Results working with AMD Phenom 6.

Processors No extra
computation 1 2 4 64
 Secs 0.1 0.1 0.07 0.07

Fun1

Speed

 1.00 1.43 1.43
 Eff

 0.50 0.36 0.24

 Secs 12.15 28.3 11.48 7.38
Fun2

Speed

 0.43 1.06 1.65

 Eff

 0.21 0.26 0.27
 Secs 21.84 57.1 19.73 15.24

Fun3

Speed

 0.38 1.11 1.43
 Eff

 0.19 0.28 0.24

 Secs 19.96 17.27 5.25 3.3
Fun4

Speed

 1.16 3.80 6.05

 Eff

 0.58 0.95 1.01
Processors Extra

computation 1 2 4 6
 Secs 0.11 0.16 0.08 0.08

Fun1

Speed

 0.69 1.38 1.38
 Eff

 0.34 0.34 0.23

 Secs 133.32 176.87 64.36 40.41
Fun2

Speed

 0.75 2.07 3.30

 Eff

 0.38 0.52 0.55
 Secs 256.75 288.45 104.45 63.89

Fun3

Speed

 0.89 2.46 4.02
 Eff

 0.45 0.61 0.67

 Secs 94.42 41.01 15.18 10.49
Fun4

Speed

 2.30 6.22 9.00

 Eff

 1.15 1.56 1.50

Copyright © 2012 SciRes. AM

M. GAVIANO ET AL. 1385

Table 4. Results working with Intel Quad and AMD Phenom
6.

Processors No extra
computation 1 2 + 2 4 + 4 4 + 6

 Secs 0.09 0.07 0.07 0.07

Fun1

Speed

 0.29 1.29 1.29

 Eff

 0.32 0.16 0.13

 Secs 14.96 9.15 4.75 4.54

Fun2

Speed

 1.63 3.15 3.30

 Eff

 0.41 0.39 0.33

 Secs 22.115 27.26 11.06 11.49

Fun3

Speed

 0.81 2.00 1.92

 Eff

 0.20 0.25 0.19

 Secs 19.74 6.3 3.36 2.52

Fun4

Speed

 3.13 5.88 7.83

 Eff

 0.78 0.73 0.78

Processors Extra
computation 1 2 + 2 4 + 4 4 + 6

 Secs 0.145 0.08 0.08 0.09

Fun1

Speed

 1.81 1.81 1.61

 Eff

 0.45 0.23 0.16

 Secs 150.62 57.82 26.27 29.23

Fun2

Speed

 2.60 5.73 5.15

 Eff

 0.65 0.72 0.52

 Secs 281.19 70.62 52.5 45.71

Fun3

Speed

 3.98 5.36 6.15

 Eff

 1.00 0.67 0.62

 Secs 99.01 17.75 8.94 6.63

Fun4

Speed

 5.58 11.07 14.93

 Eff

 1.39 1.38 1.49

according to 1) The use of more than one processor does
not give significant improvements only for the first test
problem. Indeed this is a very easy problem to solve and
does not require a large computational cost.

2) Working with two processors the speedup becomes
less than one. Clearly this has to be related to the fact that
the complexity of the multi processor code is not bal-
anced by the use of additional processors.

3) As the function is evaluated according to 2) the ad-
vantage of the multiprocessor code becomes clear.

4) The output of the four test problems is quite dif-
ferent; while problem 1 even with the extra computa-
tional cost does not exhibits a good efficiency, the re-
maining problems show significant improvements. For
problem 4, the parallel algorithm improves a great deal
its performances with respect to the serial version.

5. Conclusion

In order to find the global minimum of a real function of
n variables, a new parallel algorithm of the multi-start
and local search type is proposed. The algorithm dis-
tributes the computations across two or more processors.
The data passing between cores is minimal. Numerical

Table 5. Results working with AMD Phenom 6 and Intel
Quad.

Processors No extra
computation 1 2 + 2 4 + 4 6 + 4

 Secs 0.09 0.07 0.07 0.07

Fun1

Speed

 1.29 1.29 1.29

 Eff

 0.32 0.16 0.13

 Secs 14.96 12.57 5.12 6.4

Fun2

Speed

 1.19 2.92 2.34

 Eff

 0.30 0.37 0.23

 Secs 22.115 33.85 15.62 19.57

Fun3

Speed

 0.65 1.42 1.13

 Eff

 0.67 0.18 0.11

 Secs 19.74 8.53 3.42 3.37

Fun4

Speed

 2.31 5.77 5.86

 Eff

 0.58 0.72 0.59

Processors Extra
computation 1 2 + 2 4 + 4 6 + 4

 Secs 0.145 0.09 0.09 0.09

Fun1

Speed

 1.61 1.61 1.61

 Eff

 0.40 0.20 0.16

 Secs 150.62 77.74 33.58 26.67

Fun2

Speed

 1.94 4.49 5.65

 Eff

 0.48 0.56 0.56

 Secs 281.19 137.94 53.14 46.18

Fun3

Speed

 2.04 5.29 6.09

 Eff

 0.51 0.66 0.61

 Secs 99.01 21.57 8.64 6.45

Fun4

Speed

 4.59 11.46 15.35

 Eff

 1.15 1.43 1.53

experiments are carried out in a linux environment and
all code has been written in the C language linked to the
Open Mpi libraries. Two desktop computers have been
used; the first equipped with an Intel Quad CPU Q9400
based on four processors, the second with a AMD Phe-
nom II X6 1090T based on six processors. Numerical
experiments for solving four well-known test problems,
have been carried out both on each single computer and
on the two connected to a local network. Several con-
figurations with up to ten processors have considered; for
each configuration, speedup and efficiency are evaluated.
The results show that the new algorithm has a good per-
formance especially in the case of problems that require a
large amount of computations.

REFERENCES
[1] R. G. Strongin and Y. D. Sergeyev, “Global Optimization

with Non-Convex Constraints. Sequential and Parallel
Algorithms,” Kluver Academic Press, Dordrecht, 2000.

[2] R. Horst and P. M. Pardalos, “Handbook of Global Opti-
mization,” Kluver Academic Press, Dordrecht, 1995.

Copyright © 2012 SciRes. AM

M. GAVIANO ET AL.

Copyright © 2012 SciRes. AM

1386

[3] R. Horst, P. M. Pardalos and N. V. Thoay, “Introduction
to Global Optimization,” Kluver Academic Press, Dor-
drecht, 1995.

[4] C. A. Floudas and P. M. Pardalos, “State of the Art in
Global Optimization,” Kluwer Academic Publishers, Dor-
drecht, 1996.

[5] J. D. Pintér, “Global Optimization in Action,” Kluwer
Academic Publishers, Dordrecht, 1996.

[6] H. Tuy, “Convex Analysis and Global Optimization,”
Kluwer Academic Publishers, Dordrecht, 1998.

[7] P. M. Pardalos and H. E. Romeijn, “Handbook of Global
Optimization Volume 2,” Kluwer Academic Publishers,
Dordrecht, 2002.

[8] P. M. Pardalos and T. F. Coleman, “Lectures on Global
Optimization,” Fields Communications Series, Vol. 55,
American Mathematical Society, 2009, pp. 1-16.

[9] V. P. Gergel and Y. D. Sergeyev, “Sequential and Parallel
Global Optimization Algorithms Using Derivatives,”
Computer & Mathematics with Applications, Vol. 37, No.
4-5, 1999, pp. 163-180.
doi:10.1016/S0898-1221(99)00067-X

[10] Y. D. Sergeyev, “Parallel Information Algorithm with
Local Tuning for Solving Multidimensional GO Prob-
lems,” Journal of Global Optimization, Vol. 15, No. 2,
1999, pp. 157-167. doi:10.1023/A:1008372702319

[11] E. Eskow and R. B. Schnabel, “Mathematical Modelling
of a Parallel Global Optimization Algorithm,” Parallel
Computing, Vol. 12, No. 3, 1989, pp. 315-325.
doi:10.1016/0167-8191(89)90089-6

[12] R. Čiegis, M. Baravykaité and R. Belevičius, “Parallel
Global Optimization of Foundation Schemes in Civil En-
gineering,” Applied Parallel Computing. State of the Art
in Scientific Computing, Lecture Notes in Computer Sci-
ence, Vol. 3732, 2006, pp. 305-312.

[13] G. Rudolph, “Parallel Approaches to Stochastic Global
Optimization,” In: W. Joosen and E. Milgrom, Eds., Par-
allel Computing: From Theory to Sound Practice, IOS,

IOS Press, Amsterdam, 1992, pp. 256-267.

[14] C. G. E. Boender and A. H. G. Rinooy Kan, “Bayesian
Stopping Rules for a Class of Stochastic Global Optimi-
zation Methods,” Erasmus University Rotterdam, Report
8319/0, 1985.

[15] A. S. Nemirovsky and D. B. Yudin, “Problem Complex-
ity and Method Efficiency in Optimization,” John Wiley
and Sons, Chichester, 1983.

[16] S. A. Vavasis, “ Complexity issues in global optimization:
a survey,” In: R. Horst and P. M. Pardalos, Eds., Hand-
book of Global Optimization, Kluwer Academic Publish-
ers, Dordrecht, 1995, pp. 27-41.

[17] M. Gaviano, D. Lera and A. M. Steri, “A Local Search
Method for Continuous Global Optimization,” Journal of
Global Optimization, Vol. 48, 2010, pp. 73-85.

[18] A. Levy and A. Montalvo, “The Tunneling Method for
Global Optimization,” SIAM Journal on Scientific Com-
puting, Vol. 6, No. 1, 1985, pp. 15-29.

[19] C. A. Floudas and P. M. Pardalos, “A Collection of Test
Problems for Constraint Global Optimization Algorithms,”
Springer-Verlag, Berlin Heidelberg, 1990.
doi:10.1007/3-540-53032-0

[20] L. A. Rastrigin, “Systems of Extreme Control,” Nauka,
Moscow, 1974.

[21] M. Gaviano and D. Lera, “Test Functions with Variable
Attraction Regions for Global Optimization Problems,”
Journal of Global Optimization, Vol. 13, No. 2, 1998, pp.
207-223. doi:10.1023/A:1008225728209

[22] M. Gaviano, D. E. Kvasov, D. Lera and Y. D. Sergeyev,
“Software for Generation of Classes of Test Functions
with Known Local and Global Minima for Global Opti-
mization,” ACM, Transaction on Mathematical Software,
Vol. 29, No. 4, 2003, pp. 469-480.
doi:10.1145/962437.962444

[23] C. T. Kelley, “Iterative Methods for Optimization,” SIAM,
Philadelphia, 1999. doi:10.1137/1.9781611970920

http://dx.doi.org/10.1016/S0898-1221(99)00067-X
http://dx.doi.org/10.1023/A:1008372702319
http://dx.doi.org/10.1016/0167-8191(89)90089-6
http://dx.doi.org/10.1007/3-540-53032-0
http://dx.doi.org/10.1023/A:1008225728209
http://dx.doi.org/10.1145/962437.962444
http://dx.doi.org/10.1137/1.9781611970920

M. GAVIANO ET AL. 1387

Appendix

Procedure (Glob_server) fun=function to minimize;
np=number of processors;
call_interval=max interval between two server-client

messages;
x1=starting point; fx1=fun(x1);
sum_ev=1; sum_tr=0; sum_ls=0;
Data_start=struct(’x’,x1,’fx’,fx1,’sum_ev’,sum_ev,
’sum_tr’,sum_tr,’sum_ls’,sum_ls,’fun’,fun,’call_ in-

terval’,[]).
stop_flag=0;
no_stop=0;
Send Data_start to all clients.
while no_stop<np-1
 Receive Data_Mid from any client
 sum_ev=sum_ev+Data_mid.sum_ev;
 sum_ls=sum_ls+Data_mid.sum_ls;
 sum_tr=sum_tr+Data_mid.sum_tr;
 if Data_mid.fx>fx1;
 Data_mid.x=x1; data_mid.fx=fx1.
 else
 x1=Data_mid.x; fx1=Data_mid.fx;
 end
 if Data_mid.stop_flag==1;
 no_stops=no_stops+1;
 stop_flag=1;
 continue
 elseif stop_flag==1
 Data_mid.stop_flag=1;
 no_stops=no_stops+1;
 end
 send to client Data_mid
end.
Procedure (Glob_client)
client=client_name;
Receive Data_start from server;
x1=Data_start.x; fx1=Data_start.fx;
sum_ls=sum_ls+Data_start.sum_ls;
sum_tr=sum_tr+Data_start.sum_tr;
sum_ev=sum_ev+Data_start.sum_ev;
call_interval=Data_start.call_interval;
buf=struct(’sum_ls’, 0, ’sum_tr’, 0,’sum_ev’, 0);
stop_flag=0;
iter_client=0;
yes=1;

while stop_flag==0
 flag_min=0;
 iter_client=iter_client+1;
 Choose 0x uniformly on S;
 fx=fun(x0);
 buf.sum_ev=buf.sum_ev+1;
 buf.sum_tr=buf.sum_tr+1;
 if fx<fx1 | yes
 (x2,fx2,evals)=local_search(x)
 buf.sum_ls=buf.sum_ls+1;
 buf.sum_ev=buf.sum_ev+evals;
 if fx2<fx1
 x1=x2; fx1=fx2;
 flag_min=1;
 end
 end
 if stop condition satisfied
 stop_flag=1;
 end
 if iter_client==call_interval or flag_min==1 or

 stop_flag==1;
 Data_mid.stop_flag= stop_flag;
 Data_mid.sum_ls=buf.sum_ls;
 Data_mid.sum_tr=buf.sum_tr;
 Data_mid.sum_ev=buf.sum_ev;
 Data_mid.x=x1; Data_mid.fx=fx1;
 Data_mid.client=client;
 Send Data_mid to server;
 Receive Data_mid from server
 sum_ls=Data_mid.sum_ls;
 sum_tr=Data_mid.sum_tr;
 sum_ev=Data_mid.sum_ev;
 x1=Data_mid.x;
 fx1=Data_mid.fx1;
 stop_flag=Data_mid.stop_flag;
 buf.sum_ev=0;
 buf.sum_tr=0;
 buf.sum_ls=0;
 iter_client=0;
 end
 [yes,p2,p3]=yes_box(1,sum_ls,sum_tr,sum_ev,
 prob_value,iter,itmax);
end.
Send final data to server.

Copyright © 2012 SciRes. AM

