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ABSTRACT 

The intrinsic viscosity [η] of poly(3,5-dimethyl-phenyl-acrylate) (35PDMPA) solutions were evaluated throughout the 
measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s methods using a 
Cannon-Ubbelohde semi-micro-dilution capillary viscometer in a Cannon thermostated water bath at 40˚C ± 0.02˚C. 
The values of Huggins’ constant estimated ranged from 0.2 to 0.4 which were within expectations. The intrinsic viscosities 
and molecular weight relationship was established with the two-parameter classical models of Staudinger-Mark-Houwink- 
Sakurada and Stockmayer-Fixman. Conformational parameter C∞ and σ indicated 35PDMPA be semi flexible. Also, the 
rigidity of 35PDMPA was confirmed by Yamakawa-Fuji wormlike theory modified by Bohdanecký. The molecular 
parameters were estimated and compared. The results showed that 35PDMPA behaves like a semi-rigid polymer in 
toluene at 40˚C rather than a random coil flexible macromolecule. 
 
Keywords: Intrinsic Viscosity; Poly(3,5-Dimethyl-Phenyl-Acrylate); Conformational Parameters; Rigidity Factor; 

Kuhn Statistical Length 

1. Introduction 

The influence of temperature and side chain groups on 
the physical properties of polyethylene chains is well 
documented [1]. In the case of polyacrylates, interests 
have focused on the changes induced by altering the 
length of alkyl ester group [2] or identity of the ester 
linkage such as phenyl with alkyl substituent in various 
positions [3]. One way to evaluate and analyze the prop-
erties of such polymers is at least to correlate the depend-
ence of their equilibrium configuration to their structure. 
Among the methods of evaluating configurational prop-
erties are the application of matrix methods in the form 
of rotational isomeric state (RIS) model to calculate 
conformational properties such as Flory’s characteristic 
ratio (C∞) [4] and or application of the wormlike model 
based on Yamakawa-Fujiitheory [5] and its simplified 
form byBohdanecký [6]. Neither the RIS nor the worm-
like model has been applied to evaluate the influence of 
side chain on unperturbed dimensions of 35PDMPA. This 
paper presents experimental findings pertaining to dilute 

solution properties of 35PDMPA in toluene at 40˚C. 
The intrinsic viscosity of a macromolecule in a dilute 

solution is a measure of its hydrodynamic average size, 
form, and shape in the solution. Many studies were found 
that explored the empirical relationships between coil 
dimensions of synthetic polymers with their intrinsic 
viscosity [1-7]. The most frequently used relationship 
between intrinsic viscosity, [η], and the weight-average 
molecularmass, Mw, is the Mark-Houwink-Kuhn-Saku-
rada (MH) Equation: 

  w
K M ;                  (1)  

where, the parameter α is a measure of the thermody-
namic power of solvent and Kα is a measure of coil vol-
ume for an unperturbed condition or ideal solvent called 
θ-condition for random coil polymers. Numerous re-
searchers [1-8] have demonstrated the validity of the MH 
equation applied to random coiled polymers for molecu-
lar weights ranging in several orders of magnitude. By 
increasing thermodynamic strengths of solvents, the 
magnitude of coefficient α would increase while the 
magnitude of Kα would decrease. Generally, for the ran-*Corresponding author. 
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dom coil flexible polymer molecules, the value of α 
would be between 0.50 and 0.80. For non-flexible and 
rigid (worm-like or rod-like) macromolecules higher 
values of α larger than or equal to unity have been ob-
served. Thus, the numerical value of α provides informa-
tion concerning polymer conformation as well. 

In this work, the viscosity of 35PDMPA samples are 
treated according to the Huggins’ [9] and Kraemer’s [10] 
relationship to evaluate the intrinsic viscosity of the 
polymer samples; the constant of each method has been 
determined and related to the nature of the polymer sol-
vent system. The intrinsic viscosity, in conjunction with 
the molecular mass data of 35PDMPA solutions, is 
treated according to the theories of intrinsic viscosity of 
random flexible and worm-like polymers developed by 
Yamakawa-Fuji and simplified by Bohdanecký.  

2. Experimental 

2.1. Monomer 

3,5-dimethyl-phenyl-acrylate (35DMPA) was obtained 
by the reaction of corresponding phenol and acryloyl 
chlorideat low temperature (in an ice bath)using triethyl-
amineas a base to trap HCl produced and hexanes as sol-
vent (Scheme 1). Acryloly chloride and 3,5-dimethyl- 
phenol are slightly soluble in hexanes but 35DMPA is 
miscible in hexanes. It was purified by re-distillation 
under reduced pressure (~7 torr). The monomer was 
characterized by NMR and IR. 
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Scheme 1. Reaction of preparing the monomer. 

2.2. Polymer 

Poly(3,5-dimethy-phenyl-acrylate), (35PDMPA) was syn-
thesized by bulk polymerization of 35DMPA under ni-
trogen atmosphere in a sealed flask using 2,2'-azo-bis- 
iso-butyro-nitrile (~0.02 % of monomer) as the radical 
initiator at 333 K (Scheme 2). The obtained polymer 
dissolved in dichloromethane, re-precipitated in hexanes 
three times, and deride under vacuum (~2 torr) at 298 K. 
The sample was fractionated using dilute (~1%) toluene 
solution with hexanes as precipitants [11]. 
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Scheme 2. Reaction of preparing the monomer. 

2.3. Molecular Mass Characterizations 

To estimate molar mass of 35PDMPA two methods were 
used: absolute method, light-scattering and relative me- 
thod, size exclusions. Absolute methods are classified by 
the type of average they yield such as colligative tech-
niques, for example, membrane osmometry measures 
number average, light scattering yields weight average, 
and ultracentrifuge determines z-average molar mass. 
The absolute methods require extrapolation to infinite 
dilution for rigorous fulfillment of the requirements of 
theory. Relative methods require calibration with the 
samples of known molar masses and include viscosity, 
vapor pressure osmometry and size exclusion chroma-
tography (SEC) [12-14]. 

AViscotek GPCMAX 303 with a two angle light scat-
tering detector, a refractive index detector, and two Vis-
cotek universal bed size exclusion columns, all housed in 
a thermo stated oven at 30˚C was used to evaluate weight 
average (Mw), number average (Mn), and polydispersity 
of the samples [15].  

2.4. Viscosity Measurements 

The intrinsic viscosity of a polymeric solution is defined 
as  
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  (2) 

Applying the virial series the two equivalent forms 
known as the Huggins and Kraemer relationships 
rounded at second term applied to diluted polymer solu-
tions: 

   21

1
Hk C

C

 
 


 

  
 

            (3) 
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 
 

 
  

 
         (4) 

where η1, is the viscosity of the pure solvent, and η is the 
viscosity of the solution at zero shear conditions. Table 1 
shows the values of [η], kH and kK + kH solutions of 
35DMPA in toluene at 40˚C [16]. 

The dilute solution viscosities were measured with a 
semi-micro Cannon-Ubbelohde capillary dilution vis-
cometer, thermostated in a water bath at 40˚C (313.2 ± 
0.02 K) where solvent flow times (t1) were at least 110 s. 
Linear least-squares fit of specific viscosity and inherent 
viscosities versus concentration were used to obtain the 
intrinsic viscosity as a common intercept. Figure 1 
shows the plot of viscosity number versus concretization 
for eleven samples of polymer.  
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Table 1. Values of intrinsic viscosity [η], kH, and kH + kK of 
35PDMPA in toluene at 40˚C. 

Sample kH <[η]> kH + kK 

F1 0.407 282.9 0.525 

F2 0.312 272.6 0.457 

F3 0.388 192.0 0.516 

F4 0.267 183.8 0.438 

F5 0.308 174.9 0.465 

F6 0.272 139.2 0.451 

F7 0.389 107.1 0.519 

F8 0.237 87.63 0.454 

F9 0.377 63.41 0.511 

F10 0.27 43.45 0.482 

F11 0.364 26.60 0.502 
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Figure 1. Estimation of limiting viscosity number by plot of 
variation of viscosity number (t – t1)/ct1 versus concentra-
tion of samples of 35PDMPA in toluene at 313.15 K. 

3. Results and Discussion 

Figure 1 shows the variation of (t – t1)/t1C and (Ln 
t/t1)/C versus C (g/mL); the data fit well into a straight 
line with a common intercept which is the value of in-
trinsic viscosity and from the slopes Huggins’ (kH) and 
Kraemer’s (kK) constants were estimated. 

3.1. Huggins (kH) and Kraemer (kK) Constants 

The values of Huggins’ constant kH can be used as an 
index to describe polymer solvent and polymer-polymer 
interactions [17,18]. For flexible, linear, nonpolar or not 
very polar vinyl polymers in good solvents the values of 
kH usually lie between 0.3 to 0.4. The values of kH for 
35PDMPA and toluene solution range 0.27 - 0.41 which 
are within the expected scope. Figure 2 shows the varia-
tion of kH and kK versus molar mass of polymer. The val-
ues are scattered from 0.27 to 0.41. The list square fitted 
to the data shows a positive slope: as molar mass in-
creasing the kH also increases.  

The equality of Equations (2) and (3) demands that the 
kH + kK = 1/2, which has been confirmed in this work.  

3.2. The Intrinsic Viscosity and Molar Mass 

Figure 3 shows the double logarithmic graph of intrinsic 
viscosity and molar mass at 40˚C. The molecular weight 
dependence of [η] are expressed in the values of Kα and α 
of MH. Several factors contribute to enhance the expo-
nent α. [19]. Among them are: 1) chain stiffness, 2) ex-
cluded volume, and 3) partial drainage. It is universally 
accepted that the value of α that corresponds to a nond-
raining coil unperturbed by the excluded volume effect is 
0.5; this does not include the low-molecular mass region 
[17], and temperatures under theta condition where the 
values of α are found to be less than 0.5. Besides the 
above mentioned parameters, the chain thickness is the 
only contributing factor that reduces the value of α in the 
limit of molecules having thickness equal to length 
(sphere), α = 0. 
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Figure 2. Variation of Huggins’ and Kreamer’s constatants 
versus viscosity number. 
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Figure 3. Double logaritmic graph of intrinsic viscosity and 
molar mass of 35PDMPA in toluene at 40˚C. 
 

Figure 3 shows the treatment of viscosity data in the 
light of MH double logarithmic plot. The Kα and α of the 
plot are summarized in Table 2. According to the values 
of Table 2, the solvation capacity of toluene increases as 
temperature increases from 25˚C to 40˚C.  

3.3. Unperturbed Dimensions 

The unperturbed dimensions of a linear flexible polymer 
are obtained either by light scattering over an angular 
range or dilute solution viscometric of macromolecules 
in ideal solvent so called Θ-conditions. The square of 
end-to-end dimensions 2R00  for a random distribution 
of n particle with bond length of l is expressed as nl2.The 
expansion of a covalently bonded polymer chain is re-
stricted by valence angles θ between each chain atom, 

2R00  modified to allow for short-range interactions 
called 2

0 fR : 

 
 

2 2
0

1 cos

1 cosfR nl







            (5) 

For C-C backbone polymers such as 35PDMPAlthe 
bond length is 1.54 Å, and n is the total number of back-
bone bonds. For the simplest case of an all carbon back-
bone chain such as polyethylene, cos(109.5) ~ –1/3 so 
that the Equation (5) becomes  

 
 

2 2
0

1 cos

1 cos1fR nl



2109.5
2

09.5
nl         (6) 

This indicates that the polyethylene chain is twice as 
extended as the freely jointed chain model when the 
short-range interactions are considered. In fact, in butane 
and carbon chains with more atoms, steric repulsions 
impose restrictions to bond rotations [20]. This feature in 
Equation (6) causes further modifications: 

 
 

 
 

2 2 1 cos

1 cosoR nl
1 cos

1 cos


 









        (7) 

where cos   is the average cosine of the angle of ro-
tation of the bonds in the backbone chain. The parameter  

Table 2. The slopes and intercepts, Kα and α, of the double 
logarithmic plot of [η] and Mw in toluene at 25˚C and 40˚C. 

t˚C Kα α 

40 0.0320 0.612 

25 0.0472 0.5894 

 
2Rof o  is the average mean square of the unperturbed 

dimension, which is the main characteristic parameter of 
a polymeric chain.  

For a 35PDMPA chain, the unperturbed dimension 
may be obtained directly from the intercept of the MH 
plot, Kθ, in an ideal solution. The Kθ is related to the un-
perturbed dimension of the polymer as: 

3 2
2
0

0

R
K

M

 
  
 
 

              (8) 

where Φ0 is the Flory universal constant; it depends on 
molecular mass of the polymer and the type of polymer 
with the best experimental value of 2.51 × 1023 to 2.87 × 
1023 when the intrinsic viscosity is expressed in mL/g [21].  

3.4. Unperturbed Dimension by Stockmayer- 
Fixman Method 

The unperturbed dimensions of a polymer in a thermo-
dynamically good solvent usually are estimated by ex-
trapolation methods using a number of plots based on 
theoretical or semi-theoretical equations developed for 
this purpose, for example, applications of the excluded 
volume equations between the molecular weight and in-
trinsic viscosities in good solvents. Stockmayer-Fixman 
(SF) proposed one such relationship for treating data 
covering the usual range of molecular weights encoun-
tered in experiments.  

  1 2 1 2
00.51M K BM    



        (9) 

The constant Kθ is the intercept; it is equal to the KMH 
at the theta conditions [22]. The plot of  1 2M   against 

1 2

w  according to the Equation (9) for 35PDMPA in 
toluene illustrated in Figure 4. The value of Kθ in toluene 
at 40˚C was estimated by fitting a straight line into a data 
point using the least square method. These findings are 
summarized in Table 3 for 35PDMPA at 25˚C, and 40˚C. 
As can be seen, the values of Kθ decreased as the tem-
perature increased and the quality of solvent improved. 
This was not within expectations.  

M

  1 2MwBased on Equation (9) the plot of  versus 
M1/2 should be linear only for long enough chains (n > 
103) where the function of excluded volume z approaches 
its limit. As Figure 4 shows the two low-molecular- 
weight samples did not meet these conditions since their 
n < 1000. Thus, precaution is necessary to evaluate di-
mensional parameters based on SF under these condi-
tions. For ideal solvent, the slope of the SF equation must  
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Figure 4. Stockmayer-Fixman plot, Equation (9), for 
35PDMPA in toluene at 40˚C. 
 

Table 3. Values of Kθ,  1 2
2
0R M , σ and C∞ from SF plot 

and Bohdaneck  ý. 

Method Kθ  1 2
2

0R M


 s C∞ 

SF 25˚ 0.122 0.783 3.37 22.78 

SF 40˚ 0.109 0.753 3.25 21.08 

H-Mw 40˚ 0.124 0.786 3.39 22.98 

At M∞ 0.170 0.875 3.77 28.44 

Bohdaneck  ý  0.171 0.877 3.78 28.56 

 
be zero. In a good solvent such as toluene, the slope is 
positive. Two different factors may contribute in deter-
mining a high value of Kθ for a polymeric chain such as 
35PDMPA: the nature of the main chain and the effects 
of side chains and solvent. In the case of 35PDMPA, the 
nature of the main chain, which is composed of a simple 
hydrocarbon chain, may not contribute to the Kθ as the 
hindered voluminous side phenyl ester groups. The 
3,5-dimethyl-phenyl lateral chains occupy a large volume 
and hinder the backbone internal rotations by establish-
ing orientational correlations between themselves. 

3.5. Evaluation of Conformational  
Characteristics 

Reliable values of the characteristic parameters of the 
conformation and flexibility of polymer chains such as 
Flory characteristic ratio C∞, steric factor σ, and Kuhn 
statistical segment length lK are needed for the interpreta-
tion of various properties, including the rheological be-
havior of melts. The conformation of 35PDMPA chains 
currently can be characterized by the Flory characteristic 
ratio C∞ or the steric factor σ. The latter two quantities 
are defined by the Equations (10) and (12). For more 
complex chains, such as 35PDMPA containing ring and 
heteroatom, an estimated σ is obtained from 

            (10) 

The mean square unperturbed end-to-end distance, 
2R0  can be obtained experimentally from the value of 

Kθ, Equation (8), which is related to the rigidity factor σ, 
or to the characteristic ratio C∞, by the expression 
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            (12) 

where M0 is the molecular mass of the monomer. The 
values of σ and C∞ based on Equations (11) and (12) are 
also tabulated in the Table 3. 

3.6. Wormlike Cylinder 

Another method of evaluation of the characteristic pa-
rameters of 35PDMPA is by the theory for the worm-like 
touched-bead model [23,24]. Based on this theory, the 
intrinsic viscosity at theta condition depends not only on 
the unperturbed mean-square end-to-end distance 2R0 , 
but also on the cross-sectional dimensions of polymer-
called the diameter of the bead, db, the small units that 
compose the macromolecule. The results of the theory 
have been expressed in a simple form convenient for use 
even with very short chains by Bohdaneck  ý [25] 

  1 2
00

A K M                   (13) 

 3 2
2

0 0, 0K R M 
 with:              (14) 

  1 2
0 0 br kA K A d M                 (15) 

br b Kd d l                       (16) 

 2
0K Ll R M M


               (17)1 

M K K Ll M                      (18)  

 2
0R M 2

0R is the ratio of  and M is the random  


coil limit, and Φ0,∞ is the Flory viscosity constant for 
random coils in the non-draining regime, A0(dbr) is a 
function of the reduced bead diameter dbr, db is the bead 
diameter, lK and MK are, respectively, the length and mo-
lecular weight of the Kuhn statistical segment, and ML is 
the shift factor which is usually set equal to the molecu-
lar weight per unit contour length of the chain at full ex-
tension. One of the simplest forms of description of mo-
lecular-weight dependence of the intrinsic viscosity in 
good solvents by theoretical and semi-empirical equa-

1LK ≡ 2q ≡ λ–1. 
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tions is [26] 

     1 KC n z

3 1.5 
3

3

0             (19) 

This is valid for  only [27]. It is used here 
because most of the   values are in this range. The 
symbol αη stands for the viscosity-radius expansion fac-
tor, nK is the number of Kuhn segments in the chain, z is 
the excluded-volume variable and B reflects the poly-
mer–solvent interaction.  

3 2
2

1 2z BM
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       (20) 

The impact of chain stiffness on the onset of the ex-
cluded-volume effect becomes manifested in the chain- 
length dependence of the coefficient Cη(nK) [28-32]. This 
function is not known. In practice, it is usually replaced 
by the function (3/4). CηK(nK) where K(nK) was derived 
by Yamakawa and Stockmayer [12] from the expansion  

factor 2 2 2
0R RR . This function is approximated  

by the equations: 

    10.875 K
1 24 3 1 2.033K KK n n   n   

for         nK > 6                   (21A) 
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for          nK < 6                   (21B) 

Then, Equation (19) can be modified to 
3 1             (22) 

where ź is the scaled excluded-volume variable [24,25]  
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               (23B) 

Combining Equations (13), (19), (20), (22) and (23), 
yields: 

     

 

3

2

1 2

3 3

4 2π
C 

 
 
 






1 2
0

3 2
2
0

1

         K

A K M

R
K n BM

M











     
 

 
 
 






  (24A) 
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   1 2 615.64 0.1620 5.691 10M M      (24C) 

Therefore, the interpretation of the intrinsic viscosity 
of 35PDMPA requires estimation of three characteristic 
parameters: cross sectional chain diameter, Aη, flexibility 
of the chain, K0, and polymer–solvent interaction, B. 

Polynomial regression of [η] and 1 2M  in Figure 5 
results in Equation (24C). By comparing Equations (24B) 
and (24C) we get: 

15.6A                (25A)  
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3.6.1. Application of Equation (24) by Plotting  
[η] vs 1 2M  

Equation (24) shows that the plot of [η] vs 1 2M  should 
be linear over the whole range of molecular weights in 
theta solvents where B = 0. In good solvents where B > 0, 
linearity is restricted to a region where the term  

   
3 2

2
0 KB R M K n


 is very low, such as in the case  

of 35PDMPA in toluene at 40˚C. This implies alsothat 

the ratio  2
0R M  is very high which is the case of  



stiff chains. Moreover, Equation (24) will be linear 
where K(nK) ~ 0 represents short chains for both flexible 
and stiff polymers. At higher molecular weights the plot 
becomes curved upward as the function K(nK) and the 
value of z increases with increasing M. 

Toluene at 40˚C is not a theta solvent, therefore B ≠ 0. 
In good solvents where B > 0, linearity is restricted to the  

 condition that the term  
3 2
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y = 0.173x ‐ 19.77
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Figure 5. Plot of [η] versus Mw1/2 for 35PDMPA in toluene 
at 40˚C. 
 
low such as in the case of 35PDMPA in toluene at 40˚C,  

Equation (24E). In this case, the ratio  2
0R M


 is  

very high which represent stiff chains. Since 35PDMPA 
is composed of the unit -CH2-CHR- the backbone of the 
polymer does not introduce rigidity. Then the rigidity 
must be caused by the side chains effects. Hence, the 
excluded-volume effect also is not negligible with the 
lowest molecular weights. 

As Figure 5 shows, also, the plot of [η] vs 1 2M w  for 
35PDMPA homologues series fits to a straight line with 
r2 = 0.9986. 

  1 1 20.1729 w
2

0 19.663A K M M        (26A) 

 3 2
0.173M


2

0 0, 0K F R            (26B) 

The value of Kθ calculated in this manner is only 6.4% 
higher than the former polynomial adjustment. Table 4 
summarizes the molecular parameters of 35PDMPA in 
toluene at 40˚C. The molecular weight of the Kuhn sta-
tistical segment MK is about 15 times higher than that of 
the chain repeating unit. This is an indication of chain 
stiffness of the 35DMPA in toluene at 40˚C. 

Most of the vinyl polymers and derivatives of poly 
(acrylic acid) and poly (methacrylic acid) with various 
side groups showed the proportionality of [η] and 1 2M  
over a broad span of molecular weights as reported in 
reference [25]. However, they do not show semi-rigid 
characteristics as in the case of 35PDMPA. In the case of 
35PDMPA, large size side chains increases the cross- 
sectional chain diameter and the orientation of side chains 
produce a high impediment around the polymer chain. 

To verify the value of Kθ,∞ a plot of   1 2
wM  vs 

1 2M 
w  such as shown in Figure 6 will be useful. The 

intercept of the plot Kθ,∞ = 0.170 obtained at infinite Mw.  

Table 4. Characteristics parameters of 35PDMPA. Data of 
other polymer also is gathering to compare PHE [25] and 
PDiPF [24]. 

Polymer 35PDMPA PHE PDiPF 

Characteristics Lineal Polynom Ref 25 Ref 24 

ML (cm) × 10–8 57 57 20 134 

K0 (cm) 0.173 0.163 0.150 - 

 2

0R M  × 1016 0.782 0.751 0.711 - 

lK (cm) × 10–8 45 43 14 220 

MK 2560 2456 278 29,480 

Mk/M0 15 14 1 294 

-A 19.77 15.64 0.000 - 

-A0 2.259 1.942 0.000 - 

dbr 0.120 0.179 0.540 - 

db (cm) × 108 5.36 7.68 7.60 14.00 
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Figure 6. Plot of [η]/Mw–1/2 versus M–1/2. Extrapolation to 
infant Mw gave account for Kθ,∞. 
 
Kθ,∞ is very close to the value of the slope of [η] and 

1 2M

0 2.9 5.36 br

w

According to the Yoshizaki-Nitta-Yamakawa theory 
[23], the hydrodynamic interaction depends on the re-
duced bead diameter dbr which, in the range 0.3 ≤ dbr ≤ 
0.8, is related to the A0 parameter by [33] 

 which is the value of K0,∞ of Equation (26B). 

A d             (27)   

Table 4 shows the characteristic parameters of 
35PDMPA. Also, for the sake of comparison, character-
istics parameter of a very flexible chain such as bisphe-
nol-A based poly(hydroxyethers) (PHE) from reference 
[25] and an stiff polymer, Poly(disopropylfumarate), 
(PDiPF) from reference [24] are sited. The high values of 
lK and MK of 35PDMPA suggests a semi flexible mac-
romolecule. 

 3.6.2. Comments on 1 2M  vs 1 2M



  
(SF) plot [34,35] 

 1 2
wMBased on Equation (24), the plot of  versus 
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1 2M  should be linear only for long enough chains (n < 
103) where the absolute value of Aη is much lower than 

1 2K0 wM  and the function K(nK) approaches its limit. As 
Figure 4 illustrates the two low-molecular-weight sam-
ples are not met in this condition. Thus precaution is nec-
essary to evaluate dimensional parameters based on BSF. 

In the case of Aη = 0, the BSF plot can be modified to 
  1 2M  vs   1 2K n MK  which should be linear and 
can be extrapolated to M = 0. This, however, is not the 
case of 35PDMPA in toluene that has a negative Aη value. 
If Aη is not equal to zero, both the original and modified 
SF plots are non-linear as shown in Figure 4. They can 
have a minimum if Aη > 0 or bend downward with de-
creasing molecular weight if Aη < 0 (such asin the case of 
35PDMPA, Figure 4). In either case, the extrapolation to 
M = 0 based on BSF is not justified [36].  

3.7. Conclusions and Remarks 

As previously mentioned, the nature of the main chain of 
a 35PDMPA polymer may not contribute to the high 
value of C∞ and σ as much as the 3,5-dimethyl-phenyl 
ester side chains. The 3,5-dimethyl-phenyl lateral chains 
occupy a larger volume (thus posing steric hindrances) 
and more importantly, they may hinder the backbone 
internal rotations by establishing orientational correla-
tions between themselves. The stiffening of the polymer 
chain due to the presence of large aromatic groups and 
long n-alkyl pendant groups has already been reported 
for some other polymers by several researchers. Also, it 
is known that the interaction of elements of polymer 
chains with solvent molecules could affect the probabil-
ity distribution of the angles of internal rotation in the 
chain [37]. This observation was confirmed both theo-
retically and experimentally by a number of researchers 
[38,39] and here is confirmed by application of wormlike 
cylinder model.  

The values of C∞ of 35PDMPA (21 - 23) are much 
higher than values observed for other polyacrylates. For 
example, the value of C∞ for polyphenylmethacrylate, 
PPMA, both theta solvents and good solvents (12.2 and 
13.3) are larger than ones for many atactic vinyl polymers, 
which are in the range of 5 < C∞ <10 usually found in the 
literature. It should also be remarked that the value of C∞ 
in good solvents probably has been underestimated as 
they were obtained by extrapolating to M = 0 the mo-
lecular weight region of the Stockmayer-Fixman plot in 
which the effect of stiffness is coupled with excluded 
volume. And, also, it is overestimated by extrapolation to 
M = ∞. However, chain rigidity may be contributing to 
the slope so that the results obtained for Kθ and C∞ could 
be inaccurate. An indication that the positive slope in this 
plot may include the effect of chain stiffness comes from 
the convergent trend observed in the curves at high mo-
lecular weights. This leveling of the slope cannot be ac-

counted for by the theory of flexible coils perturbed by 
excluded volume but has been predicted by wormlike 
models of stiff chains. 

The value of C∞ of 35PDMPA (29) obtained by ex-
trapolating to M = ∞ using SFthe molecular weight region 
in which the effect of excluded volume levels is much 
higher than values observed for the same polymer by SF 
extrapolation to M = 0. The same effect was observed for 
other polymers. An example is polyphenylmethacrylate, 
PPMA, both theta solvents and good solvents. 
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