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ABSTRACT 

We present a coherent and systematic review of Random Access Algorithms for packet networks, as developed over 
three and a half decades. We consider the appropriate user models and we classify the algorithms according to the 
channel sensing constraints imposed. We also present a review of the analytical methodologies required for the per-
formance analysis of these algorithms. 
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1. Introduction 

In this paper, we are focusing on the “random-access” 
approach, for the accessing of a single, errorless, slotted 
channel, by independent, identical, packet transmitting, 
bursty users. The global properties of the user/channel 
model considered are as follows: All transmitted packets 
have identical length each requiring the length of a single 
slot for transmission; the transmission by all users is syn- 
chronous, where they are allowed to start transmission 
only at the beginning of some slot; and there are no pro- 
pagation delays in the channel feedback information ob- 
tained by the users. Also, if at least two packets attempt 
transmission within the same slot, a collision occurs and 
such an event is initially the only cause for faulty trans- 
missions; that is, a slot occupied with a single packet 
results in successful transmission. A collision results in 
complete loss of the information carried by the collided 
packets; thus, retransmission of such packets is then nec- 
essary. The outcome per slot possibly accessible by the 
users—named feedback level—is either binary, distin-
guishing between Collision (C) versus Non-Collision 
(NC), or ternary, distinguishing between collision (C), 
versus emptiness (E) versus success (S). We note that a 
NC event corresponds to a slot that is either empty or 
occupied with a single packet transmission, while an S 
event corresponds to a slot occupied with a single packet 
whose transmission is then successful. The accessibility 
of the feedback level outcomes by the users—named 
channel sensing—is a characteristic of each Random 
Access Algorithm (RAA) and specifies the time instants 

(in slots) when each user is required to sense the feed-
back level outcomes (accessible by either channel sens-
ing or broadcasting). Based on channel sensing require-
ments, the existing RAAs may be classified as members 
of one of the three distinct channel sensing classes be-
low: 

Minimal Sensing RAA Class: Each user is required to 
sense the feedback level outcome of only those slots 
within which it transmits. 

Limited Sensing RAA Class: Each user is required to 
sense continuously the feedback level outcomes of all 
slots contained in time periods within which any of its 
packet is in the system; that is, from the slot within 
which the packet is generated to that within which this 
packet is successfully transmitted. 

Full Sensing RAA Class: Each user is required to know 
the overall feedback history of the channel, from the be-
ginning of time and even before the user became part of 
the system. 

Regarding user population models, the following dis-
tinction will be necessary in our presentation: 

Known User Population Model: The identities of all 
users are distinct and known to the system. This class 
implies finite membership. 

Unknown User Population Model: The identities of the 
users are unknown to the system, usually due to time- 
varying user characteristics. The membership of this 
class may be either finite or infinite. 

Limit Poisson User Population Model: Infinitely many 
identical Bernoulli users, comprising an aggregate Poison 
packet generating process, where each packet is a sepa-
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rate user. This is a special case of the unknown user 
population model. 

Historically, the RAA evolution started with Abram-
son’s ALOHA algorithm [1], which belongs in the Mini- 
mal Sensing RAA class, it assumes the availability of C 
versus NC feedback outcomes and is unstable, attaining 
throughput zero in the presence of the Limit Poisson Us-
er Population Model (see Tsybakov and Mikhailov [2]). 
The latter property of ALOHA initiated some determi- 
nistic probing techniques, applicable to bursty Known 
User Population environments. In particular, assuming 
the availability of C versus NC feedback outcomes, Ha- 
yes [3] proposed a probing technique for the resolution of 
collisions. In Hayes’ scheme (which has source coding 
characteristics), each nonempty user (for finite number of 
users) is eventually probed individually by the collision 
resolution protocol; thus, when it transmits it does not 
have to include its identification. For the same model as 
in [3], Capetanakis [4,5] then proposed a modified colli-
sion resolution algorithm (CCRA), and he subsequently 
studied the induced throughput and the expected per- 
packet delay. As compared to the probing technique in 
[3], the CCRA (in the case of finite number of users) 
conserves some additional slots by not probing individu- 
ally users who together have exactly one stored packet; it 
requires, however, the inclusion of user identification 
within each packet. 

In the limit, when the number of users increases to in-
finity, Capetanakis’ algorithm [5] is an RAA—named 
Binary Split RAA—that belongs in the Full Sensing RAA 
class and operates with C versus NC feedback outcomes, 
its collision resolution operations may be described by a 
stack with infinite cells, it is stable and there are two ver-
sions of it: a static version and a dynamic version. In the 
static version, after each collision, each one of the col-
lided packets retransmits with probability 0.5. In the dy-
namic version, each one of an optimally chosen subset of 
the collided packets retransmits with probability 0.5. In 
the presence of the Limit Poisson Population model the 
throughput of the static algorithm is 0.346, while the 
throughput induced by the dynamic version of the algo-
rithm is then 0.429. Observing that if a collision slot is 
followed by an empty slot, one slot can be saved by re-
peating the random retransmission (realized by the prob-
ability 0.5) before a predictably certain collision is al-
lowed, Massey [6] improved Capetanakis’ algorithms. In 
the presence of the Limit Poisson Population model, Ma- 
ssey’s modified algorithms (MCCRA) induce a through- 
put equal to 0.375 in the static case, and a throughput 
equal to 0.462 in the dynamic case. However, in contrast 
to the CCRA, the MCCRA algorithms are very sensitive 
to channel errors manifested by erroneously recived feed- 
backs. Both the CCRA and MCCRA algorithms were 
independently introduced by Tsybakov and Mikhailov 

[7]. Considering the same model as in [5] and observing 
the equivalence between random retransmission of pack-
ets and subdivisions of the arrival time axis, Gallager [8] 
and independently Tsybakov and Mikhailov [9] intro-
duced a different conflict resolution algorithm with gua- 
ranteed stability and first-come-first-served characteris- 
tics. The algorithm, which belongs in the Full Sensing 
RAA class and utilizes ternary feedback level (E vs. S vs. 
C), selects an initial arrival interval . It performs sub-
sequent subdivisions of  whenever collisions occur, and 
it reinitializes whenever a collision occurs within the first 
 subdivision. In the presence of the Limit Poisson Pop-
ulation model, the algorithm realizes its maximum 
throughput 0.4872, for  = 1.266, at the expense of in-
creased operational complexity, as well as increased sen-
sitivity to feedback errors. Humblet [10] improved the 
algorithm in [8] and [9], increasing the latter throughput 
to 0.48775. Finally, Mosely [11] studied the possibility 
of improving the throughout further, by including exter-
nal, unexamined arrival intervals at some steps. She 
found that no practical gain is obtained through this ap-
proach. Georgiadis et al. [12], as well as Tsybakov [13], 
independently considered an extended version of the al-
gorithm in [5] and [7], assuming the availability of some 
additional information. In particular, it was assumed that 
after each collision, although the identity of the collided 
packets is completely lost, the number (up to a possible 
limit) of the packets involved in the collision is revealed 
and broadcasted to all users. As a result, a binary split 
protocol (CRAI) was developed that optimizes retrans-
mission probabilities for throughput maximization, where 
it was found that its throughput 0.53237 is attainable in 
the presence of the Limit Poisson Population model via 
the deployment of only about eight energy detectors. A 
combination of the absorption concept in [8] and [9] with 
the availability of conflict multiplicity used in [12] and 
[13] was considered by Georgiopoulos et al. [14] in the 
development of an enhanced algorithm within the Full 
Sensing RAA class. Studies on algorithmic sensitivity to 
feedback errors were performed by Massey [6], Geor-
giadis et al. [12] and Vvedeskaya and Tsybakov [15]. In 
addition, a class of stack algorithms was developed by 
Tsybakov and Vvedenskaya [16]. 

The developed algorithms in the Full Sensing RAA 
class (summarized in the above paragraph) provided 
valuable insight. While the algorithms in this class are 
non-implementable in environments with unknown user 
models, due to the requirement that all users know the 
overall feedback history of the channel, the algorithmic 
studies in it led to implementable algorithms in the Lim-
ited Sensing RAA class. The first such algorithm was 
developed by Tsybakov and Mikhailov [17], where the 
feedback level is C versus NC, where each packet arrival 
accesses freely the infinite cell stack in [5] and [7] and 
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where the collision resolution process is as in [5] and [7]; 
in the presence of the Limit Poisson Population model, 
the throughput of the algorithm is 0.134. Later, a class of 
RAAs—named Limited Sensing Stack RAAs—were de-
veloped by Tsybakov and Likanov [18], Vvedeskaya and 
Tsybakov [15], Georgiadis et al. [19], Paterakis et al. [20] 
and Burrell et al. [21]. The collision resolution process of 
these Limited Sensing stack RAAs can be depicted by a 
stack with finite cells, where for C versus NC feedback 
level and in the presence of the Limit Poisson Population 
model, the maximum attained throughput is 0.429. Error 
sensitivity studies of the latter stack algorithms were 
performed by Vvedeskaya and Tsybakov [15], by Geor-
giadis et al. [19], by Paterakis et al. [20] and by Burrell 
et al. [21]; in general this class is characterized by low 
sensitivity to feedback errors. Finally, Georgiadis et al. 
[22] modified the algorithm in [8] and [9] for Limited 
Sensing operation, at the expense of increased opera-
tional complexity; the modified Limited Sensing algo-
rithm maintains the 0.4872 throughput in the presence of 
the Limit Poisson Population model, while, it also main-
tains its high sensitivity to feedback errors. 

In parallel to the construction of specific collision res-
olution algorithms, several investigators studied upper 
bounds on the throughputs induced by the whole class of 
stable protocols. Pippenger [23] first found an upper 
bound equal to 0.744, for the stable protocols that utilize 
C versus NC feedback level. This bound was sharpened 
to 0.704 by Humblet (unpublished paper), and later to 
0.6731 by Molle [24], to 0.6125 by Cruz and Hajek (un-
published paper), to 0.587 by Tsybakov and Mikhailov 
[25], and to 0.5254 by Berger, Mehravari, and Munson 
[26] (through some conjecture in the latter). If infinitely 
many energy detectors exist that reveal unlimited colli-
sion multiplicities, and if infinitely long initial delays are 
allowed, Pippenger [23] found that a throughput equal to 
one is achievable. The satisfaction of this limit one also 
implies infinite complexity. 

RAAs have been modified to accommodate mixed 
priority data, by Delic [27], Delic et al. [28,29], Papan-
toni-Kazakos [30] and Papantoni-Kazakos et al. [31,32]. 
RAAs have also been adjusted to observe strict delay 
constrains, by Kurose et al. [33], Marcus et al. [34] and 
Paterakis et al. [35], while they have also been modified 
to be implemented in environments with capture by Ly-
ons et al. [36]. RAAs deployed by interconnected net-
works have been studied by Bisdikian et al. [37], Hamil-
ton et al. [38] and Sidi et al. [39]. Channel utilization is- 
sues have been considered by Eklundh [40], while an 
adaptive scheme for the broadcast channel has been pro-
posed by Yemini et al. [41]. A methodology for the delay 
analysis of the 0.487 algorithm was considered by Huang 
et al. [42] and a generalized methodology for the delay 
analysis of a large class of RAAs has been presented by 

Georgiadis et al. [43], while the justification of the Limit 
Poisson Population model as a worst case scenario is pre- 
sented by Paterakis et al. [44]. A review paper was pub-
lished by Gallager [45]. Additional results in the area are 
included in the papers by Bar-David et al. [46], Fayolle 
et al. [47], Merakos et al. [48] and Tsybakov et al. [49, 
50]. Recommended books that include partial coverage 
of RAAs are those by Rom and Sidi [51] and Bertsekas 
et al. [52]. 

In this paper, we will discuss the logical flow leading 
from the Minimal Sensing RAA class, to the Full Sens-
ing RAA class, to the Limited Sensing RAA class. This 
objective will be served by the presentation of the 
ALOHA, the Binary Split and the Limited Sensing Stack 
RAAs. In the process, we will present the outline of 
some of the analytical tools needed in the performance 
evaluation of these RAAs. The organization of the paper 
is as follows: in Section 2, fundamental concepts and 
definitions, as well as the analytical approaches used for 
throughput and delay computations of all considered 
RAAs are outlined. In Section 3, the ALOHA RAA is 
examined. In Section 4, the Binary Split RAA and its 
comparison to ALOHA are presented. In Section 5, the 
Limited Sensing Stack RAAs are presented and their 
relationship to the Binary Split RAA is discussed. In 
Section 6, some extensions of the RAAs discussed in 
Section 5 are summarized. In Section 7, conclusions are 
included. 

2. Fundamental Concepts and Outline of 
Analytical Approaches 

Random Access Algorithms (RAAs) are deployed when 
the user population is unknown. In the study of RAAs, 
the fundamental concepts arising, that also characterize 
their performance, are: system stability and induced de-
lays. Given some RAA, given the user population, we 
define: 

Throughput: The maximum aggregate packet traffic 
rate * for which the user/RAA system is stable. Then, (0, 
*) is named the stability region of the system. 

Per Packet Delay: The distance, in slot units, between 
the arrival instant of a packet arrival and the instant when 
its transmission has been completed. 

At the same time, studies of error sensitivity corre-
spond to identifying the effect of feedback errors on the 
throughput of the user/RAA system. 

Regarding user/RAA system stability in the presence 
of independent users that generate memoryless packet 
streams, the existing developed RAAs induce a sequence 
 T

0n n
 of time instants when consecutive Collision 

Resolution Intervals (CRIs) intervals occur, where the 
packet backlogs  S

0n n
 at the instants   0n n

 form 
an irreducible and aperiodic Markov Chain. Thus, system 

T

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stability corresponds then to the ergodicity of the Markov 
Chain 

0n n
. On the other hand, Paterakis et al. [44] 

proved that as the size of the above user population in-
creases, the stability region of any of the existing RAAs 
is that corresponding to the Limit Poisson Population 
model. Therefore, the throughput of any one of the ex-
isting RAAs in the presence of the Limit Poisson Popula-
tion model is a lower bound to the throughput attained by 
the RAA in the presence of independent users that gener-
ate memoryless packet streams. At the same time, the 
throughput of such an RAA in the presence of the Limit 
Poisson Population model is then the highest rate for 
which the Markov Chain 

0n n
 is ergodic, where this 

chain also induces then infinitely many states. The theo-
ries and results developed by Kaplan [53], Spankowkii 
[54], Spankowski et al. [55], Pakes [56] and Tweedie [57] 
apply in the latter case, to provide a general approach to 
the computation of the throughput of one of the existing 
RAAs in the presence of the Limit Poisson Population 
model. This approach is also applicable to finite inde-
pendent user populations that generate memoryless traf-
fic streams, and it is summarized by the following steps: 

 S

 S

Throughput Computation of a Given RAA 

a) Given the user model, identify appropriate measure 
of system backlog. 

b) Consider the beginnings A and B of two consecu-
tive CRIs, where A precedes B, and let SA and SB denote 
the backlogs at A and B, respectively. 

c) Require that the conditional expected backlog 
 B AS s E S  be less than s, for all values of s that are 

larger than some finite number d determined by the RAA 
operation. Derive the throughput expression imposing 
this requirement, which represents negative expected 
backlog drift across consecutive CRIs. 

d) In the throughput expression in (c), the computation 
of the expected length of a CRI is required. Derive the 
tight bounds that may be needed in this computation. 

e) Use the result from step (d) to compute the value of 
the throughput. 

We will follow the above steps when we derive the 
throughputs of the PAAs in Sections 3-5. 

The study of packet delays within the stability region 
of any of the existing RAAs recruits results from the re-
generative theory, as found in Cohen [58] and Kanto- 
rovich et al. [59] and Stidman [60]. Indeed, in the pres-
ence of the user models considered above, each such 
RAA generates time instants when the algorithm restarts 
independently from its past. Then, the number of gener-
ated packets from the beginning of time to the point 
when such a time instant occurs constitutes a renewal 
process, where the delays determine a regenerative proc-
ess with respect to the former renewal process and where 

the time instants of algorithmic restarts constitute then 
renewal points. This allows for the computation of the 
expected per packet delays as a ratio of the expected ag-
gregate packet delays between consecutive renewal points, 
over the expected number of packets transmitted between 
these points, as discussed in detail by Georgiadis et al. 
[43], where the computation of delay bounds is also nec- 
essary in the process. We will discuss the renewal points 
of the binary split and limited sensing stack algorithms in 
Sections 4 and 5, respectively. 

3. The Aloha Random Access Algorithm 

The ALOHA Random Access Algorithm operates with 
binary NC vs. C feedback level outcomes and belongs in 
the Minimal Sensing RAA class. Given a user population, 
its operations are described below. 

3.1. Operations 

a) A common transmission probability p is deployed 
by all the users in the system. 

b) Each user has its generated packets queued, where 
these packets are transmitted on the first come-first serve 
basis, with the head packet being the oldest in the queue. 

c) Within each slot, each user whose queue is non-
empty, transmits the head packet in its queue with prob-
ability p. A user that actually transmits within the slot, 
subsequently observes the resulting NC vs. C feedback 
outcome: if the outcome is NC, the user concludes that its 
packet is successfully transmitted; if the outcome is, in-
stead, C, the user repeats the process within the next slot, 
by retransmitting its head packet with probability p. 

We will now proceed with the throughput analysis of 
the ALOHA RAA, when deployed by M independent 
users, each generating memoryless packet streams. 

3.2. Throughput Analysis for M Independent 
Users Generating Memoryless Packet 
Streams 

Given M users, we will measure the backlog at the be-
ginning of some slot t, as the total number k of packets 
queued by all the users. Then, due to the memoryless 
property of the traffics generated by the users, in con-
junction with the memoryless characteristic of the 
ALOHA operations, the backlog at the beginning of slot t 
+ 1 depends only on the value k and the common trans-
mission probability p. In other words, if 

0n n  denotes 
here the sequence of consecutive beginnings of slots and 
if 

 T

 S
0n n

 is then the sequence of the corresponding 
backlogs at these beginnings, then, 

0n n
 constitutes 

an aperiodic and irreducible Markov Chain. Let us de-
fine: 

 S

B: The set containing all aggregate backlogs, such that 
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then (0, *(p, M) ). The rates in the stability region are 
expected aggregate number of packets generated per slot. 

at least one packet per user is included. 
 !n nE S S k B  : The expected aggregate backlog 

at the time instant Tn + 1 , given that the backlog at the 
time instant Tn equals k and is such that at least one 
packet per user is included. 

Maintaining the number of users M fixed, the through- 
put in (2) can be maximized with respect to the value p. 
The latter maximum is easily found to equal   1

1 1
M

M
  

and attained for p = 1/M. It is also straight forward to 
conclude that the quantity   1

1 1
M

M
  is monotoni-

cally decreasing with increasing M, converging asymp-
totically to the value 1/e. The latter result led to the un-
fortunate early conclusion that the throughput of ALO- 
HA for infinite users (or the Limit Poisson Population) is 
1/e, where the fact that this meaningless result can be 
only attained when the transmission probability is zero 
(limit of 1/M for M  ) was ignored. 

: The aggregate packet rate in expected number of 
packets per slot. Then, 

    1

! 1
M

n nE S S k B k Mp p  
           (1) 

where,  equals the probability of a suc-
cessful transmission per slot, as well as the expected 
number of successfully transmitted packets per slot, 
when all M users are active, as is the case when the 
backlog k is a member of the set B. The ergodicity theory 
for aperiodic and irreducible Markov Chains, induces 
here the following theorem. 

  1
1

M
Mp p



3.4. Throughput Analysis for Varying Number 
of Users 

3.3. Theorem 1 
To study meaningfully the ALOHA throughput as the 
number of users increases, we should fix the transmission 
probability p to a strictly positive value and study the 
*(p,M) expression in (2), as M increases. Figure 1 ex-
hibits the behavior of *(p,M) as a function of M. From 
the figure, we observe that as M increases, the throughput 
*(p,M) converges to zero. As a consequence to this ob-
servation, in the presence of the Limit Poisson Popula-
tion, the ALOHA throughput is zero. 

The ALOHA RAA is stable iff the Markov Chain 
 is ergodic. In turn, the Markov Chain is ergodic, 

iff: 
  0n n
S



 ! 0n nE S S k B k     

which in view of (1) gives that the necessary and suffi-
cient condition for ALOHA stability is: 

  1 *1
M ,Mp p p M              (2) 

The quantity *(p, M) in Theorem 1 is the ALOHA 
throughput for M independent users generating memory-
less packet streams, when the common transmission 
probability is p. The corresponding stability region is  

3.5. Throughput of the Exponential Back off 
ALOHA Modification 

Current applications in Cellular and Sensor technologies 
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Figure 1. The ALOHA throughput as a function of the number M of users. The probability of transmission is p > 0. 
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deploy an ALOHA modification, where after each un-
successful transmission attempt, a user defers retrans-
mission by a number of slots which grows exponentially 
with the number of its unsuccessful attempts. This opera-
tion has been named exponential back off. Since the 
modification also deploys packet abortion after the num-
ber of retransmissions exceeds a given limit, the number 
of back offs is bounded. In addition, in a straight forward 
fashion, the exponential back offs can be equivalently 
modeled by varying transmission probabilities per slot, 
whose possible nalues are then finite. Let q and r denote 
respectively the largest and smallest among these values. 
Then, for the model of M independent users whose pac- 
ket traffics are memoryless, the throughput of the expo-
nential back off ALOHA modified algorithm is bounded 
from above by the expression . Fixing the 
q and r values and allowing the latter bound to vary with 
the M value, we observe a behavior qualitatively identi-
cal to that in Figure 1. Thus, the throughput of the 
ALOHA exponential back off modification converges to 
zero as the number of users increases. As a consequence, 
in the presence of the Limit Poisson Population, the 
throughput of the exponential back off ALOHA modifi-
cation is zero. 

  1
1

M
Mp p



4. The Binary Split Random Access  
Algorithm 

The binary split algorithm belongs in the full sensing 
RAA class, since user synchronization with the algo-
rithmic operations requires knowledge of the overall sys- 
tem feedback history, as well as continuous feedback 
monitoring until successful transmission. The algorithm 
utilizes binary NC vs. C feedback outcomes per slot and 
its operations may be described by an initialization and a 
collision resolution processes, where initialization refers 
to the initially selected set of packet arrivals that are 
successfully transmitted during the collision resolution 
process; the time period (in slot units) that the latter pro- 
cess lasts is named Collision Resolution Interval (CRI). 
The non-dynamic and the dynamic versions of the algo-
rithm differ only in the initialization part, while their 
collision resolution processes are identical. In the non- 
dynamic version, all the waiting packet arrivals are se-
lected for participation in the CRI, while, in the dynamic 
version, only a subset of these packets are selected, in-
stead. We will proceed by first stating the algorithmic 
operations during a CRI. 

4.1. Operations during a CRI 

During a CRI, each involved packet/user is required to 
observe slot feedbacks continuously until successful 
transmission. The first slot of a CRI is occupied with 
simultaneous transmissions from the total set of packets 

selected during the initialization part of the algorithm. If 
the latter set contains at most one packet, the CRI lasts 
one non-collision (NC) slot, during which the initially 
selected set of packets is successfully transmitted. If the 
set of arrivals selected during the initialization process 
contains at least two packets, instead, then the first CRI 
slot is a collision (C) slot and a collision resolution proc-
ess begins. The algorithmic steps of this process may be 
described in two ways: 1) as viewed by an imaginary 
outside observer and 2) as implemented independently by 
each packet involved in the process. We provide both 
descriptions below, where time is measured in slot units, 
where slot t occupies the time interval  1,t t  and 
where xt denotes the feedback outcome of slot t (NC vs. 
C). 

4.2. Operations as Viewed by an Outside  
Observer 

As viewed by an outside observer, the operations during 
a CRI that starts with a C slot may be described via a 
stack containing infinite cells indexed by i, where i = 
1,2,···. The lowest cell 1 in the stack is the transmission 
cell; that is, the packets transmitted in slot t are those 
placed in cell 1 at the same slot. The remaining cells in 
the stack are withholding cells, such that increased cell 
index implies lower withholding priority. The cell transi-
tions during the CRI are described as follows: 

a) At the first slot of the CRI, all packets in the ini-
tialization set are placed in cell 1. 

b) If xt = NC , then, 
The packet (if any) that was in cell 1 at t is success-

fully transmitted within slot t. 
The packets (if any) that were in cell i; i  2 at slot t, 

move to cell i – 1 at slot t + 1. 
c) If xt = C, then, 
Each packet that was in cell 1 at slot t, stays in cell 1 at 

slot t + 1; with probability 0.5 or moves to cell 2 at slot t 
+ 1; with probability 0.5. 

The packets (if any) that were in cell i; i  2 at slot t, 
move to cell i + 1 at slot t + 1. 

4.3. Independent Implementation per  
Packet/User 

The CRI operations may be implemented independently 
by the packets/users, via the use of a counter whose val-
ues may be any one of the positive integers. Let then ct 
denote the counter value of some packet at slot t, where 
ct = 1,2,··· The packet is transmitted in slot t if and only 
if ct = 1. The algorithmic operations during a CRI for any 
involved packet are then described by transitions of its 
counter values, as follows: 

a) If xt = NC and ct = 1, then the packet is successfully 
transmitted within slot t. 
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b) If xt = NC and ct  2, then ct + 1 = ct – 1. 
c) If xt = C and ct  2, then ct + 1 = ct + 1. 
d) If xt = C and ct = 1, then, ct + 1 = 1; with probability 

0.5 or ct + 1 = 2; with probability 0.5. 
After careful observation, we may observe that, as in-

duced by the operations of the algorithm, the stack cells 
or the counter values are unlimited, while, at the same 
time, there are no distinctive feedback patterns that iden-
tify CRI endings. As a consequence, for synchronization 
with the algorithmic operations via the identification of 
CRI endings, knowledge of the overall feedback history 
is required by the users. 

Next, we will present the throughput analysis of the 
binary split RAA, in the presence of the Limit Poisson 
Population. This throughput will be a lower bound for 
the binary split RAA, within the class of independent 
users whose packet generating processes are memoryless, 
[12]. 

4.4. Throughput Analysis for the Limit Poisson 
Population 

Since in the presence of the Limit Poisson Population 
each packet is a separate user, all packet arrivals within a 
given time interval may be candidates for participation 
within a CRI. Thus, the initialization part of the algo-
rithm may be mapped onto the selection of the arrival 
interval to be resolved by each CRI, where the delays 
caused by the collision resolution process induce a lag 
between the beginning of a CRI and the time instant of 
the oldest arrival resolved within its duration. Given that 
the binary split RAA operates on the generalized first 
come-first serve basis and in view of the arrival interval 
mapping, the non-dynamic versus dynamic versions of 
the algorithm dictate here the following initializations: 1) 
In the non-dynamic version, the arrival interval selected 
at the beginning of a CRI is the corresponding lag, while, 
2) in the dynamic case, the selected arrival interval is, 
instead, the minimum (in length) between the lag and an 
interval of given length  that is placed at the beginning 
of the lag. As will be seen in the process of this paper, 
the value of  is selected for throughput maximization, 
where the dynamic version of the algorithm is then 
named, Window Binary Split RAA, due to the window of 
size  used by it in its initialization. 

As may be deduced from the algorithmic operations, 
including the algorithmic initialization, in the presence of 
the Limit Poisson Population, the Binary Split RAA 
(both dynamic and non-dynamic versions) induces a se-
quence of consecutive CRIs, where successive CRIs re-
solve adjacent arrival intervals (transmit successfully the 
arrivals within such intervals). Thus, in the present case, 
we will measure backlog by arrival intervals; specifically 
lags. In particular, let  be the sequence of con-

secutive time instants when the CRIs induced by the al-
gorithm begin and let 

  0n n
T



 S
0n n

 be the sequence of the 
corresponding lags at these instants. Then, due to the 
memoryless of the Limit Poisson process, the sequence 
 S

0n n
 is an irreducible and aperiodic Markov Chain. 

Let us first consider the Window Binary Split RAA with 
window size  and let us then define: 
: The acting Limit Poisson rate, in expected number 

of packets per slot. 
 S l1n nE S     : The expected lag at the beginning 

of the (n + 1)th CRI, given that the lag at the beginning of 
the nth CRI equals l and is not less than . 

f(x): The expected length of a CRI that resolves the ar-
rivals within a size  arrival interval, when the rate of the 
Limit Poisson process is . 

x   
As will be clear in the process of this section, in the 

expression of the expected CRI length, the parameters  
and  appear, indeed, only in the product form x. The 
ergodicity theory of irreducible and aperiodic Markov 
Chains induces then the following theorem. 

4.5. Theorem 2 

The Window Binary Split RAA is stable iff the Markov 
Chain  S

0n n
 is ergodic. In turn, the latter Markov 

Chain is ergodic iff: 

 l1 0n nE S S l                (3)  

where, 

  f  
 

1n nE S S l x

f x x

  

 
       

  
        (4) 

Thus, as concluded from (3) and (4), the Window Bi-
nary Split RAA is stable iff: 

   f 0 orx x x f x               (5) 

Inequality (5) in Theorem 2 provides the expression 
that leads to the simultaneous computation of both the 
throughput and the optimal window size * that attains it. 
The conceptual methodology towards that direction is as 
follows. Study the function  x f x  and search for its 
maximum. If this maximum exists and is attained at x*, 
then  * * *x f x   is the throughput of the algorithm 
and is attained by a window size * *x *  . 

From the above, it is clear that the analytical expres-
sion and the subsequent computation of the function f(x) 
are essential. To satisfy this objective, let us first define: 

Lk: The expected length of a CRI induced by the Bi-
nary Split RAA, given that it resolves a k-multiplicity 
collision (starts with the simultaneous transmission of k 
packets). 

 ,P k   : The probability of k packets arriving in an 
interval of length Δ, when the Poisson rate is λ. 
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Then, clearly: 

   Δ  Δ
, e e

! !

k k
λ x x

P k
k k


      

 
0

L e
!

k
x

k
k

x
f x

k




                    (6) 

The quantities in the set  L
k 0k   are induced by the 

collision resolution algorithmic steps and are the only 
fundamental algorithmic characteristics involved in the 
throughput computation. These quantities may be com-
puted recursively, while, since the cardinality of the set 

k 0k   is infinite, the development of bounds is also 
necessary. We will first present the recursive expressions 
and will continue by presenting the form of the lower and 
upper bounds for k values above a certain limit. The de-
tails of the approach for the computation of the bounds 
may be found in [12]. Directly from the collision resolu-
tion process induced by the algorithm, we first state: 

 L

Initial conditions: L0 = L1 = 1. 
For k ≥ 2:  

 
0

2 k
k i

i k

k
L L

i



 

 
  

 
 k iL

L

 

which after terms’ rearrangement gives the recursive 
expression: 

11 1

0 -1

2 1 2k k
k

i k

k
L

i

   

 

        
 i        (7) 

In [12], the recursive expressions in (7) were used to 
compute the first thirteen Lk values, precisely. For k val-
ues above thirteen, tight upper and lower bounds on the 
Lk values were computed. These bounds provide linear 
approximations for the Binary Split RAA. That is, 

For k > 13: 

Lk ≈ αk + β               (8) 

where the values of the α and β constants can be found in 
[12]. 

Substitution of the bounds in (8), in the expected CRI 
length expression (6) gives then: 

   
0 13

e
!

k
x

k
k

x
f x x L k

k
    

 

            (9) 

The use of the expression in (9) led to the computation 
of the value x* = 1.149 that attains the maximum of the 
ratio x/f(x) in (5), where this latter maximum λ* is the 
algorithmic throughput. The found throughput and opti-
mal window size, in slot units, are: 

For the Window Binary Split RAA: 

λ* = 0.4295 ≈ 0.43; * = 2.677           (10) 

Stability region: λε(0, 0.43) 
We note that when no optimal window size is selected 

and the non-dynamic Binary Split RAA is, instead, de-
ployed, the throughput is the limit value of the ratio 

 x f x  and equals 0.34. Thus, the additional control-
ling parameter represented by the optimal selected win-
dow size is highly significant in performance optimiza-
tion. 

At this point, it is interesting to compare the Binary 
Split RAA with the ALOHA RAA. In the presence of the 
Limit Poisson Population, ALOHA’s throughput is zero, 
while, for the same population, the throughput of the 
Window Binary Split RAA is 0.43. This is at the expense 
of implementability, however, since the latter requires 
knowledge of the overall system feedback history. As we 
will see in Section 5, the implementability problem is 
rectified by the Limited Sensing RAA class, at no loss in 
throughput. 

4.6. Delay Analysis for the Limit Poisson  
Population 

For the analysis of the delays induced by the algorithm, 
the renewal theory is utilized, where the algorithm in-
duces regenerative points with respect to the delay proc-
ess. In the presence of the Limit Poisson Population, the 
renewal points of the Binary Split RAA are the begin-
nings of CRIs whose initial lag is a single slot long. The 
algorithm regenerates itself independently at such points. 
For some given rate λ in the algorithm’s stability region, 
the per packet delay is then computed as the ratio of the 
aggregate delays between consecutive renewal points, 
over the aggregate number of packet arrivals between the 
same points. This approach allows for the computation of 
per packet delay distributions rather than only expected 
delays, where the development of bounds on the induced 
delays is required in the process. The complete method-
ology is detailed in reference [43]. The expected delays 
induced by the Window Binary Split RAA are a convex 
function of the acting rate λ, monotonically increasing 
with increasing λ value and approaching asymptotically 
large values as λ approaches the throughput value 0.43; 
for λ value close to zero, the expected delay is close to 
0.5 slots. In Section 5 below, we will compare expected 
delays induced by the Binary Split and the Limited 
Sensing Stack RAAs. 

4.7. Sensitivity to Feedback Errors 

In [12], the behavior of the Window Binary Split RAA 
has been studied, in the presence of feedback errors. In 
particular, the throughput of the algorithm was computed, 
when slots that are either empty or occupied with a single 
packet transmission may be perceived as collision slots 
with some probability (we note that if collision slots may 
be perceived as non-collision slots, packets are rejected 
and the concept of throughput is then obsolete). The re-
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sults of these studies may be found in reference [12], 
where it is found that the throughput of the Window Bi-
nary Split RAA declines gracefully when such feedback 
errors occur. We will include some of these results in 
Section 5, when we compare the Window Binary Split 
RAA with the Limited Sensing Stack RAAs. 

5. The Limited Sensing Stack Random  
Access Algorithm 

The experience gained by the study of the Binary Split 
RAA in Section 4 leads to the following initial observa-
tion: if the collision resolution process can be modified to 
induce distinct CRI endings, then a user arriving in the 
system may be synchronized with the algorithmic opera-
tions without the need to know the overall system feed-
back history; thus, allowing for algorithmic implement-
ability. The secondary observation arising then is that 
limitation of the stack size in the Binary Split RAA may 
attain this objective, where the remaining issue is the 
performance of the subsequently developed RAAs; that 
is, their throughput, induced delays and sensitivity to 
feedback errors. In this section, we present the outcome 
of the studies in [18,20,21] on the so arising Limited 
Sensing Stack RAAs. We will start by describing the 
operations during a CRI. Subsequently, we will explain 
the limited sensing initialization process, whose feasibil-
ity and specifics are direct consequence of the induced 
distinct CRI endings. 

5.1. Operations during a CRI 

As stated above, the Limited Sensing Stack RAAs were 
developed from a modification of the Window Binary 
Split RAA, via an initial imposed limitation on the size 
of the stack which represents the collision resolution 
process. Thus, the feedback outcomes utilized per slot 
are binary NC vs. C and each involved packet/user is re- 
quired to observe slot feedbacks continuously until tran- 
smission, while the collision resolution process during a 
CRI, as viewed by an imaginary outside observer, may 
be described via the use of a stack containing K cells. 
The same process, as implemented independently by 
each involved packet/user, may be described via the use 
of a counter. We provide both descriptions below, where, 
as in Section 4, slot t represents the time interval  1,t t  
and xt denotes the NC vs. C feedback outcome of slot t.  

1) Operations as Viewed by an Outside Observer 
The stack contains K ≥ 2 cells indexed from 1 to K. 

Cell 1 is the transmission cell; that is, packets contained 
in cell 1 at slot t are transmitted within the same slot, 
while the cells above it are withholding cells representing 
various withholding priorities. The cell transitions during 
a CRI are described as follows: 

a) At the first slot of the CRI, all packets contained in 

the initialization set are placed in cell 1. 
b) If xt = NC, then, 
The packet (if any) that was in cell 1 at t is success-

fully transmitted within slot t. 
The packets (if any) that were in cell i; i  2 at slot t, 

move to cell i – 1 at slot t + 1. 
c) If xt = C, then, 
Each packet that was in cell 1 at slot t, places itself in 

cell i; i = 1,···,K, with probability 1/K at slot t + 1. 
The packets (if any) that were in cell i; i  2 at slot t, 

remain in cell i at slot t + 1. 
2) Independent Implementation per Packet/User 
The CRI operations are carried independently by each 

involved packet/user via the use of a counter. Let ct de-
note the counter value of a packet at slot t. This value 
may be one of the positive integer numbers 1 to K, where 
the packet is transmitted within slot t iff ct = 1. The tran-
sition of the counter values during a CRI are as follows: 

a) If xt = NC and ct = 1, then the packet is successfully 
transmitted within slot t. 

b) If xt = NC and ct  2, then ct + 1 = ct – 1. 
c) If xt = C and ct  2, then ct + 1 = ct . 
d) If xt = C and ct = 1, then, ct + 1 = i; i = 1,···, K, with 

probability 1/K. 
As concluded from the above collision resolution op-

erations, after a collision within which it is involved, a 
packet places itself in either one of the transmission vs. 
withholding states with equal probability, while after a 
collision within which the packet is not involved, it 
maintains its existing state. 

After careful observation of the collision resolution 
process described above, it is concluded that each CRI 
that starts with a collision ends with the unique pattern of 
K successive NC slots. In other words, for a CRI that 
starts with a collision, K successive slots can not occur 
somewhere in the middle its process, while, at the same 
time, they characterize uniquely its end. Taking now into 
consideration trivial CRIs that last a single slot (those 
resolving at most one packet), we finally conclude that 
the observation of K successive NC slots may lead to one 
of the following two assessments: either a CRI that 
started with a collision ended or K successive trivial (a 
single slot lasting) CRIs occurred. In either case, if a 
newly arrived user in the system waits until it observes K 
successive NC slots, it is assured that at the end of the Kth 

such slot a CRI has ended. This leads to the limited 
sensing initialization process described below for the 
Limit Poisson Population model. 

5.2. The Limited Sensing Initialization Process 
for the Limit Poisson Population 

The patterns of K successive NC slots explained above 
allow for the implementation of the stack algorithm 
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without the need of the overall feedback history knowl-
edge. Such implementation is reflected by the initializa-
tion process, named Limited Sensing, which imposes the 
requirement that each packet arrival observe continu-
ously the slot feedbacks, from the slot within which it 
arrives to the slot within which it is successfully trans-
mitted. Specifically, in the presence of the Limit Poisson 
Population, where each packet is an independent user, a 
packet that arrives at time instant τ1 located within slot t1, 
follows the process described below before entering a 
CRI, where a window of size Δ is utilized. 

a) Starting with the slot t1 of its arrival, the packet ob-
serves slot feedbacks passively, until the first occurrence 
of K successive NC slots ending with slot t2. At the end 
of slot t2, the packet is synchronized with the algorithmic 
collision resolution process, being in the position to rec-
ognize all CRI endings after t2 (including those of the 
trivial CRIs). 

b) k at the end of slot t2, the packet checks its arrival 
instant τ1 against the arrival interval (t2 – K + 1 – Δ, t2 – K 
+ 1): 

i) If τ1ε(t2 – K + 1 – Δ, t2 – K + 1), the packet partici-
pates in the CRI that begins with slot t2 + 1 and is suc-
cessfully transmitted during its process. 

ii) If, instead, τ1 < t2 – K + 1 – Δ, the packet updates its 
arrival instant to τ2 = τ1 + Δ and continues observing slot 
feedbacks sequentially and passively, until the end slot t3 

of the next CRI, when it repeats step (b) for t2 substituted 
by t3. 

c) In general, if tk is the ending slot of the  
CRI after the packet’s arrival and the packet has not yet 
participated in a CRI, the packet’s arrival instant update 
at tk equals τk – 1 = τ1 + (k – 1) Δ. The packet checks then 
τk – 1 against the arrival interval (tk – K + 1 – Δ, tk – K + 1) 
and: 

 1
th

k 

i) If τk – 1 is contained in (tk – K + 1– Δ, tk – K + 1), the 
packet participates in the CRI that begins with slot tk + 1 
and is successfully transmitted during its process. 

ii) If, instead, τk – 1 < tk – K + 1 – Δ, the packet updates 
its arrival instant update to τk = τ1 + kΔ and continues ob- 
serving slot feedbacks sequentially until the next CRI end. 

Regarding the initialization process described above, 
we make the following observations: 1) The Limited 
Sensing initialization has last-come first-serve character- 
istics; 2) While at the initialization state, a packet gener-
ates a sequence of arrival instant updates, where each 
such update is generated at the beginning of each CRI 
which the packet does not participate in. The updates are 
responses to the fact that a CRI which does not include 
the packet resolves a length Δ interval which contains 
later (than the packet’s arrival) packet arrivals. As a re-
sult, each update advances the arrival instant of the pack-
et by Δ; 3) The arrival instant update τk – 1 at the end tk of 
the (k – 1)th CRI is checked against a length Δ arrival 

interval (tk – K + 1 – Δ, tk – K + 1) , whose right edge lies 
K – 1 slots to the left of tk, where this is because packets 
that arrived within the latter K – 1 slots have not yet ob-
served the necessary for algorithmic synchronization and 
possible next-CRI participation initial K successive NC 
slots. This arrival interval (tk – K + 1 – Δ, tk – K + 1) is 
named examined interval, where a sequence of such in-
tervals is generated during the initialization process; 4) A 
packet participates in the first CRI whose examined in-
terval its arrival instant update falls in. 

5.3. Throughput Analysis for the Limit Poisson 
Population 

In the throughput analysis, the specific location of the 
examined intervals has no effect; only their length Δ does. 
Thus, the only algorithmic characteristics involved in this 
analysis are the statistical properties of the generated 
CRIs, as induced by the collision resolution process and 
the window size Δ. As with the Window Binary Split 
RAA, the Limited Sensing Stack RAA induces a se-
quence of consecutive CRIs which, in the presence of the 
Limit Poisson Population resolve arrival intervals. Thus, 
as in Section 4, the backlogs  at the beginnings   0n n

S


 T
0n n

 of consecutive CRIs are measured by arrival 
intervals. In addition, as in Section 4, in the presence of 
the Limit Poisson Population, the sequence   0n n

S


 is 
an irreducible and aperiodic Markov Chain whose er-
godicity conditions determine the algorithmic throughput. 
Theorem 2 in Section 4 applies directly here, where the 
only difference lies in the computation of the conditional 
expected CRI lengths  L

0k k
. For completeness, we 

restate the theorem here, as applied to the Limited Sens-
ing Stack RAAs, where lag in this case is defined as the 
composite total unexamined arrival interval. Considering 
window size Δ, let us define: 
: The acting Limit Poisson rate, in expected number 

of packets per slot. 
 1n nE S S l    : The expected lag at the beginning 

of the (n + 1)th CRI, given that the lag at the beginning of 
the nth CRI equals l and is not less than . 

f(x): The expected length of a CRI that resolves the ar-
rivals within a size  arrival interval, when the rate of the 
Limit Poisson process is . 

x   

The ergodicity theory of irreducible and aperiodic 
Markov Chains induces then the following theorem. 

5.4. Theorem 3 

The Limited Sensing Stack RAA is stable iff the Markov 
Chain   0n n

S


 is ergodic. In turn, the latter Markov 
Chain is ergodic iff: 
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   1 0n nE S S l l f x x              (11) 

Thus, the Limited Sensing Stack RAA is stable iff: 

 x f x                    (12) 

If *x  maximizes the ratio  x f x , then  
 * * *x f x   is the throughput of the algorithm and is 

attained by a window size * *x *  . 
Defining by Lk the expected CRI length, given that the 

CRI resolves a k multiplicity collision, we obtain, as in 
Section IV, that the expected CRI length f(x) is given by 
the following expression: 

 
0

e
!

k
x

k
k

x
f x L

k




              (13) 

We note that as the number of cells K increases from 
the value two to infinity, a class of RAAs arises which 
contains the Binary Split RAA. The members of this 
class which may be implementable in the limited sensing 
environment are only those corresponding to bounded K 
values. As with the Binary Split RAA, for any given fi-
nite K value, the computation of the expected CRI length 
f(x) requires the development of recursive expressions 
and bounds on the conditional expected CRI lengths 

. We will present such recursions and bounds for 
the case of K = 2; that is, for the Limited Sensing Stack 
RAA whose stack contains two cells. The recursions for 
the Limited Sensing Stack RAA whose stack contains 
three cells may be found in [21]. The complexity of such 
recursions increases with increasing number K of cells in 
the stack. 

  0k k
L



5.5. Computation of the Expected CRI Lengths 
for the 2 Cell Stack RAA (K = 2) 

Let us define: 
Lk: The expected length of a CRI which starts with a k 

multiplicity collision. 
L(k,m): The expected remaining length of a CRI which 

is at the state of containing k packets in cell 1 and m 
packets in cell 2. Then, the following initial conditions 
and relationships are clear. 

Lk = L(k, 0), L0 = L(0, 0) = L1 = L(1, 0) = 1 

where the algorithmic operations during a CRI induce the 
following transitions of the L(k, m) quantities: 

For all m ≥ 1, L(0 , m) = L(1, m) = 1 + L(m, 0); 
For k ≥ 2; 

   
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Rearrangement of terms in the last equation leads to 

the following expression which, for fixed sum k + m, is 
recursive with respect to k. 

For k ≥ 2; 

 

 

1

1

0 -1

, 2 2 1

2 1  , 

k k

k

i k

L k m

k
L i k m i

i





 

   
        

 
       (14) 

For fixed k + m sum value, the recursive computation 
in (14) is repeated for increasing k values, while this re-
peated recursive computation is performed sequentially 
for increasing k + m sum values. The end result of this 
process is the recursive computation of the quantities in 
the set   0k k

L


. As with the Binary Split RAA, the car-
dinality of the latter set is infinite, requiring the devel-
opment of tight upper and lower bounds for large k val-
ues. Such bounds were developed in [42], where, in con-
trast to the Binary Split RAA case, their form is quadratic 
here. That is, for specifically found α, β and γ constant 
values, we have: 

For k ≥ 13;  
2

kL k k                  (15) 

In view of the expression in (15), the expected CRI 
length f(x) in (13) may be written as, 
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         (16) 

where the  0 13k k
L

 
 values in (16) are computed pre-

cisely in a recursive fashion. 

5.6. Results for Varying K Values 

For given K value, the computation of the expected CRI 
length (as in (16) for K = 2), in conjunction with the 
statements in Theorem 3 lead to the computation of the 
throughput * and the optimal examined interval length 
* that attains it. In Table 1 below, we show these com-
puted values for the Stack RAAs with K = 2 and K = 3 
cells, from [20] and [21], respectively. For the sake of 
comparisons, we also show the same values for the 
Window Binary Split RAA in Section 4 (which corre-
sponds to the limit K value). 

Stack RAA with K = 2: * = 0.4295 ≈ 0.43 * = 2.33; 
Stack RAA with K = 3: * = 0.4295 ≈ 0.43 * = 

2.5599 
Window Binary Split RAA: * = 0.4295 ≈ 0.43 * = 

2.677 
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Table 1. Stability regions and optimal windows for stack 
raas. 

HA requires sensing of feedback outcomes only for slots 
within which the packet is transmitted, but its throughput 
rapidly converges to zero when the user population in- 
creases.  

Stack RAA with K = 2 : * = 0.4295 ≈ 0.43 * = 2.33 

Stack RAA with K = 3: * = 0.4295 ≈ 0.43 * = 2.5599

Window Binary Split RAA: * = 0.4295 ≈ 0.43 * = 2.677

Common stability region: ε (0, 0.43) 

5.7. Delay Analysis for the Limit Poisson  
Population 

As in Section 4, for the analysis of the delays induced by 
the Limited Sensing Stack RAAs, the renewal theory is 
utilized again, where the algorithm induces regenerative 
points with respect to the delay process. In the presence 
of the Limit Poisson Population and for given K, the re-
newal points are the beginnings of CRIs whose initial lag 
is K slots long. For given K value and some given rate λ 
in the stability region, the per packet delay is then com-
puted as the ratio of the aggregate delays between con-
secutive renewal points, over the aggregate number of 
packet arrivals between the same points. The approach 
detailed in [18] allows for the computation of delay dis-
tributions and includes the development of tight bounds. 
In Figure 2, we plot computed expected delays as func-
tions of the rate λ, for the 2-Cell Stack, the 3-Cell Stack 
and the Binary Split RAAs. We note that for very light 
traffic (λ near zero), a packet is delayed only due to the 
initial algorithmic synchronization requirement, since no  

 
It may be conjectured that, as the size K of the stack 

increases, from 2 to infinity, the RAA throughput re-
mains unchanged, while, as viewed from Table 1, the 
optimal length of the examined interval increases. Thus, 
the K value does not affect the throughput, but does af-
fect implementability. As we will discuss below, the K 
value also affects delays and sensitivity to feedback er-
rors. 

As compared to the ALOHA RAA, in the presence of 
the Limit Poisson Population, the class of Limited Sens-
ing Stack RAAs attain throughput 0.43, while ALOHA’s 
throughput is then zero. This is at the expense of in-
creased, but reasonable and implementable feedback 
sensing. Indeed, the Limited Sensing Stack RAAs require 
that each packet/user sense the per slot feedback out-
comes continuously, from the time it is generated to the 
time that it is successfully transmitted. In contrast, ALO- 
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Figure 2. Expected delays in slot units for the 2-Cell, 3-Cell and binary split RAAs.   
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collisions occur then. The latter requirement is 2 slots; 
for the 2-Cell Stack RAA, 3 slots; for the 3-Cell Stack 
RAA and 0 slots for the Binary Split RAA. Adding to 
these numbers the 0.5 slot accounting for the delay due to 
the mid-point average arrival instant of the packet within 
its arrival slot, we finally obtain that for very light traffic, 
the expected delays induced by the 2-Cell Stack, the 
3-Cell Stack and the Binary Split RAAs are approxi-
mately 1.5, 2.5 and 0.5 slots, respectively. As the rate λ 
approaches the throughput value 0.43, the expected de-
lays of all three RAAs approach asymptotically high 
values, while the expected delay of the Binary Split RAA 
remains uniformly lower than that induced by the other 
two algorithms. Comparing the 2-Cell Stack RAA with 
the 3-Cell Stack RAA in terms of expected delays, we 
note that the 2-Cell Stack RAA outperforms the 3-Cell 
Stack RAA for low traffic rates, while the outperforming 
is reversed when traffic rates are relatively high. We fi-
nally note that the last-come first-serve characteristic of 
the limited sensing 2-Cell Stack and 3-Cell Stack RAAs 
induces higher variances of the delay distributions, as 
compared to that induced by the Binary Split RAA. 

5.8. Sensitivity to Feedback Errors 

Insensitivity to feedback errors, commonly caused by 
channel noise, is a significant attribute to consider in the 
performance evaluation of RAAs. The specific issue or 
interest is the throughput degradation when feedback 
errors cause misperception of NC feedbacks, where sure 
instability results from C feedbacks’ misperceptions. We 
will draw from the results in [6,17,42], where the through- 
puts of the 2-Cell Stack, the 3-Cell Stack and the Binary 
Split RAAs were computed when empty or occupied 
with a single packet transmission slots may be perceived 
as collision slots. Let us define: 
ε: The probability that an empty slot may be perceived 

as a collision slot; 
δ: The probability that a slot occupied with a single 

packet transmission may be perceived as a collision slot. 
Then, throughputs induced by the three RAAs, for 

different ε and δ values are exhibited in Table 2. 
From Table 2, we observe that the 2-Cell Stack RAA 

is the most robust in the presence of feedback errors, 
where, among the three studied RAAs, its throughput 
degrades the least with increasing error probabilities. In 
addition, for all ε and δ values less than 1, the 2-Cell 
Stack and 3-Cell Stack RAAs induce positive through-
puts, while the throughput of the Binary Split RAA is 
zero for ε values equal to or above 0.50. 

6. Extensions of the Limited Sensing Stack 
Raas 

The Limited Sensing Stack RAAs presented in Section 5  

Table 2. Throughputs in the presence of feedback errors. 

ε δ 
2-Cell Stack 

RAA 
3-Cell Stack  

RAA 
Binary Split 

RAA 

0.00 0.01 0.424 - 0.410 

0.00 0.20 - 0.312 - 

0.00 0.40 0.255 - 0.262 

0.00 0.50 0.363 0.156 - 

0.10 0.00 0.408 - 0,401 

0.10 0.10 0.363 0.332 - 

0.20 0.00 0.377 - 0.355 

0.20 0.10 0.328 0.254 - 

0.20 0.20 0.279 0.175 0.266 

0.30 0.10 0.261 - 0.192 

 
have very attractive characteristics: Their feedback sens-
ing requirements are implementable and reasonable, they 
remain stable when the user population increases to large 
values, their throughput is relatively high, they induce 
good delay characteristics and are robust in the presence 
of feedback errors. They are thus attractive candidates for 
deployment in environments which impose additional 
restrictions or requirements, such as imposed delay hard 
constraints or delay advantages granted to a subclass of 
priority users. In environments where hard constraints on 
delays are imposed, renting stability a void concept, the 
Limited Sensing Stack RAAs will outperform signifi-
cantly any ALOHA-based RAA in terms of induced de-
lays. In [31], the Limited Sensing 2-Cell Stack RAA was 
adapted to accommodate both regular and high priority 
data traffic. Summary of the generic approach is pre-
sented below. 

Let us consider an environment containing both regu-
lar and high priority users. Let us then deploy M distinct 
transmission channels and adopt the following initial 
channel assignments for the users: 1) Each regular user is 
assigned one of the M channels for its transmissions, 
permanently; 2) Each high priority user is allowed the 
flexibility to select dynamically any one of the M chan-
nels for its transmissions. The algorithmic system is then 
described as follows: 

a) The K-Cell Stack RAA is deployed in all M chan-
nels; 

b) Each regular user follows the rules of the K-Cell 
Stack RAA within its pre-assigned channel; 

c) Upon arrival, each high priority packet/user starts 
sensing continuously the feedback outcomes from all M 
channels, generating separate per channel sequences of 
arrival instant updates. For its transmission, the user se-
lects then the first CRI whose examined interval its cor-
responding arrival instant update falls into. If the latter 
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CRI corresponds to channel i, the user stops sensing the 
feedback outcomes from the remaining channels and 
transmits its packet during this CRI in channel i.  

As deduced from the above description, as compared 
to the regular users, the advantage awarded to high prior-
ity users by the approach is reduced waiting time during 
the initialization process, at the expense of increased 
feedback sensing across the M channels. Since the wait- 
ing time comprises a significant part of the overall per 
packet delay, this advantage has a significant delay re-
duction effect for the high priority users, especially when 
their arrival rate is significantly lower than that of the re- 
gular users. 

The algorithmic system induces coupling across the 
different channels. The stability analysis is thus involved 
and can be found in [31], for the case where a total of 
two channels and the Limited Sensing 2-Cell Stack RAA 
are deployed. In Figure 3, we exhibit the stability re-
gions for the Limit Poisson Population in the latter case, 
parameterized by the rate of the high priority traffic. As 
can be seen from the figure, the stability region reduces 
as the rate of the high priority traffic increases. As shown 

in [31] and [27,28], the stability region per channel also 
decreases with increasing number M of channels, at the 
gain then of increased reduction in the delays of the high 
priority traffic. In Figure 4, we exemplify then the effect 
of the approach on the expected delays of the high prior-
ity users when the rate of the regular traffic per channel 
is 0.3 and the rate of the high priority traffic is less than 
0.1, where all traffics are Limit Poisson. 

7. Conclusion 

We reviewed the results of a more than two decades con- 
centrated research effort on random access algorithms. 
We gave special attention to the level of feedback sens- 
ing required by each algorithm and its stability region. In 
view of the ALOHA instability in the presence of in- 
creasing user populations, the Limited Sensing Stack 
Random Access Algorithms (RAAs) are especially at- 
tractive for deployment in various applications exempli-
fied by cellular and clustered sensor topologies. The lat- 
ter algorithms are stable in the presence of increasing 
user populations, attaining a throughput lower bound 

 

 

Figure 3. Stability Regions for a 2 Channel System with the 2-Cell Stack RAA Deployed. Limit Poisson Populations. The 
Rates of the Regular Traffic per Channel are λ1 and λ2. The Rate of the High Priority Traffic is λ3. 
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Figure 4. Expected delays for the 2 Channel System and the 2-Cell Stack RAA Limit Poission Populations The Rates of the 
Regular Traffic per Channel are λ1 and λ2. The Rate of the High Priority Traffic is λ3. 
 
0.43, they induce good delay characteristics and are ro-
bust in the presence of channel errors. In environments 
where ALOHA-based algorithms are presently deployed, 
the Limited Sensing Stack RAAs may provide superior 
performance, well outbalancing the increased (as com-
pared to ALOHA) feedback sensing they require. These 
RAAs may also be deployed to accommodate mixed high 
priority versus regular data traffics, with excellent re-
sults. 
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