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ABSTRACT 

Curved space-time 4-interval of any probe particle does not contradict to flat non-empty 3-space which, in turn, as-
sumes the global material overlap of elementary continuous particles or the nonlocal Universe with universal Euclidean 
geometry. Relativistic particle’s time is the chain function of particles speed and this time differs from the proper time 
of a motionless local observer. Equal passive and active relativistic energy-charges are employed to match the universal 
free fall and the Principle of Equivalence in non-empty (material) space, where continuous radial densities of elemen-
tary energy-charges obey local superpositions and mutual penetrations. The known planetary perihelion precession, the 
radar echo delay, and the gravitational light bending can be explained quantitatively by the singularity-free metric 
without departure from Euclidean spatial geometry. The flatspace precession of non-point orbiting gyroscopes is non- 
Newtonian one due to the Einstein dilation of local time within the Earth’s radial energy-charge rather than due to un-
physical warping of Euclidean space. 
 
Keywords: Euclidean Material Space; Metric Four-Potentials; Radial Masses; Energy-To-Energy Gravitation;  

Nonlocal Universe 

1. Introduction 

The ideal penetration of a static superfluid medium 
through a rotating drag one was observed in He3-He4 
experiments well before the distributed Cooper pair ex-
plained the nonlocal nature of superconductivity. But 
does spatial distribution of paired superelectrons mean 
that two nonlocal carriers move one through another as 
overlapping continuous distributions of mass-densities or 
do these densities bypass each other separately without 
mutual penetrations? Is there a principle difference be-
tween the superfluid motion of two paired electrons and 
the free, geodesic motion of any normal electron between 
drag collisions with energy exchanges? 

During the last fifty years the celebrated Aharonov- 
Bohm effect is trying to dismiss doubts regarding the 
nonlocal nature of the electron, while the Classical The-
ory of Fields is persisting to accept a self-coherent ana-
lytical distribution of the charged elementary density 
(instead of the point particle approximation for the elec-
tron). Fermions take different energies and, therefore, 
cannot exhibit one net phase even under the ideal (with-
out dissipation) motion. At the same time, each distrib-
uted electron may have a self-coherent state of its own 
matter. Particles motion with drag collisions and heat 
release represents much more complicated physics than  

the superfluid motion with a self-coherent state of dis-
tributed elementary mass. Such a nonlocal superfluid state 
is free from energy and information exchanges. Charged 
densities of drag and superconducting electrons in the 
same spatial point can move even in opposite directions, 
for example under thermoelectric phenomena where 
nonequilibrium superconductors exhibit up to five [1] 
different ways for heat release/absorption. Such a steady 
countermotion of drag and superfluid densities of elec-
trons may be a laboratory guiding for theories toward the 
global counterbalance of all material flows in the nonlo-
cal Universe with local energy dissipation. However, if 
there is a mutual penetration of extended bodies (with or 
without dissipation), then how can General Relativity 
(GR) address the laboratory nonlocality of each electron 
in order to incorporate the material spatial overlap of 
distributed carriers of mass-energy? Below we accept the 
ideal global overlap of all elementary energy flows in all 
points of their joint 3D space, which is associated with 
the superposition of flat material 3-sections of curved 
elementary 4D manifolds. We shall rely on superfluid, 
self-coherent states of extended elementary particle 
(called the astroparticle due to its infinite spatial distribu-
tion [2]) between drag collisions and dissipation events. 
At the same time, 3D overlap of such self-coherent radial 
distributions can rarely exhibit, due to drag collisions, 

Copyright © 2012 SciRes.                                                                                 JMP 



I. E. BULYZHENKOV 1466 

summary superfluid states of identical bosons, while 3D 
energy ensembles of extended fermions can exhibit only 
ideal summary flows without joint coherent properties. 

It is important to emphasize that strict spatial flatness 
is principal for reasonable Quantum Mechanics, say for 
the Bohr-Sommerfeld quantization, and for reasonable 
Electrodynamics, which is based on constant Gauss flux 
through any closed surface. The author does not see clear 
experimental reasons why one should redesign Classical 
Electrodynamics for a curved-space laboratory in ques-
tion. On the contrary, due to well established measure-
ments of magnetic flux quantization in superconducting 
rings, one may insist that would gravity contribute to 
length of superconducting contours, then SQUIDs could 
not be explained satisfactorily, for example [3]. Indeed, 
would spatial intervals depend on gravity or acceleration, 
working SQUID accelerometers were already created. In 
such a view, Einsteins metric gravitation, which started 
from the very beneficial 1913 idea of 4D geometrization 
of fields, should double-check its wide opportunities and 
overcome the current phase with unphysical metric sin-
gularities. There are no sharp material densities in reality 
like Dirac operator delta-densities and relativistic physics 
should try continuous particles prior to declare singulari-
ties and black holes in physical space. One may expect 
that advanced metric gravitation should be a self-con- 
tained theory of continuous energy flows which ought to 
derive analytical components of the metric tensor g  
for space-time dynamics of distributed astroparticles 
without references on the point matter paradigm in ques-
tion and the Newtonian limit for point masses. Advanced 
GR solutions for mass-energy densities of moving mate-
rial space should provide Lorentz force analogs even in 
the non-relativistic limit. Newtons gravitation cannot 
satisfactorily describe this limit for moving sources and, 
therefore, should not be used for relevant gravitational 
references for a rotating galaxy (that raised the dark mat-
ter problem). 

Recall that in 1913 Einstein and Grossmann published 
their Entwurf metric formalism for the geodesic motion 
of a passive material point in a gravitational field [4]. In 
October 1915, Einstein’s field equation [5,6] and the 
Hilbert variational approach to independent field and par- 
ticle densities [7] were proposed in Berlin and Gottingen, 
respectively, for geometrization of gravitational fields 
“generated” by the energy-momentum density of Mies 
continuous matter [8], which later failed to replace point 
masses of the pre-quantum Universe. This metric theory 
of gravitational fields around still localized particles, 
known today as General Relativity, can operate fluently  

with curved spatial displacement d = d di jN
N ijl x x  of a  

point mass Nm

  1

 by accepting the Schwarzschild [9] or 
Droste empty-space solutions [10] without specific restric-  

tions on the space metric tensor N N N N N
ij oi oj oo ijg g g g


 

2 2 2d d d = d dN

.  

GR solutions for dynamics of the considered probe parti-
cle N are related to its space-time interval,  

N N Ng x x l 
  

 
s , where the time element 

1 22
1d d do iN N

N oo Noo oig x g g x     
N

 depends on the local  

pseudo-Riemannian metric tensor g  and, consequently, 
on local gravitational fields. Hereinafter, 1, 2,3i  , 

0,1, 2,3  , and the speed of light c = 1 in the most of 
equations. 

The author intends to revisit time, d N , and space,  

d d di jN
N ijl x x , elements within the conventional GR 

four-interval d d dNs g x x 
  in order to prove that  

the time element of the freely moving mass Nm
dt

 de-
pends not only on the world time differential  (with  

d δ d d d > 0o o o
oot x x x 

d i

) and gravitation, but also on  

space differentials or matter displacements x  in gra-
vitational fields. Then the ratio d dl vN N  , called the 
physical speed in Special Relativity (SR), should 
non-linearly depend on spatial displacement  

d d di jN
N ijl x x , called the space interval in SR. Non-  

linear field contributions to such an anisotropic (Finsler- 
type) time element  d ,dN x x  within the four-interval 

   2 2 2d d ,d ds x x l x   of Einstein’s Relativity may 
modify Schwarzschild-type metric solutions based on 
curved three-space around non-physical point singulari-
ties for GR energy-sources [2]. Moreover, the calculated 
ratio  d d =N Nl v v  may differ from a real speed 
d dlN O  measured by a motionless observer with local 
proper-time    d d = 0 dl v O N . This metric-type 
anisotropy of measured time rate was already confirmed 
by observations of the gravitational Sagnac effect when 

d d 0ig x oi  . Rigorous consideration of anisotropic 
physical time    d ,d dx x v 

dl

 of each moving parti-
cle may preserve universal flatness of its 3-space element 

. We shall start from the 1913 Entwurf metric formal-
ism for the geodesic motion of passive masses. Then, we 
shall employ the tetrad approach and analyze non-linear 
relations in the anisotropic relativistic time for a passive 
mass under the geodesic motion. This will suggest to 
keep for physical reality Euclidean 3D sub-intervals in 
curved 4D intervals of moving probe particles. 

The first attempt to interpret GR in parallel terms of 
curved and flat spaces was made by Rosen [11], Ein-
stein’s co-author of the unpublished 1936 paper about the 
non- existence of plane metric waves from line singulari-
ties of cylindrical sources. Later, Sommerfeld, Schwinger, 
Brillouin and many other theorists tried to justify Eucli-
dean space for better modern physics. Moreover, the 
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original proposal of Grossmann (to use 4D Riemannian 
geometry for geometrization of gravitational fields in the 
1913 Entwurf version of GR) relied exclusively on 3D 
Euclid- ean sub-space. Grossmann did not join further 
GR metric developments with curved 3D intervals. In 
1913 Einstein clearly underlined that space cannot exist 
without matter in the Entwurf geometrization of fields. 
However, at that pre-quantum time there were not many 
options for geometrization of particles, because all (but 
Mie) considered them localized entities for local events. 
This might be the reason why in January 1916 Einstein 
promptly accepted Schwarzschild’s warping of 3D space 
around the point particle. Nonetheless, in 1939 Einstein 
finally rejected Schwarzschild metric singularities for 
physical reality. The well derived Schwarzschild’s solu-
tion has no mathematical errors in the empty-space para-
digm. However, we tend to use the non-empty-space 
paradigm for the global superfluid overlap of self-co- 
herent elementary particles, when each continuous parti-
cle is distributed over the entire Universe together with 
the elementary field. This nonlocal approach to matter 
can avoid difficulties of the Entwurf geometrization of 
fields, proposed in 1913 without geometrization of parti-
cles, and, ultimately, can avoid non-physical warping of 
the universal spatial ruler, which becomes the same for 
all local observers in the flat Universe. 

Contrary to non-metric approaches to gravitation with 
spatial flatness, for example [12,13], we shall comply 
with the Einstein-Grossmann extension of Special Rela-
tivity (SR) to gravitation through warped space-time with 
non-Euclidean pseudo-geometry, founded by Lobachev- 
sky, Bolyai and Riemann [11]. Inertia and gravitation 
keep the same metric nature in our reiteration of the Ein-
stein-Grossmann approach. The proposed 4D geometri-
zation of matter together with fields will be made under 
six metric bounds for g  (called sometime intrinsic 
metric symmetries) in the GR tensor formalism for every 
physical object. In other words, the author is planning to 
revise neither Einstein’s Principle of Relativity nor the 
GR geometrization concept. On the contrary, I am plan-
ning further GR geometrization of continuous particles 
together with the already available geometrization of 
gravitational fields. Local nullification of the Einstein 
tensor curvature for paired densities of the distributed 
astroparticle and its field will be requested in their rest 
frame of references. I intend to prove, for example, that 
Schwarzschild’s solution for a central field is not “the 
only rotationally invariant GR metric extension of the SR 
interval”. One should admit non-empty (material) space 
or Newtonian stresses of the material medium-aether 
associated with continuous very low dense distributions 
of non-local gravitation/inertial mass-ener- gies. Then 
bound ensembles of elementary radial energies form so 
called “macroscopic” bodies with sharp visual bounda-

ries (observed exclusively due to experimental restric-
tions to measure fine energy densities). 

   First, we discuss a local time element, d d dlv  , 
which should be considered as a chain function of speed 

d dv l   or spatial displacement  of a passive ma-
terial point in external gravitational field. Then, we dis-
cuss the electric Weber-type potential energy  

dl

 2 1 11 1W
o o N o o o oU U v m U P U P      for a point planet  

with mass Nm P m V and relativistic energy o N o  in the 
Sun’s static field generated by the active energy-charge 

ME . Ultimately, this paper presents the self-contained 
GR scheme with the energy-to-energy interaction poten-
tial o o MU P GE r 

   

 for Machian mechanics of non-
local astroparticles with an analytical radial density 

224πon r r r r r  o  instead of the Dirac delta den-
sity  r . One should see arguments for the singular-
ity-free gravitational contribution o oU P  to the smooth 
metric tensor component   2

1g U P
 

P

oo o o . The main 
challenge here was to keep the free fall universality and 
the GR Principle of Equivalence for all carriers of probe 
(passive, inertial) energies o  in radial fields of the 
Sun’s gravitational (active) energy EM . 

In the speed-dependent time approach, the warped GR 
four-interval  d d d ,ds l l    cannot be approximated in 
weak fields by pure time and pure space subintervals, 
like in Schwarzschild-type solutions [9,10] with their 
formal time and space metric split without chain relations. 
In order to justify the indivisible non-linear involvement 
of space displacements into physical time  d dl

N

 of a 
probe particle under the geodesic motion, one should 
clarify how the already known gravitational tests of GR 
can be explained quantitatively without departure from 
spatial flatness. Then we discuss our energy-to-energy 
attraction under the Einstein-Grossmann geodesic motion 
in metric fields with flat 3-section (i.e. without Schwar- 
zschild singularities). The author also accepts the Ein-
stein-Infeld-Hoffmann approach (but under flat 3-space) 
to non-point slow-moving gyroscopes in order to de-
scribe the Gravity Probe B quantitatively. 

In 1913, Einstein and Grossmann put weak Newtonian 
field only into the temporal part of the Entwurf 4D inter-
val. Today, one tends to justify that strong-field GR met-
ric may also admit for reality six metric bounds ij ij   
which preserve universal 3D interval in specifically 
curved space-time for any elementary particle N. Then 
the metric tensor g  for curved 4D with flat 3-section 
depends on four gravitational potentials oG U P    

2= 1o N ooP m g vfor the particle energy-charge .  

This finding matches 6 metric bounds for spatial flatness 
under any gravitational fields and their gauges. Since 
2000, this post-Entwurf metric scheme with warped 
space-time, but strictly flat three-space, became consis-
tent with the observed Universe’s large-scale flatness, 
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confirmed at first by balloon measurements of the Cos-
mic Microwave Background and then by all ongoing 
Wilkinson Microwave Anisotropy Probe (WMAP) Ob-
servations of the flat Universe [17-20]. This new reading 
of curved 4D geometry with non-linearly dilated anisot-
ropic time and flat non-empty space, explains quantita-
tively all GR tests, the known planet perihelion preces-
sion, the radar echo delay, and the gravitational light 
bending, for example [21-23]. 

Speed-dependent time corrections to post-Newtonian 
dynamics in Sun’s flat material space lead to computa-
tion results similar to numerical computations of other 
authors who traditionally correct Newton in empty, but 
curved 3-space. Observable dynamics of matter in mod-
erate and strong static fields provides, in principle, an 
opportunity to distinguish our metric solutions with iso-
tropic flat space and speed-dependent time from Sch- 
warzschild’s solutions, based on curved 3-space and di-
lated time. Alternative empty-space and non-empty space 
paradigms can also be distinguished through different 
probe body dynamics in stationary fields of rotating as-
trophysical objects. 

2. Warped Four-Space with Intrinsic Metric 
Symmetries for Flat Three-Space 

To begin, we employ the GR tetrad formalism, for ex-
ample [24,25], in covariant expressions for an elementary 
rest-mass Nm

i
 in order to justify the mathematical op-

portunity to keep a flat 3D subspace Nx  in curved 
four-space Nx  with a pseudo-Riemannian metric tensor 

Ng g   (for short). First, we rewrite the curved 
four-interval,  



   

d d

d d ,

x x

x x

 

   

2d d d

d d

N
N N Ns g x x g

e e x x

 
 

   


 
   

 

 
 

in plane coordinates    d dx e x  
 d and   dx e x  

 , 
g 1, 1, 

 


1, d  with 1  . One can findia  

oe g       b b;oo oo ig g  and 0, ie e   from the equal- 

ity   2
d d i

ij
2d d do i

oo i
js g x g  x x x    , i oi oog g g  .  

irst glance, th ad iiAt f e spatial tri   b b

N
e e (a, b = 1, 2,  3 

and ,   = 0, 1, 2, 3) should a pend essentially 
on th vitational fields of other particles because this 
triad is related to components of 

lways de
e gra

Ng . However, this 
might not be the case when there are ernal metric rela-
tions or bounds in the general pseudo-Riemannian metric 
with the warped tensor 

int

Ng . Shortly, a curved mathe-
matical 4D manifold does  necessarily mean a curved 
3D section for real matter (warped 2D paper in 3D trash, 
for example, keeps parallel Euclidean lines due to steady 
metric relations between neighboring points of paper). 

It is not obvious that physical restrictions for four-v

 not

e- 
lo

rved pseud
cities of real matter, like 1g V V

   , might require to 
keep flat 3D sections of cu o-Riemannian 4D 
manifolds. Therefore, let us look at three spatial compo-
nents iV  of the four-vector d dV g x s

   by using 
the conventional tetrad formalism, 

   1 2
1 ig g v v v


  

 
 

 
 

 
 

 
    

   1 2

1 .

oo i i i

o b
i i i io b

b b
oo i i b b

V e V e V e V

g g e v v v






   

   

 

Here, we used   =o
i oo ie g g  and  

   
    

     1 2

1b b bV v v v

 
  . Now one can 

trace that the considered equalities  i iV e V

1 2

1 ;b bv v 

 
  admit 

trivial relations  i bv v v v  and  
   

b b
i i ib bv e v v   

d velocities, 

 bi   

between the curve  

 d d dj o i
i ij oo iv x g x g x d dj

ij x   , and the plane 

velocities,  
 

  

d da
abbv x  . All spatial triads for t  

ations may be c

N

hese 

“trivial” rel onsidered as universal Kro-
necker delta symbols,    =i

b b
ie  , and, consequently, the 

three-space metric ten relevant to gravitation 
fields, i.e. 1 N

sor is ir
K

ij oi oj oo ij ij ij ijg g g g        . All com- 
ponents g , involved in these six relations

gra

N

, may de-
pend on vitations fields or system accelerations but 
their combination should always keep spatial flatness 
under admissible coordinate transformations. One could, 
surely, ignore flat 3-space option within curved 4D ma-
nifold, as was suggested by the above tetrad analysis, by 
trying curved 3D solutions in iV  when    

i
b b

ie  . But 
we do not see much physical sense in such tions 
and, therefore, restrict GR geometrical constructions by a 
partial case with six metric relations 1

oi oj oo ij ijg g g g

 complica

   . 
Applications of pseudo-Riemannian t 
3-sections will quantitatively describe all known gravita-
tional experiments plus magnetic flux quantization. The 
latter and the Aharonov-Bohm effect require only flat 
3-space for satisfactory interpretations. 

Again, we shall read   K
v

space-time with fla

g e e 
    through  

   = ;o g g g  and   b b
oo oo ie

  0,b
ie    for   all  

physical cases we ar ested in describine inter g. This 
means for our consideration that    o o

oo o og e e ,  
   o o

oi o ig e e , and       o o o
ij i j i jg e e e    a b o

ab i j ije e e     .  

And Euclidean spatial geometry,  
e applied to pseudo- 

Riemannian 4-intervals of

2d d d d di j i jK
K ij ijl x x x x   , will b

 all particles (due to intrinsic  

metric relations   1
K K K K
oi oj oo ij ijg g g g 


  ). 
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Contrary to unive ements 
variant four-inter pe

rsal spatial ac dl , in-
vals have differen  war d metrics for 

pa

displ
tly

rticles K and N, because N Kg g   and d dK Ns s  
in different external fields (for example, in the two-body 
problem). The GR four-interv elected  
ergy carrier,  

 
al for a s  mass-en-

2

2 2d d 2 d
d d d d ,

i
o i joi

oo ij

oo

g x
s l g x x x

g

 
    
 

 (1) 

is defined for only one selected obe mass 

  

 pr Nm  despite 
notifications d dNs s  and d dNx x  are regularly 

l s
m e

used for brevity. This geometrical 4-interva hould be 
physically co  mented in terms of tim  2d dx  and 
space 2d d d d di j i j

ij ijl x x x x    elements, albeit 3- 
space differentials d ix  contribute to partic sical 
time 

le’s phy
 d dx . We prove below that particles proper time 

d  depends on dl en in constant gravitational fields 
(wher  is a first integral of motion oP const

 ev
e there  ). 

h an anisotropic time element  

   
Suc

 d d d do i
N oo ix g x x g x    of the moving m ss a  

Nm  always counts its spatial
ented gravitational field, des
imm e definition 

r gravi

 dis
pite

placement dl  in a ori-
 the fact that it is not 

ediately obvious from the physical tim
for metrics with 0oig  . This post-Newtonian phe-
nomenon, related to the energy nature of anisotropic time, 
appears in nonlinea tational equations through the 
energy (velocity)-dependent potentials. Our interpreta-
tion of the warped four-interval (1), based on warped 
anisotropic time in isotropic non-empty flatspace rather 
than in empty warped space, may be considered as a 
prospective way for further developments of the 1913 
metric gravitation through joint geometrization of dis-
tributed fields and distributed elementary particles. 

Now we return to components of the four-vector 
d dN NV g x s . Notice that   

 
 

 
 

  b o
bV e V     

 
 

 
         

1

o
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with the  
 

b o
b oV Vfour-velocity  
 e V    

  0  and    b b
ie

2 2
;

1 1

N N N im m v

v v

    
   
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1
;

1 1

,

N oo N i oo
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P

m g m g g

v v
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

 

    
   

 

      (2) 

where 

  , 
because be o i  . Flat t

 to introduce 
l pot  

hree-space ge-
gauge invarianometry is a promising way t 

gravitatio entials,na o NP G   G U      with 
 o o

N o o NU e m V U P          , for the passive (probe) 
mass Nm , in close analog lectro-

al electric charge. The 
point is that a four-momentum 

y to four-c
tials for the classic

omponent e
magnetic poten

N N
NP m V   of the se-

lected scalar mass Nm  (without rotation) can be rigor-
ously decomposed into mechanical, NK , and gravita-
tional, NU , parts on under strict spatial flatness,  ly 

j
i ijv v , 2 i

iv v v , d di iv x  ,  1 2
d d ds x x

 ,  

d dx g x  , d d
Nx x , gi oi oog g  ;  

j oo ij ijg g gij i ijg       . Again, we use a time-lik
worldline wit d d >ot x  and  

e 
h 0

 1 2d d d > 0i
oo ig x g x     

onal energy

o for the passive-inertial mN > 
0. The gravitati -momentum part U  is de-
fined in (2) for a selected mass Nm  and its positively 
defined passive energy 0o N oP m V  , associated with 
the global distribution of all other sses ma Km . This gra-
vitational part, U G P  o , is not a full four-vector in 
pseudo-Riemannian space-time, like NP , r is the me-
chanical summan N

no
d K m  . 

Because       0,b b b
ie     and  

 ddx e x
   , the 

tetrad with the ze o

 

r  (i.e. time) label takes the following 
co rom (2):  mponents f

   
 

2 1 2 11 1 ; 1oe v U m v U m
    

2 11 .

o N i N

o
Nv U m    

 

Ultimately, the tetrad  e 
  for the selected particle N 

and the metric tensor    Ng e e 
    , with g g 

  

 , depends in Cartesia oordinates only on the gravi-

tational four-potential 
n c

oU P G   (in d for t e
e

 troduce h  
r lativistic energy-charge o oNcP cP  [26]),  

     
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(3) 

where we used    




 2
21 1o o

oo o o og e e v U     and  

 2 21o ooV g v   to prove that  
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 1 11 1o o o o1oo oog g U  e, the paP U P   . Therefor s- 

sive-inertial GR energy,  

 
 

2 1

2

1

1

o ov U P

m v U



  

21 1

,

o oo

o

P m g v m   
 

takes a linear superposition of kinetic and potential ener-
gies in all points of pseudo-Riemannian space-time 
warped by strong external fields. Note that we did not 
assign spin S  or internal angular mechanical momen-
tum to the Einstein-Grossmann “material point” or the 
probe mass Nm  with the energy-momentum (2). The 
affine connec ions for the metric tensor (3) depend only 
on four gravitational potentials 

t

oU P  in our space- 
time geometr  which is not relevant to warped mani-
folds with asymmetrical connections and torsion fields, 
for example [27-29]. 

Every component of the metric tensor in (3) depends 
on the gravitational part 

y,

N N oU m V m G P       of 
the probe carrier energy-momentum P . At the same 
time, all the components of the three-space metric tensor, 

1
ij oi oj oo ij ijg g g g    , a om 

the gravitational potential 
re always independent fr

o

 from (3
 the inhar

G U P   or its gauge. 
Such inherent metric symmetries for 3D subspace may be 
verified directly ). In fact, our tetrad, and the metric 
tensor, depends formally on monic Weber- 

type potentials,  2 1 11 1N o o oU v m U P U P 
    , as- 

sociated with the particle speed 2 2 2d dv l  . In 1848 
Weber introduced [18] the non-Coulomb potential 

 2
2 2 121 2q q v r  ac-12 easurements of

 ch  q

perime
of

 based on lab m
celerating forces between movin 1  and 2q  
with the relative radial velocity 2

12 1v  . This might was 
the first ex tal finding that mechanical inertia and 
acceleration depend on the kinetic energy or speed  
interacting bodies. 

By substituting the metric tensor (3) into the interval 
2 2 2d d d d d

g arges

n

s g x x l 
    , one can rewrite (1) and 

submit the chain relation for the proper time d d N   
of the probe mass-energy carrier N in external gravita-

   
tional fields,  

 

 

1 22
1d d d d doo iN N

oo oo oiN
l g x g g x e x

2

2

d
d d 1 .

d d

N
o

N

U l
x x

m l


      




  

   (4) 

Notice that the proper-time differential,  

 11o K
O o Kx U m  , of the local observer K, with  

e element (4) 
ergy-charge  

d d
id 0x 

of
K  and d 0Kl  , differs from the tim
 the moving mass m with the GR en

21o oog v  . 

ing mas its pro

P m The proper interval ds of the mov-  

s and per time element (4) depends, in 
general, on all four components of U . Therefore, the 
observable three-speed d d Ol  , of a moving particle 
always differs in relativistic gravito-mechanics from the 
non-linear ratio  d d dl l v  , called the particle’s 
physical speed (1). The chain relation  d df   in 
the physical time (4) of a moving particle changes the 
GR interpretation of the geodesic motion and allows to 
apply flat 3D space for gravitational tests. 

The metric tensor (3), the interval (1), and the local 
time element (4) are associated with warped space-time 
specified by external fields for one selected mass Nm  or, 
to be precise, for the passive energy-charge N

oP . We 
may employ common three-space for all elementary par-
ticles (due to universal Euclidean geometry for their spa-
tial displacements), but we should specify arped 
space-times with differently dilated times for the mutual 
motion of gravitational partners. The particle’s time ele-
ment 

w

 d d d ,N l v   in (4) may depend on the parti-
cles velocity or displacement. Ultimately, a nonlinear 
time rate   d do oe x x

   (hereinafter d df t f  , 
d d ot x c ) of moving material objects in (4) depends on 
the ratio 2 2 2l v   . This non-linear chain relation can 
be simplified in several subsequent steps through the 
following equalities to (4):  

1 2

1 11 2

1

1 d
d d

11 1

1

N
ii

o o o ii N

i

v t
t

U P P U vv U m v

U P x




 




 

 

1

1

d .
1

o

i o

o o

U m

t
U P



 




  (5) 

Such anisotropic time dilatation in (5) by the ex
four-potential 

 

ternal 
N N N

o oG U P   results in the gravitational 
Sagnac effect when an observer compares the dynamics 
of different elementary energy-charges oP  in fields with 

0iU  . 
Now, one may conclude that the anisotropic time ele-

ment d  in the metric interval (1) and, consequently, in 
the physical speed d d ,v l   depends only on univer-

ur sal fo potentials G  for positive probe charges 
0oP  . The potential energy part  N N Nm U P m V     

contributes to GR energy-momentum of the probe body 
and, therefore, to its passive energy-charge, N o om V P . 
The universal ratio oU P  should be tried
gravitation as a metric field four-potential (which is not a 
covariant four-vector) of active gravitational charges for 
passive energy-charges. Contrary to Newton’s gravita-
tion for masses, Einstein’s gravitation is the metric the-
ory for interacting energies. The static Sun, with the ac-
tive energy-charge 2

ME Mc , keeps the universal po-
tential 

 in Einstein’s 

 1; 0m MU E GE r
   in the Sun’s frame of 

reference for the passive, inertial energy content  
2

o mcP E const mc    of the probe mass Nm . Below, 
we employ the un of the Sun’s potential, iversality 
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N N
o o M oU P r all planets in our com-

putations for gravitational tests of General Re
(5) and flat material sp ce filled 

everywhere by 2r  gravitational fields and the 4r

GE r r r    , fo
lativity 

with dilated time (4)- a
  

3. Flatspace for the Planetary Perihelion 
Precession 

Now we consider 

extended masses. 

the metric tensor (3) a central gra-
0

for 
vitational field with a static four-potential, 1

i oU P  , 
1 1

o o MU P GE r   , where 2E Mc r G cons  
 active gravita

M o

 of the “mo

ment with sp

t  is 
tionless” Sun 

n’s cente
rical atial flatn

th

of

e

 sphe

tional energy

ymm

(in the moving Solar system). We use Euclidean geome-
try for the radial distance 1r u  from the Su r 

etry in agree ess 
maintained by (3) for any gravitational four-potential 
G

 s

  and its gauge  . Let us denote the energy con-
tent of a probe mass m in t c central field as a pas- 

sive energy-charge  
he stati  

21o N o N oo mP m V m g v E    .  

n, the interval (1) for the passive energy carrier in a 
central field with 0iU   takes two equivalent presenta-
The

),  tions due to (4) and (5

 

2
2

2 2 2
2

d
d 1 1 d d

d d
M mGE E l

2
2 2d 1 d ,M

s t l
l

 
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 
      (6)

rm

GE
t l

r


    
 

 

where iterations  

     
2

2 21 d d d d dM mt GE E rm l l l      
 

ion 

2 2d 1

over the chain funct  2d dl  in the Lorentz factor  

resu n lt i   2
d 1 Mt GE r    for the Sun-Mercury po-  2

ten ergy tial en o M mU GE E r  . In other words, t e 
-depend

 iterations common for all p

h
specific, Weber velocity ent potentials exhibit 
after chain robe particles local  

time, 2 2d d d dN Ks l  

static metric solution (6

oes not coincide with the Schwarzschild me
herefore, the Schwarzschild exten-

si

  static fields. Spherical 

coordinates can be equally used in (6) for the Euclidean 
element 2 2 2 2 2 2 2d d d sin d d di j

ijl r r r x x        in 
flat laboratory space. 

, in  

The ) for probe elementary en- 
ergy-charges in non-empty space of the radial energy- 
charge d tric 
[9] in empty space. T

on of the SR interval is not the only rotationally in-
variant solution which GR’s tensor formalism can pro-
pose for tests of space-time-energy self-organizations. 
Ultrarelativistic velocities, d d 1v l    and  

21 0v  , in the Weber-type energy-to-energy inter- 
action in (6) revise the Schwarzschild singularity. The 

latter is not expected at the finite radius in the energy- 
charge formalism of Einstei n. Einste

 

n’s gravitatio in, “the 
reluctant father of black holes”, very strictly expressed 
his final opinion regarding the Schwarzschild solution: 
“The essential result of this investigation is a clear un-
derstanding as to why Schwarzschild singularities do not 
exist in physical reality” [31]. In authors view, Schwarz-
schild’s metric solution, and all Birkhoff class solutions 
for the empty space dogma, originates with ad hoc mod-
eling of matter in the 1915 Einstein equation in terms of 
point particles. However, Einstein anticipated extended 
sources for his equation and for physical reality. Below, 
we prove that the static metric (6) corresponds to the 4r  
radial energy-charge or the extended source of gravity. 
Therefore, our analysis denies the empty space paradigm. 
Non-empty material space is in full agreement with Ein-
stein’s idea of continuous sources and Newton’s “
surd” interpretation of distant attractions through stresses 
in an invisible material ether (called in 1686 as “God’s 
sensorium”). 

Our next task is to derive integrals of motion for the 
passive (probe) mass-energy in a strong central field 
from the geodesic equations 

ab-

2 2 2d d d d dx p x x p   
  . 

Nonzero affine connections 
  for the metric (6) take 

the following components: r r   , 2sinr r    , 
d 2d ,r

tt oog r   Γ Γ Γ Γ 1r r r r r   
       ,  

Γ sin cos
    , Γ Γ ctg 

    , and  
d 2 dtr rt oo oo

t t g g r , wh    ere oog  is the function next 
2dt  in the interval (6), 2 2 2d d dooto s g t l  . 

wing th p oach withBy follo e verified ap r   
π 2 const    for the is pic ce ral field, for exam-

ple [25], and by substituting flatspace connections 
otro nt


   

into GR’s geodesic eq  
tric  write the following grav

uations, one can define the para-
me  differential dp  and ita-
tional relations,  

     
   
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

  


    

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

2
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d d 1,d

d d d d 1,m oo

g t p

r s r s E m g



   
 (7) 

with the first integrals , ,mE m  and J  of the relativis-
tic motion in strong static fields. 

The last line in (7) is the interval equation  
2 2 2d d doos g t l   with two integrals of motion  

2 2 2 2 2d dm ooE m g t s  and π 2  . Therefore, the
lly the n

 in

 sca-
lar invariant (6) is actua equatio  of motion for the 
constant energy charge mE const  a central field 
with the static Weber-type potential  

   
 

21

,

o m o

M M

m v U E U

GE r GE

  
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W
o oU U
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which is inharmonic for t  2 0W
oU  . Re-

call that Schwarzschild’s curved 3D
he Laplacian,

 solution not only 
differs from (6), but results in conceptual inconsistencies 
[32,33] for the Einstein equation. We can use (6)-(7) for 
relativistic motion in strong central fields in order to re-
inforce the ignored statement of Einstein that Schwarzs- 

l reality. child singularities do not exist in physica There 
are no grounds for metric singularities either in the in-
terval (6), or in the radial potential  W

oU r  for 0r  , 
because  d d oot g r r GM     is a smooth func- 
tion. One can verify that the non-empty space metric 
tensor (3), as well as 2 0W

oU  , does correspond to the 
continuous energy-source in the 1915 Einstein equa- 
tion. 

The strong field relations (6)-(7) can be used, for ex-
ample, for computations of planetary perihelion preces-
sion in the solar system. The planet’s gravitational en-
ergy for the GR energy-to-energy attraction,  

1
o M m o mU GE E r r E u    , where 2 constor GM c   

and 1u r , is small compared to the planet’s energy, 
1 consto mu r U E  , that corresponds to the non- 

relativistic motion of a planet N (with const 1mE m   , 

m ME E , and 2 2 2d d 1v l   ) in the Sun’s rest 
frame, with 0U  . The G ement fori

s from (6) or (7) as 
R time el t 

read  

 
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 


1

1 2r


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2
2

2 2 2 2
2
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d
d d d d d 1

d d

d d ,

m
o
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m l

u t r u l




 
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 

 

(8) 

where we set 1or u  , 1mE m  ,  2 2d d dl l , 
2dt . 

 with spatial displacement 2dor u l
the right hand side of (8) belo the physical time 
element within variant 

and d d
The 

 2 2 dt l 
field term  on 

ngs to 
2d the in s . Th

u
is displacement 

n-li re of anisotropiccorresponds to the near chain nat  
time  

no
 d dld dl f  origi om the Weber   , - 

ty

nating fr

pe energy potential 21U v m   in (3). Th s no  

departure from Euclidean space geometry with the flat 
metric 

ere i

 2 2 2 2 4 2 2 2d = π 2 d d d dl r r u u u        in 
the chain reading of geometrical intervals (6) or (8). 
Again near time with chain spatial dis-, a particle’s non-li
placement  d dl  diffe rom the proper-time 

 
rs in (8) f

1 2
d 1 2 dO or u t    of the local (motionless) observer. 
Displacement corrections, 2 2d dr u l t , for the non-rela- 
tivistic limit are very small compared to the main gravi-
tational corrections,  2 or u , to Newtonian time rate 

o

2 2 21 2 d dot r u r u l t   . However, the chain de-
pendence of a icle’s time element 2d

o

part   from spatial 
displacement dl  accounts for the reverse value of this 
time element, 

2

2 2d dor u l  , that is ultimately a way to 
restore strict spatial flatness at all orders of Einstein’s 
metric gravitation. He e is some kind of analogy 

re small contributions of 
Maxwell’s displacement currents restor e strict charge 
conservation in Ampere’s quasi-stationary magnetic law. 

Two integrals   

re ther

with electrodynamics whe
e th

 of motion 1 2 d do mr u t s E m   and 
2d dr s L   result from (7) and (8) for weak fields in a 

rosette motion of planets,  

    2 2 2 2 2 21 2 1 3 = ,o or u L r u u u E L m        (9) 

where d du u    and 1r u . Indeed, (9) may be o

fferentiated with respect todi  the polar angle  ,  

2
2

9 3o
o

r
u u r u 23 ,

2 2o or u u r u
L

             (10) 

by keeping only the largest gravitational terms. Thi
ay be solve o step

s equ-
ation m d in tw s when a non-corrected 
Newtonian solution,  2 1 coso ou r L    , is substi-
tuted into the GR correction terms at the right hand side 
of (10). 

The most important correction (which is summed over 
century rotations of the planets) is related to the “reso-
nance” (proportional to cos  ) GR terms. Therefore, 
one may ignore in apart from 

2 2 42 cosu L
(10) all corrections 

    and 2 4 cosou u r L    . Then the 
approximate equation for the rosette motion,  
u 2 3 46 coso ou r L r L       , leads to the well known 

perihelion precession 

 

 2 2 2Δ 6π 6π 1o or L r a       , 

which may also be derived through Schwarzschild’s met-
ric  with w , as in [21- 
25]. 

 

approximations arped three-space

It is important to empha
reces

size that the observed result 
sion Δfor a planet perihelion p   (in the Solar non

ated time by Sun’s energy densi
- 

empty flatspace with dil -
ties) has been derived here from the invariant four-in- 
terval (1) under flat three-space, ,ij ij   rather than 
under empty but curved three-space. 

4. The Radar Echo Delay in Flatspace 

The gravitational redshift of light frequency   can be 
considered a direct confirmation that gravity couples to 
the energy content of matter, includi the massless 
photon’s energy E

ng 

 , rather than to the scalar mass of the 
2c  for 

inverse 
particle. Indeed, Einstein’s direct statement E m
all rest-mass particles is well proved, but the 
reading, 2m E c , does not work for electromagnetic 
waves (with 0m  ) and requires a new notion, the wave 
energy-charge 2 0E m c    or the relativistic mass 

0m  . 
In 1907, Einstein introduced the Principle of Eq

lence for a uniformly accelerated body and concluded 
that its potential energy depends on the gravitationally 
passive (“heavy”) mass associated with the inertial mass 
[34]. This correct conclu f Einstein was generalized 

ron

uiva-

sion o
in a w g way that any energy, including light, has a 
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“relativistic mass” (the gravitational energy-charge in our 
terminology) for Newtons mechanics. Proponents of this 
generalization in question proposed that photon’s “rela-
tivistic mass” is attracted by the Sun’s mass M  in 
agreement with the measured redshift  

 1 2
SE E m GMR m c           . Nonetheless, 

the coherent application (in the absence of the correct 
EM wave equations in gravitational fields) of the “rela-
tivistic mass” to zero-mass waves promptly resulted in 
the underestimated light deflection,  

22 2SGM R c r R     , for the
al field [35]. In 

1917, when Schwarzschild’s option [9] for spatial curva-
ture had been tried for all GR solutions, the new non- 
Newtonian light deflection, 

o S  “mechanical free 
fall” of photons in the Sun’s gravitation

4 o Sr R   , had been pre-
dicted due to additional contributions

on. Later, all measurements 
supported this curve-space modification for the “relativ-
istic mass” deflection by the Sun that provided false 
“experimental evidences” of non-Euclidean three-space 
in contemporary developmen ravitation. 

Below, we prove that Einstein’s GR for the Maxwell 
wave equation firmly maintains the flatspace concept for 
interpretation of light phenomena in gravitational fields if 
one coherently couples the Sun’s rest energy to the pho-
ton’s wave energy E

 from the supposed 
spatial curvature in questi

ts of metric g

 . We consider both the radar echo 
delay and the gravitational deflection of light by coupling 
its

imp

 energy-charge with local gravitational potentials. Our 
purpose is to verify that Euclidean space can match the 
known measurements [21-23,36,37] of light phenomena 
in the Solar system. Let us consider a static gravitational 
field ( 0ig  , for s licity), where the physical slow-
ness of photons, 1n v c  , can be derived directly from  

the covariant Maxwell equations [24], 1
oon g    . 

Recall that a motionless local observer associates oo

 

g  
with the gravitational potential o oU P  at a given point. 
The light velocity d d Ov l  , measured by this observer, 
as well as the observed light frequency d do Ot   , 
is to be specified with respect to the observer’s time rate  

d dO oog t  . This consideration complies with Ein-  

steins approach, where the light’s redshift is associa  
with different clock rates (of local observers) in the Sun’s 
gravitational potential [34]. 

Compared to the physical speed of light,  

ted

1d d ov l cn   , its coordinate speed  

2

d d

2
1

oo oo
O

o o

t n

r r
c c

dd
=Ol c

g cg

1

l

r r





      

         (11) 



 



is double-shifted tial 

  

   

 by the gravitational poten o oU P   

or r , where 2
o Sr GM c  o Sr r R1.48 km  and  .  

Notice that both the local physical slowness 1
oon g   

and the observer time dilation d dO t
sponsible for the double slowness of the coordinate ve-
locity (11), which is relevant to observations of light co-

ho reads
through relation (11) as  

oog  are re-  

ordinates or rays under gravitational tests. 
A world time delay of Mercury’s radar ec  

2 2

o

2

4 4
ln 220μs,o MS ES

S

2 d1 1 2
Δ 2 dM M

E E

l x

l x

r x
t l

c cl x y

 and 75.79 10 kmMSr    are 
the Earth-Sun and Mercury-Sun distances, respectively. 
Notice that in flat space we use the Euclidean metric for  

spatial distance,  

r r r

c R
  �

      (12) 

    
  

where 57 10 kmSy R    is the radius of the Sun, 
while 81.495 10 kmESr  

1 22 2r x y  , between th

ter (0,0) and any point (x, y) on the photonic ray. One can 
measure in the Earth’s laboratory only the physical time  

e Sun’s cen- 

delay E
E oog t   , which practically coincides  with  

the world time delay t  in the Earth’s weak field, i.e. 
220E t s     . From here, the known experimental 

results [24-25,37]  the radar echo delay (12), 
based on strictly flat three-space and dilated time as in 

 correspond to

A coordinate angu

1913 Entwurf metric scheme. 

5. Gravitational Light Bending in 
Non-Empty Flatspace 

lar deflection       of a light 
wave front in the Sun’s gravitational field can be 
promptly derived in flat space geometry by using the 
coordinate velocity (11) for observations, 

 

0 0 2

2
2 d 2 d orl

l x
y c y 2

3 20 2 2

d 4

x

4 1.75 .S o
o

SS

y

r  
     (13) 

at principle to 
light waves. This basic principle of physics should also 
justify spatial flatness under suitable applications [38-40]. 

In agreement with Einstein’s original co
[34], one may relate the vector component o

R x
r

Rx R


   




The most rigorous classical procedure to derive the ray 
deflection (13) is to apply the verified Ferm


   

       
 



nsideration 
K  in the 

scalar wave equation 0K K 
   to the measured 

(physical) energy-frequency   of the photon  
( d d ,o o o ocK E t const         ). Recall that 

oP  is also the measured particle’s energy in the similar 
equation, 2 4P P m c

  , for a rest-mass particle. The 
scalar wave equation 0NK K g K K 

     has the 
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following solution for the electromagnetic wave,  

 
 

 

2 2

2 2 2 2 2

d d

d d

d d d d

d d d d ,

o i
o o i

i j o
oo

o oo

i
o

i i oo i o oo

K t c g K

K K g K g K g

t c g

K t x c g l

K x l g g t c g

 



 

 

oo

i
ij oo i o

i
oo

g K

K

 

   

   
 



      









 (14) 





with    1d i= , d j
ij ooK E E x g  l g c    . 

The Fermat-type variations pect to  with res   and 
u  ( 1r u , , and π 2   are e spherical c

nates) f  in a static gravitational field are  
 th oordi-

or photons

 22 2 2

d
d d

d

d d 1
0,

j
o iji i

i
oo

oo

x
K x x

cg l

u u r u

 
 




 

 
  

 






 (15) 

2c u

(where  1oo o

2
g r u

  , 0ig  , ij ij  ,  

2 2 2i jd d dxijl x r r 

 for or u

  ) resulting in a couple of 

1 ,  

2 2 consto ou 
      (16) 

 2 1 cos

light ray equations

 2

2

(1 4 )

2 o o

r u u u

u u r u





      
   

Solutions of or u(16), 1 sin 2o ou r u      
and 1o o o Sr u r R  , may 

n of   r
be used for the Sun’s weak 

field. The propagatio  light from    , 
  π    to  r  ,    corresponds  

to the angular deflection  

 1arcsin 4 1 cos 4 = 1.75o S o Sr R r R 
          

fr l direction. This deflection coin
 with (13) and 

23-25]. 
We may  that th is no nee  t

the “non-Ne
ne strictly follows Einstein’s 

original approach to light in gravitational fields [34]. In 
fact, the massless electromagnetic energy exhibits an 

 

om the light’s initia -
cides is in agreement with the known 
measurements 1.66 0.18   , for example [

 conclude ere d o warp Eucli-
dean three-space for the explanation of wto-
nian” light deflections if o

inhomogeneous slowness of its physical velocity, 

d d O oov l c g  , and, therefore, a double slowness of  

the coordinate velocity, d d ool t cg . This coordinate 
velocity slowness is related to the coordinate bending of 
light measured by observers. In closing, the variational 
Fermat’s principle supports Entwurf physics of Einstein 
and Grossmann with dilated time and strict spatial flat-

6. Geodetic and Frame-Dragging Precessions 
of Orbiting Gyroscopes 

ness for light in the Solar system. 

Precession of the 
has been co

utions of masses. This 
original GR approach practically coincides in the weak 

ph

orbiting gyroscopes in the Gravity 
Probe B Experiment [41] mpared only with 
Schiffs formula [42,43] based on the Schwarzschild-type 
metric for curved and empty 3D space. Here the author 
plans to criticize the point spin model for GP-B compu-
tations in favor of the regular Einstein-Infeld-Hoffman 
approach to slowly rotating distrib

Earths field with our flatspace reading of Einstein’s 
ysics. Recall that our Entwurf-type space interval is 

strictly flat due to the intrinsic metric bounds in the GR 
four-interval (1) with the metric tensor (3). However, the 
GR tensor formalism can be universally applied to any 
warped space-time manifold with or without intrinsic 
metric bounds. 

By following Schiff and many other point particle 
proponents in gravitation, one has to assume for a mo-
ment that the vector geodesic equation,  
d d d dS p S x p 

    , in pseudo-Riemannian four- 
space with only symmetrical connections,  

    , 
may be applied to the point spin “four-vector” S  with 
“invariant” bounds 0V S    or i

o iS x S    for or-
thonormal four-vectors,  

 Γ Γ Γ Γ .o j o k j j j k
io ik io ik j

d
Γ Γ

d
o jiS

S x S x
t i o i j

x x x x S       
   (17) 

Our flat-space for a strong static field with (3) and 

0oig

    

 ,  211 1oo
o o oog U P g   , and ijg ij  d 

formally maintain an inertial conservation,  

, woul

 

   
 2 2 const,

oo i j

i j i
oo oo i j ix g x g



 

  

 

S Sij
o og g

  S S S S

S S S S

vS S

 

in agreement with Einstein’s teaching for a free-falling 
bo
(curved space) tends to suggest [25,42,43] the n

dy. At the same time, Schwarzschild’s metric option d 
on-com- 

pensated Newtonian potential GM r    
“free fall” equation,  2

const g S S
even in the 

 2 1 2Sch     vS  S . 
Therefore, formal applications of the Einstein- Gross-
mann geodesic relations (derived for spatial translations 
of material points) to localized spins S  (which are not 
four-vectors in 4D manifolds with symmetrical affine 
connections) contradict the spirit of GR inertial motion 
and, ultimately, the Principle of Equivalence. 

Our affine connections Γ Γ 
  , related to the met-

ric tensor (3), depend only on four field potentials 
 1 1 1,G U P U P U P    . This post-Entwurf metric o o o i o 
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tensor has been introduced for ergy-momen- 
tum (2) without an  
Moreover, neither the mechanical part, 

the local en
y rotational or spin components.

K , nor the gra-
vitational part, oP G , in (2) are separately covariant 
four-vectors in warped space-time with the metric tensor 
(3). Therefore, there are no optimistic grounds to believe 
that four spin components S  might accidentally form a 
covariant four vector in space-time with symmetrical 
co f thennections for translatio  energy-momentum 
four-vector, P K P G

n o

o  
l con

k

 

1 2

k

k o

oo

U P g 

 




o oU P

  . Nonetheless, we try by 
nections for the point spin 

avenue (17) in question in constant fields (when 
0og  , for simplicity),  

   
 

   
   

 
 

2

2

1 1 1

1 2 2

1 1 1

2 1 1

1 1

1

2

2 1

2

1

j
io j o i j j o oo i j o oo

o
io o o i o i oo

o i j i o oo i j o oo

j
ik j o oo i j o

i o oo k j o

j
o o i

U P g U P g U P g

U P U P g

P U U P g U P g

U U P g U P g U P

U P g U P

U P U U

  

 

  

  

 



   

       

    

    

 

 














(18) 

chance t

2 ik 

One

h

i 

U








 

 could start

ese sym

i k

o o

j i

U P

P

U U



metrica

2


 2

i j o ooU U P g

 
 



1 1
MGE r    and  

oo

o oo

o i
j oP

 

 
  

  
 

1 1

2

k o oo i o oo

i j oo k

k o

g U P g

U

P g

 



  

 with 
1 3Ir 

ss M rotating with l
2G

m
i oU P
a

i
 r ω  f

o
or th

w a
e homogeneous sphe

ngular i.e. r
rical 

1velocity,   , 
2 1 , i i oU U P  ME M , and  

22 5MRn nn
I m
keeping only

n  for E 14]. Then, by  

 linear terms to 
E x v R r  [

with respect i oU P , one 
owly rotating gravitational field:  can rewrite (17) for a sl

   

   

1 1

1

d
ln

d

.
2

i
oo

k i o oo

o oo

j j o j

S
S x g

t

U P g

g
S U x x S

g

 



 



   

 

vanish fo -rotating ce when 0

1

2

i k o oojk
j

i k o oo k ij k
oo

U P g
S

U P g U P
P





 


  


j
j i

i g



r non

oo

(19) 

The last three terms on the right-hand side of (19) are 
responsible for frame rotation and frame dragging, which 

nters    and 
0U P  ecessions of  magnitude vec-

tor  
i o . Pr

 
 the constant

1
oJ S v UP   , obtained for the weak- 

field limit of 

   
 

2 21 2

1

1

2 const,

j
o o i i o j

i ij ij
j o j i i j i j

g S S U P U U P x S

U P S x S S S J J


 

 

 



     

   




 

when 

2 2



vS

 1, 1i i
o oU P x x    , and i i

i o o
1v U Px     

in (19),  

   

 
   

1 1

1 1 1

2

,

jk
j

i k o k i o

j j o i o o i o j o o

J
U P U P

J U P U P U P U P

  

  

   

1 1

1

d

d 2
j j ii

i o o j o o

JJ
v U P v U P

t
 



      

     

 (20) 

may f’s non-relativistic predic-
tion 

 be compared with Schif
 geo fdd dt   J J   = for Gravity Probe B. 

The second summand at the right hand side of (20),  
   1 1 2jk

j i k o k i o fd i
J U P U P J         , takes e

Schiff’s answer [42,43] for the frame-dragging precession,  
xactly 

 
3 3 2

1 2
.

2

GI

r r r

        
   

rr


3
fd

GI  
 

r
    (21)

The first and third precession terms in (20) depend on 
the Earth’s radial field 

 

 1
i o oU P  and they count to-

gether geodetic and frame phenomena. These terms pro-
vide  1 1 12 .gf o o o

 P P    v U U  Such a prec
for a point spin model, formally borrowed from the Ein-
stein-Grossmann theory for the probe mass without rota-

ession 

tion, fails to reiterate the already well verified de Sitter 
geodetic precession,  

   1 33 2 3 2geo o oU P GM    v r v r  , 

of the Earth-Moon gyroscope in the Sun’s field, where 
 1 2 2, , 0U U U U . Why does the Einstein-Grossmann 

geodesic point mass fail for physics of spins and mass 
rotations? 

First of all, there is a clear mathematical reason to re-
je

roach t
ct point spins from the Einstein-Grossman metric for-

malism. The point spin app o GR matter cannot 
justify that S  is a covariant four-vector in pseudo- 
Riemannian space-tim etric tensor is de-
fined exclusively for matter without self-rotations or for 
the four-momentum of a probe particle without spin. 
Therefore, one cannot place S

e where the m

  into the Einstein- 
Grossmann geodesic equation with symmetrical connec-
tions. Riemann-Cartan geometries with the affine torsion 
and asymmetrical connection [27-29] are still under dis-

19 e
cussions for proper applications. 

In 38 Einst in already answered the point spin ques-
tion by developing with Infeld and Hoffmann relativistic 
dynamics of slowly moving distributions of active and 
passive masses. It is well known (Weyl in 1923 and Ein-
stein-Infeld-Hoffmann in 1938 for example [24]) that the 
inhomogeneous GR time dilation (or inhomogeneous 
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 oog r  for mass elements rotating over a joint axis) 
defines a rel vistic Lagrangian for the classical non- 
point gyroscope. Therefore, Einstein’s relativity quanti-
tatively explains the de Sitter precession through local 
non-Newtonian time rates for distributed rotating sys-
tems. The non-Newtonian (three-times enhanced) pre-
cession originates exclusively from different GR time 
rates in neighboring material points, rather than from a 
local space curvature in question for the ill-defined GR 
spin of a point mass. The autho

ati

r does not understand 
Sc

all gra

 
Eu

metric scheme [2,26]. In order to achieve this main goal, 

warping 
around the localized gravitational source (including the 

e contrary, our chain analysis of par-
 allows us to infer that curved 4-in- hiffs reasons to ignore Einstein-Infeld-Hoffmann 

physics and Weyl results for relativistic gyroscopes prior 
to testing General Relativity through rotation of masses. 

The Einstein-Hilbert tensor formalism for energy den-
sities of a gravitational source (rather than for a point 
source) requires non-Schwarzschildian interpretation of 

vitational tests, including Lunar-Laser-Ranging 
and Gravity Probe B data. In authors view, the 1913 Ein-
stein-Grossmann geodesic motion in pseudo-Riemannian 
space-time with flat space can provide a physical basis 
for translational dynamics of only point particles, but not 
for self-rotations of distributed relativistic matter. Point 
spin models for geodetic and frame-dragging angular 
drifts of free-falling gyroscopes cannot be reasonable for 
GR physics even under formal success of point-spin ap-
proximations for the observable geodetic precession. 
Possible speculations that the de Sitter geodetic preces-
sion of the Earth-Moon gyroscope or that the Mercury 
perihelion precession have already confirmed non-

clidean space geometry are against proper applications 
of the well-tested GR time dilation by gravitational fields, 
and, therefore, against Einstein-Infeld-Hoffmann’s phys-
ics of slowly rotating systems having finite active/passive 
masses at finite dimensions. In fact, the available GP-B 
releases (einstein.stanford.edu) of the processed geodetic 
precession data perfectly confirmed time dilatation for 
Einstein-Infeld-Hoffmann rotating distributions of masses. 
Lunar laser ranging of the Earth-Moon gyroscope and the 
GP-B geodetic precession are irrelevant, in fact, to ex-
perimental proofs of space warping by the missing inch. 
These tests are equally irrelevant to experimental proves 
of black holes existence. On the contrary, all known pre-
cision measurements in gravitation confirms the strong- 
field metric (3) with time dilation and continuous gravi-
tational masses in nonempty Euclidean 3-space. 

7. Conclusions 

There are a lot of disputes in modern gravitation and as-
troparticle physics. Our main goal was to reinforce spa-
tial flatness for real, non-point matter in a line of the 
original Entwurf geometrization of fields, rather than to 
discuss other consequences of the selfcontained SR-GR 

we derived quantitative geodesic predictions for Mer-
cury’s perihelion precession, Mercury’s radar echo delay, 
and the gravitational light deflection by the Sun in strict-
ly flat three-space without references on the 1915 GR 
equations at all. The numerical results are well known 
from the Schwarzschild empty-space approximation of 
reality. Recall that the conventional interpretation of 
post-Newtonian corrections relies on space 

“point” Sun). On th
ticles physical time
terval can keep strict spatial flatness and the Entwurf 
metric scheme for strong-field gravitation. The GR dis-
placement dl  may be referred as a space interval (like 
in Special Relativity) in flatspace relativity of nonlocal 
superfluid masses with mutual spatial penetrations. Con-
sequently, the integral dl  along a space curve does not 
depend anymore on gravitational fields and takes a well- 
defined meaning. Such a Machian-type nonlocality of 
superfluid astroparticles reconciles 3D space properties 
with the relativistic Sommerfield quantization along a 
line contour. Indeed, these are no reasonable explana-
tions for quantized magnetic flux in laboratory SQUIDs, 
unless one accepts 3D spatial flatness for any 2D surface 
[3]. 

GR physics may attach all field corrections within the 
GR invariant 2ds  to the time element  2d dl  with 
chain relations. Gravity indeed curves elementary space- 
time intervals (therefore d  and ds  are specific for 
each moving particle), but their space sub-intervals dl  
are always flat or universal for all particles and observers. 
It is not surprising that our approach to relativistic cor-
rections, based on the strong-field Equation (7), resulted 
in Schwarzschild-type estimations, which are based on 
very close integrals of motion in the Sun’s weak field. 
However, strong fields in (7) will not lead to further co-
incidences with empty-space Schwarzschild-type solu-
tions for dynamics of probe particles. 

Both the Euclidean space interval d d d > 0i
il x x  

and the Newtonian time interval  

dt  d d d > 0o ox x x   are independent from local  

er y par

n

o

fields and prop  parameters of elementar ticles. 
This absolute universality of world space and time rulers 
is a mandatory requirement for these otions in their ap-
plications to different particles and their ensembles. Oth-
erwise, there would be no way to introduce for different 
observers one universal ruler to measure three-intervals 
and to compare dynamics of particles in common 3-space 
under the common time parameter. For example, it is 
impossible to measure or to compare differently warped  

four-intervals  d d dN
Ns g x x x 

  of different parti- 

cles. In other words, there is no universal, non-specific 
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pseudo-Riemannian geometry for all world m
Th carriers can be ob-

when they maintain
cs. 

Space-time-energy self-o

t 10−15 m, then this ma

atter. 
erefore, joint evolution of energy 

served only in common sub-spaces  
universal (for all matter) sub-metri

rganization of extended mat-
ter can be well described without 3D metric ripples, 
which have no much sense in strictly flat material space. 
Laboratory search of observable chiral phenomena for 
paired vector interactions in flat material space is worth 
to be performed before expansive projects to find 3D 
metric ripples in cosmic space. Record measurements of 
flat material space beyond the present limit 10−18 m 
might not be required for confirmation of the residual 
EM nature of elementary masses under their Einstein- 
type geometrization. Once chiral symmetry for hadrons 
was violated a ss-forming symme-
try was equally violated in the entire nonlocal structure 
of the superfluid astroparticle [2] or in its infinite mate-
rial space. Non-empty Euclidean 3-space does match 
curved 4D space-time in metric gravitation. Such a 
matching allows the extended radial electron to move 
(both in theory and in practice) without spatial splits of 
mass and electric charge densities. Strict spatial flatness 
is a real way for quantization of elementary fields and for 
unified geometrization of extended gravitational and 
electric charges. 
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