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ABSTRACT

A systematization for the manipulations and calculations involving divergent (or not) Feynman integrals, typical of the
one loop perturbative solutions of Quantum Field Theory, is proposed. A previous work on the same issue is general-
ized to treat theories and models having different species of massive fields. An improvement on the strategy is adopted
so that no regularization needs to be used. The final results produced, however, can be converted into the ones of rea-
sonable regularizations, especially those belonging to the dimensional regularization (in situations where the method
applies). Through an adequate interpretation of the Feynman rules and a convenient representation for involved propa-
gators, the finite and divergent parts are separated before the introduction of the integration in the loop momentum. On-
ly the finite integrals obtained are in fact integrated. The divergent content of the amplitudes are written as a combina-
tion of standard mathematical object which are never really integrated. Only very general scale properties of such ob-
jects are used. The finite parts, on the other hand, are written in terms of basic functions conveniently introduced. The
scale properties of such functions relate them to a well defined way to the basic divergent objects providing simple and
transparent connection between both parts in the assintotic regime. All the arbitrariness involved in this type of calcula-
tions are preserved in the intermediary steps allowing the identification of universal properties for the divergent inte-
grals, which are required for the maintenance of fundamental symmetries like translational invariance and scale inde-
pendence in the perturbative amplitudes. Once these consistency relations are imposed no other symmetry is violated in
perturbative calculations neither ambiguous terms survive at any theory or model formulated at any space-time dimen-
sion including nonrenormalizable cases. Representative examples of perturbative amplitudes involving different species
of massive fermions are considered as examples. The referred amplitudes are calculated in detail within the context of
the presented strategy (and systematization) and their relations among other Green functions are explicitly verified. At
the end a generalization for the finite functions is presented.
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1. Introduction in intermediary steps of the calculations. If they exist,
undoubtedly, the predictive power of the formalism it is
destroyed. The first and most immediate of such ambi-
guities are those associated with the choices of the labels
for the momenta carried by the internal lines of loop per-
turbative amplitudes. They naturally appear when the
divergence degree is higher than the logarithmic one. The
result for such amplitudes may be dependent on the par-
ticular choices for the routings due to the fact that in this
case the amplitudes are not invariant under shifts in the
loop momentum. A second and important type of choice
is the regularization prescription. Two different choices

Given the fact that exact solutions for Quantum Field
Theories (QFT) are rarely possible, almost all knowledge
constructed through this formalism about the phenome-
nology of fundamental interacting particles has been ob-
tained within the context of perturbative techniques. In
order to get the predictions in such framework, many
nontrivial mathematical difficulties must be circum-
vented due to the presence of infinities or divergences in
the perturbative series for the elementary process. We
have to find a consistent prescription to handle the ma-
thematical indefiniteness involved, which means to avoid

the breaking of global and local symmetries as well as
simultaneously to avoid ambiguities in the produced re-
sults. By ambiguities we understand any dependence on
the final results on possible arbitrary choices involved
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for the regularization can lead to different results for the
calculated amplitudes. These two kinds of ambiguities
are very well-known in the corresponding literature. A
third and more general one has been recently considered
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in the context of perturbative calculations, which is the
denominated scale ambiguities [1]. They are related to
the choice for a common scale for the finite and diver-
gent parts when they are separated in a Feynman integral.
There is an arbitrariness involved in the separation of
these terms in a summation when they have different
divergence degrees. The scale properties of the pertur-
bative amplitudes are the most general guides for the
consistency of the procedures. There are situations in
which a symmetry violating is non-ambiguous relative to
the choice for the labels of the internal lines momentum
but it is ambiguous relative to the choice for the common
scale. In addition to the difficulties coming from the di-
vergences we frequently have also those coming from the
extension of the mathematical expressions involved. Apart
from a few number of simple amplitudes, the mathe-
matical complexity of the obtained expression, not rarely,
makes prohibitive any analysis of the obtained results.

Considering these aspects of the perturbative calcula-
tions in QFT it would be desirable to get a procedure to
manipulate and calculate divergent physical amplitudes
without compromising the results with a particular regu-
larization scheme. In addition to this, we would like to
make the calculations preserving all the possible choices
for the arbitrariness involved like those related to the
choice of routings for the internal momenta and for the
common scale for the finite and divergent parts. To com-
plete such adequate calculational strategy it would be
desirable to get also a systematization for the finite parts
of the amplitudes in a way that the mathematical expres-
sions become simple allowing the required analysis and
algebraic operations related to the renormalization pro-
cedures, among others.

If one agrees with this line of reasoning the present
work may constitute a contribution on this direction. We
present in this paper a calculational strategy which ful-
fills the requirements stated above. We start by formu-
lating the steps involved in the calculation of perturbative
amplitudes, through the corresponding Feynman rules, in
such a way that no regularization needs to be specified.
The calculations are made by using arbitrary choices for
the internal lines of loop amplitudes and an arbitrary
scale parameter is introduced in the separation of terms
associated with different degrees of divergences. Through
the procedure no divergent integral is really calculated.
They are reduced to standard forms which are then un-
touched. The finite parts are not contaminated with any
type of modification and a systematization through
structure functions is introduced. The result is a com-
pletely algebraic procedure where no limits or expan-
sions are taken. All the procedures like Ward identities
verifications, renormalization procedures and so on, are
made by using properties of the finite functions and basic
divergent objects. In addition to this, the important aspect
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of the procedure is its general character; all the ampli-
tudes in all theories and models are treated in an abso-
lutely identical way. We treat amplitudes in renormaliz-
able and non renormalizable theories formulated in even
and odd space-time dimension within the same strategy.
Symmetry violating terms as well as ambiguous ones
may be simultaneously eliminated in a consistent way.
Anomalous amplitudes are consistently described with-
out the presence of ambiguities in any (even) space-time
dimension.

The material we present in this work may be consid-
ered as an extension of that presented in [2]. The ques-
tions considered here are not new. In the literature there
are many works about this issue and certainly many oth-
ers continue to be done nowadays. In particular, the re-
duction of tensor integrals to scalar ones, made in the
present work through the properties of the introduced
finite functions, has been studied by Passarino and Velt-
man [3] as well as other authors [4-12]. The scalar inte-
grals has been considered by G.’t Hooft and Veltman
[13]. Recently, new works have been produced specially
involving massless propagators like in [14-29] (and ref-
erences therein). The present systematization for the per-
turbative calculations must be understood as a contribu-
tion to this type of investigation. The very general char-
acter of the procedure and the absence of restrictions of
applicability may represent some advantages which can
be useful for some users of the perturbative solutions of
QFT’s. With the material presented here any self-energy,
decay amplitude and elastic scattering of two fields can
be calculated in fundamental theories.

The work is organized as follows. In the Section 2 we
define the set of basic one-loop 4D Feynman integrals
which we will discuss in future sections. In the Section 3
we explain the strategy adopted to handle the diver-
gences as well as we define the basic divergent objects
used to write the divergent content of the perturbative
amplitudes. The basic functions (and some of their useful
properties) used to systematize the finite parts of the am-
plitudes are introduced in the Section 4. The solution of
the basic one-loop integrals is considered in the Section 5
and the explicit calculation of perturbative amplitudes in
the Section 6. In the Section 7 we consider the explicit
verification of the relations among the Green functions
for the calculated amplitudes and in the Section 8 the
questions related to the ambiguities and symmetry rela-
tions are discussed. A generalization for the finite func-
tions and their useful properties are presented in the Sec-
tion 9 and, finally, in the Section 10 we present our final
remarks and conclusions.

2. Basic One-Loop Feynman Integrals

First of all we call the attention to the fact that in pertur-
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bative calculations, independently of the specific theory
or model, in loop amplitudes, we have to take the inte-
gration over the unrestricted momentum. We can con-
sider such an operation as the last Feynman rule. Pre-
cisely at this step all the one-loop perturbative ampli-
tudes will become combinations of a relatively small
number of mathematical structures, the Feynman inte-
grals. Some of such structures are undefined quantities
because they are divergent integrals. Given this situation
we have at our disposal two distinct but, in principle,
equivalent attitudes to adopt. We can perform the calcu-
lation of the desired amplitudes one by one, within the
context of a chosen regularization prescription or equiva-
lent philosophy, ignoring any type of possible systemati-
zation of the procedures or identifying the set of opera-
tions we have to repeat in calculating different ampli-
tudes considering such required operations in a separat-
edly way. In adopting the second option, the immediate
systematization of the perturbative calculations is to con-
sider the study of the set of Feynman integrals we need to
solve in order to calculate all the one-loop amplitudes.
Here we will restrict our attention to the fundamental
theories but this attitude can always be followed.

In this linere of asoning we first separate the ampli-
tudes by the number of internal lines or propagators.
Thus the one propagator amplitudes in fundamental theo-
ries will be reduced, in some step of the calculations, to a
combination of the integrals

L d*k (l;k”)
(Il’ll)_ (2n)" D '

Here we introduced the definition

)

D, = [(k +k, )2 - m,z] Such structures are the most sim-

ple ones but are also those having the most severe degree
of divergences: the cubic one (Il”) The one-loop am-
plitudes having two internal propagators, on the other
hand, will be written as a combination of the structures

iy d*k (l;k”;k”kv)
(1514515 )—I(zn)4 — ©)

ij
Here D; =D,D;. The highest degree of divergence
here is the quadratic one occurring in 1, . In calculating

amplitudes having three internal propagators we need to
evaluate the integrals

d'k (Lkeskek sk kk?)
(2717)4 Dij|

Here we have defined Dy = D;;D, . The higher degree

of divergence involved in the above set of integrals is the

linear one in 1/* . Two of them are finite structures. We
can introduce also the ingredients required to calculate

(s ) = | e
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amplitudes having four internal lines, the four propaga-
tors Feynman integrals

<|4’ If, va’ vaﬂ’ vaaﬂ)
I d'k (LA keR sk k ks k Kk k) )
Y (2n) Dy '

Now Dy, =Dy D,,. Only one of such structures is

divergent which is the logarithmically divergent structure
|

In the above definitions k+k; and m, are the arbi-
trary momentum carried by an internal propagator and its
mass, respectively. The arbitrary internal momenta k;
are related to the external ones through the relations of
energy-momentum conservation in vertices connecting
the internal lines with the external ones. The adoption of
arbitrary routing for the internal lines momenta is of cru-
cial importance due to the divergent character of the
Feynman integrals involved, in particular for those hav-
ing degree of divergence higher than the logarithmic one
just because in this case the result may be dependent on
the chosen routing. In adopting such general arbitrary
routing for the internal lines we can identify possible
ambiguous terms arising in a certain calculation which
are undefined combinations of the internal lines momenta
(not related to the external ones). This aspect will be-
come clear in a moment.

When we find a combination of divergent Feynman
integrals in a certain step of the calculation of a pertur-
bative amplitude, in order to give an additional step we
have to specify the prescription we will adopt to handle
the mathematical indefinitions involved. Usually this
means adopting a regularization prescription or an equiv-
alent philosophy. All the results, after this, will be com-
promised with the particular aspects of the chosen regu-
larization. The so obtained results will represent only the
consequences of the arbitrary choice made for the regu-
larization. Even if there are elements of the calculations
which are independent of the regularization scheme em-
ployed, certainly, there are parts of the result which will
be specific of the particular regularization used.

In the present work we will follow an alternative pro-
cedure. We will not compromise the results with a par-
ticular choice in any step of the calculation. The choice
for the regularization will be avoided. The routing of the
internal lines momenta will be taken as arbitrary and the
most important and new aspect specially for calculations
involving different species of massive fields, the com-
mon scale for the finite and divergent parts, will be as-
sumed also as being arbitrary. With this attitude all the
possibilities for such choices will still remain in the final
results. Thus, it will be possible to make a very general
analysis of the results searching for the universal condi-
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tions which are necessary to be preserved in order to get
consistent results in perturbative calculations. This means
to obtain results which are simultaneously free from am-
biguous and symmetry violating terms. In order to fulfill
this program, in the next section, we will describe the
strategy to be adopted in the manipulations and calcula-
tions of divergent Feynman integrals.

3. The Strategy to Handle Divergent
Feynman Integrals and the Basic
Divergent Structures

When we use the Feynman rules to construct the pertur-
bative amplitudes there are two distinct steps. First, with
propagators, vertex operators, combinatorial factors,
traces over Dirac matrices, traces over internal symme-
tries operators and so on, we construct the amplitudes for
one value of the loop momentum K. The next step is to
take a summation over all values for such momentum,
since it is not restricted by the energy momentum con-
servation at all vertices of the corresponding diagram.
This means integrating over the loop momentum. It is
possible to use these two distinct moments of the calcu-
lation to formulate a strategy to handle the divergences
present in perturbative calculation of QFT which may
avoid the use of a regularization [30]. The idea is very
simple and does not involve any kind of magic. Only an
adequate interpretation of the usual procedures is re-
quired. The first step is the same described above: to
construct the amplitude corresponding to one value of the
unrestricted momentum. Then before taking the integra-
tion, the last Feynman rule, we make a counting in the
power of loop momentum in order to get the superficial
degree of divergence of the amplitude in the space-time
dimension we are working. Having this at hand we adopt
the following representation for the involved propagators

1 1

E:[(kmi)z—mf}

i

:Z(—l)j (k7 +2K, k2 —my)

20 (|(2_,12)J+1

()" (k2 + 2K -k + 22 —mp)
(k2= 7) (ko) - m? |

taking N in the summation as equal or major than the
superficial degree of divergence. Here A is an arbitrary
parameter having dimension of mass which plays the role
of a common scale to both finite and divergent parts of
the corresponding Feynman integral. Through this pa-
rameter a precise connection between the finite and di-
vergent parts is stated. Note that (as must be required) the
expression above is an identity and in addition the right

(&)

Copyright © 2012 SciRes.

hand side is really independent of the arbitrary parameter
A*. After the adoption of the adequate representation for
the propagators and making all the convenient algebraic
reorganizations, we take the integration over the loop
momentum K. Then we note that the internal momenta
dependent parts of the Feynman integrals are located
only in finite integrals. On the other hand, the divergent
parts will reside in standard forms of divergent integrals,
after a convenient reorganization, where no physical pa-
rameter is present. Then we can perform the integration
of the finite integrals obtained and in the divergent ones
we need not to make any additional operation.

In order to allow a compactation of some expressions
in future sections it is convenient to introduce the defini-
tion A =k +2k -k+1>—m’, so that we can write the
above expression as

A @A)

1
E j:O(kZ_ﬁz)j+l (kz_lz)NH D .

The steps above described, required to implement the
procedure, can be formulated within the context of the
language of regularizations. In such formulation we take
the integration over the loop momentum and then the
divergences are stated. We adopt then a regularization in
an implicit way in all Feynman integrals. It is required of
such regularization distribution only very general proper-
ties. In addition to rendering the integral convergent we
require that such distribution is even in the loop momen-
tum in order to be consistent with the Lorentz symmetry
and that a “connection limit” exists. Schematically

oy 00y 000 00}
d*k
:J.AW f (k)

where the A{s are parameters of the distribution
G(Aiz,kz), and the limits which allow to remove the
distribution in the finite integrals
: 2 2
AIIZIEIOOGAi (k*.A7)=1,

must be well-known. By assuming the presence of this
very general regularization we can manipulate the inte-
grand through algebraic identities just because the inte-
grals are then finite. Next, the identity (5) is used to re-
write the propagators in the Feynman integrals. In the so
obtained finite integrals we take the connection limit
eliminating the regularization and performing then the
integration. In the divergent integrals so obtained no ad-
ditional modifications are made. Only a convenient reor-
ganization in the form of standard objects is promoted.

There are no practical differences in both procedures
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described above. The only difference is the presence of
the subscript A in the divergent integrals indicating
that a regularization was assumed in an implicit way. The
first formulation however represents the evolution of the
second one proposed and developed by O. A. Battistel
and denominated as implicit regularization, just because
it allows us to perform all the necessary calculations
without mentioning the word regularization in perturbat-
ive calculation for any purposes, as we shall see in what
follows when representative examples of amplitudes
calculations will be considered in detail.

The terms which will be converted in divergent inte-
grals, when the integration over the loop momentum is
taken, can be conveniently organized so that all the di-
vergent content is present in the standard objects (at the
one-loop level in fundamental theories)

aff tutv

d*k 24k k k_k
ol #)=] 2n)' (k2 - 27)

uvtalp "I
(20) (2-22)

o d'k4g,.Kk, N d*k 49,k
(27:)4 (k2—12)3 (27t)4 (k2—12)3 s

d*k 49,4k K

(N

S e
I
liog (12)4(;:;4 m (10)

| (ﬂ:jﬂ;. (11)

(271:)4 (k2 —/12)

In nonrenormalizable theories or in two or more loops
calculations new objects analogous to these can be de-
fined. Note that all the steps performed are perfectly va-
lid within reasonable regularization prescriptions, in-
cluding the dimensional regularization technique. This
means that it is possible to make contact with the results
corresponding to the ones belonging to such methods. To
do this it is only necessary to evaluate the divergent
structures obtained according to the specific chosen re-
gularization prescription just because the finite parts
must be the same due to the fact that, in all acceptable
regularization the connection limit must exist. As a con-
sequence, finite integrals must not be modified. More
details about the procedure will be presented in a mo-
ment when examples of perturbative (divergent) ampli-
tudes are considered.

Copyright © 2012 SciRes.

4. Basic Structure Functions for the Finite
Parts

Once the procedure described above is adopted, finite
Feynman integrals must be solved. In general, to solve
such integrals is not a problematic task. However, fre-
quently, the obtained result is a very large mathematical
expression making difficult any type of analysis. The
experience, in realizing such type of calculations, re-
vealed that it is possible to identify basic functions to
systematize the results for the finite parts of the pertur-
bative Green functions so that the results became very
simplified and all the analysis required became simple
and transparent. Such basic functions will emphasize, in
a natural way, many important aspects typical of the per-
turbative physical amplitudes like, for example, unitarity.
Further required manipulations, in renormalization pro-
cedures, in the verification of relations among Green
functions or Ward identities, can be completely simpli-
fied in terms of simple properties of such basic functions.
It is possible to show that the finite parts of amplitudes
having a certain number of internal propagators can be
reduced to a unique function written, in an integral form,
in terms of Feynman parameters. Our next task will be to
define the referred basic structures and to explicit their
useful properties to be used in posterior sections where
we will consider the evaluation of the divergent Feynman
integrals defined in the first subsection above. The prop-
erties considered for such basic functions will be used in
future sections, when we will consider explicit examples
of amplitudes evaluation and in the verification of rela-
tions among Green functions.

4.1. Basic Two-Point Structure Functions

After the adoption of the procedure described in the Sec-
tion 3 above, when we are considering a calculation in-
volving amplitudes having two internal propagators the
finite parts so obtained can be always written in terms of
the following functions

Zk(mf;pz,mf;ﬂz):j;dxxkln[%). (12)

In the expression above, p is a momentum carried by
an internal line or a combination of them, m, and m,
are masses carried by the propagators, A is a parameter
with dimension of mass which plays the role of a com-
mon scale for all the involved physical quantities and
Q(mf; p,mj,x)z pzx(l—x)+(ml2 —mj)x—ml2 . The role
of the masses can be inverted through a simple change in
the integration variable. In intermediary steps of pertur-
bative calculations it is enough to maintain the integral
representation but if one wants to solve the integration in
the Feynman parameter this operation can be easily per-
formed. For the first component of the above set of func-
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tions we will obtain

Z,(my;p*,m: A7)

2 emi-m 2
=—{2—1n(%}+(p2—122)1n(m—2J
p m;
+h(mf;p2,m§;ﬂz)
2p’ ’

where h(mf;pz,mf;ﬂz) possesses three representa-
tions:

1) for p*><(m —m,)’. In this region of values for

p> we have

h :2\/(m1 —mz)2 -p’ \/(ml +m2)2 -p’

1 \/(ml +m2)2 - p2 _\/(ml _m2)2 - pz

XIn > P
\/(m1+m2) -p’ +\/(m1—m2) -p’

2) for (m,—m); < p*> <(m, +m,)’. In this case we get

h=—4\/(ml+m2)2— pz\/(ml—m2)2+ p’
2 _ 2

X arctan w

(m1+mz)2_ pz

3)for p?>(m,+m,)’. Inthis region we write

hzz\/pz—(mlerz)z\/pz—(ml—mz)2
i \/pz—(ml—mz)z —\/pQ—(m1 +m2)2
\/pz—(ml —m2)2 +\/p2 —(ml+m2)2
+2i1t\/p2 —(m, +m2)2\/p2 —(m,—m,)".

We can note then that the function Z, (mlz; p%, m;;/‘tz)

acquires an imaginary part in the region p’ >(m, +m, )2,
as required by unitarity. It is possible to state relations
among the functions corresponding to different values for
k. Examples of such relations are

Z,(m;p*,my;2%)
m m m.om (mf—mf)

SLLS PLLL-SLL B ML PR 13
2p A 2p A7 2p? (13)

2 2 m2
.Q:%%Eﬁpdwm{ﬁﬂﬂ}
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z,(m: p*my; 2°)

18 6p° 3p* A
2 (p7 ) o

+§ D’ [Zl(mlz;pz’mzz;/lzﬂ
2
—%[Zo(mf; pz,mj;/lz)}.

Through such relations all components of the set can
be reduced to that having the number of k reduced in
one unity and successively to finally be reduced to only
the k=0 function. These type of reduction is very
useful in verifications of symmetry relations as we shall
see in a moment.

4.2. Basic Three-Point Structure Functions

In evaluating the finite parts of Feynman integrals asso-
ciated with amplitudes having three internal propagators,
Equation (3), we can obtain considerable simplification if
the results are written in terms of the following functions

1 1-X XX
(M5 p,m3sq,me ) = [ dx [, B2 (19
where p and  are momenta of the internal lines or a

combination of them and,
Q EQ<m125 p’mZZJXI;qam}z’XZ)
=p’% (1% )+ %, (1-%,)=2(p-q) XX,
+(m,2 —mf)x2 +(m,2 —mf)xl -m’.

If the considered amplitude possesses two or more
Lorentz indexes it is useful to define another set of
auxiliary functions. They are defined as

1 1- n,m
e om0 )
(16)

The elements of the above set of functions can be re-
duced to &, and Z, functions if useful or necessary.
However, in intermediary steps of calculations it is fre-
quently convenient to maintain the presence of 7,,
function to give a compactation of the results and opera-
tions. Now we consider useful properties for the func-
tions &, and 7., .

The first aspect is relative to the reduction of all the
elements of the set having a certain value for n+m to
that having n+m-1. We now show such reduction
firstly considering those for n+m=1. We start by con-
sidering &, . After some algebraic effort, which involves
only basic mathematical operations like integration by
parts, we can write the expression
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ey f(q <))

2

where we have defined C, =
P’ —(p a)

Through the same type of manipulations the function &, can be written as

2 (. .
Sio :&{(MJ[_ZO(W@;( p-a) ,mf;lz)]—%zo(mf;qz,miﬂz)+q—1220(mf; p’.m;; A7)

2 pq

{[q%mi—mi}_(p;ﬂ{ p2+m§—m§j}§oo}
q q p

In the last two equations above, we can note that both functions &, and &, may be related through a set of simul-
taneous transformations.
The reduction of the functions ¢&,, and &, can be written as

. p— 2 .
oz :%{w}[zo(mi(p—CI)Z’m;f;’IZ)_Zl (mf;(p_q)zﬁmg;ﬂz)}_(pz qz) Zl<m12; pz’mg;’iz)

pq pq

2 22 2 22
) ot |

2 2 2

p Y q

and

C |l (p-a)-p° p-q 1
&0 =71{|:%:||:21(mzz;(p—q)z,mf;/12):|—(p2q2) Z1(m1;q2:m3;ﬂz)+q—27700

p-q
(q2+mf—m§) (p.q)(q2+mf—m§)
' ¢ P 0 “io

For the component &, on the other hand, it is interesting to obtain two alternative forms. First we write

C -q)-9° 1 )
& =71{{w}21(mi;(p—q)Q,m§;/12)+FZ, (meqmy:27)- (29,

p’q p’q
(p*+m’—m}) (p.q)(a”+m—m?)
+ 2 - 2 2 510 :
p p q

The second form is

C -q)-p’ 1
S =71{{W}[Zo(m§;( p-a)’,m;2°)-Z,(m3s(p-a) ,mi;iz)}gzl (m; p*,my;2%)

pq

_(p-q)%o+[(qz+m5—mf)_(p-q)(pz+mf—mf)]§w}

p’q’ p p’ q’

The explicit expressions for the &, functions, corresponding to n+m=2, can be completed if we develop the

My intermsof & =~ and Z, functions. Such function can be written as

7700=%[Zo(m§;(p—q)2,mf;ﬂz)}—{%erlzfoo}L%(pz+m12 )510 (C] +m; —m; )for
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The expressions corresponding to the first reduction of the &, functions having n+m=3 are

C -q-p° . 1
éﬁj{p o }[Zz(mf;(D—Q)2,mi;lz)]—%zz(mf;qz,mf;/lz)+?[2mo]

Pq
(0 +m}—m3) (p.q)(p*+m;—m)
1T 7 p’ s
C,
03—7{{ } (mi;(p—q)z,mi;/‘tz)—ZZI(mi;(p—q)z,mi;/‘tz)+22(mi;(p—q)z,mf;lz)}
_pq . (P m—m) (p-g)(a’+m—m;)
m’; p*,m;; A 21, | + - Eot
p°q’ (s pms )p[‘“]{ p’ p’ o’ v
The two different forms for the function ¢&,. are written as
C P-9)-9 1 :
S [ et s o
(p*+m—m3) (p.q)(a*+m’—m)
+ 2 - 2 2 SE
p p q

and

§21=%{{W}[Z2(m§;(p_q)2,mf;ﬂz)—zl(mg;(p_q)z,mg;ﬂz)]+ql—2[27701] ( )[2 10]

pq p’g
(0 +m}-m3) (p.q)(p*+m—m})
+ 2 T2 2 S
q q p

Finally we consider the expressions for the function ¢&,. Firstly the form

;2=%{{W}[Zo<m5;(p—qfami;f)—zzl(mi(p—q)ﬂmf;f)ﬂz(m%xp—qfamf;f)}

p-q
1 : g’ +m’ —m; .q) (p?+m? —m?
*?Zz(mf;p%mz;m—%[z%lh[( ) (e (temiom)), |

q’ q p

and then a second form can be obtained

e L T e e,
+%[Zz(m5;q2,m§;lz)} M[z%lhl(p2+m12‘mzz)_(P'q)<q2+m3_m§)]§11}.

p p’ q’

For the 7,, used in the above expressions we have the following expressions

1 1
Tho 25{21(mzz;(p_q)2amsz;/iz)_2|:g+m12§10}+(q2 +m12 —m32)§20 +(p2 +m12 _mg)fll}’
and

Tor =§{[Zo(m22;( p_q)z,mf;ﬁz)—zl(mg;( p_q)zamg;ﬁz)} _2|:%+m12501:|+(p2 +m12 _m22)§02 +(q2 +m12 _msz)égn}
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With these expressions we can write the functions
&, corresponding to N+m<3 completely in terms of
of functions Z, and &, with n+m<2.

The reductions present above are very useful in par-
ticular to allow the identification of important properties
of the basic functions associated to amplitudes having

required when relations among Green functions or Ward
identities are verified. They are particular combinations
of a couple of elements of the set of functions which can
be constructed directly from the reductions presented
above. The usefulness of these properties will become
very clear in future sections. They are

three internal propagators. These referred properties are 1) n+m=1:
1 1 1
0y +(P-0) &0 == 2o (mE:(p—a) i 2%+ 22, (m pPmd: 4% (o7 < —m? )&, (17)
1 1
p2§10+(p’q)§01 :——Zo(mzz;(p—q)2,mf;/lz)JrEZO(mf;qz,mzz;/lz)+E(p2+m12—m22)§00. (18)
2) n+m=2:
2 _l 2. 42 1 l 2 22
06 +(P-0) &y =~ Zy(M3:(p=a) a2 )+ 2+ (0 ) - ) (19)
1
08, +(P-Q) & =5 2 (mi:(p=0) mi:4*) =2, (mi:(p—a)’ mi:27)
(20)
1
+521(m1ap mz»/qu) (qz"'mlz_msz)églo:
2 _1 1 Lo 2 2
P°S+(P-a)&, = N o( (p- Q) ,m3; A )+E’700+E<p +m|_m2)§1o’ 2n
1 1 1
p°&, +(p-9)&, = - 1(m :(p-q)’ m§;,12)+521(mf;qz’mg;,p)JrE(p2+mf—m§)§01. (22)

3) n+m=3:

4% +(P-0) & =—%[Zo(m§;(|0—q)2,mf;/lz)—ﬂl(mi;(|o—q)2 ,m§;12)+22(mi;(p—q)z,mf;ﬂz)]
+-Z

(23)
,(me pz,mj;/12)+%(q2 My =m3 )&y
Qs +(P-0) &, == 2o (M3 (p-0)" s 2% 471, +%(q2 +my—m;) &, (24)
@6 +(P-0)é =] Z(mEs(p-a) umisa?) -2, (mds(p-a) mis a2 ) [+ S 4 (6 4 mE-mi) & (29)
P&, +(P-0)&y =— Zz(mi;(p—q)z,mf;/lz)%zz(mf;q%mi;ﬂz)+%(p2 +m; -m} )&, (26)
P&, +(P-9)&, =—%[Zo(m§;(p—q)z,m32;/12)—221(mzz;(P—Q)z,m§;22)+zz(m§;( p—q)z,mf;ﬂz)} o)
+ 10 +%(p2 +my—m; )&,

pz‘le +(p'q)§1z :%[Zz(mzz;(p_q)zamg;/iz)_zl(mzz;(p_Q)Zamf;ﬁz)}+%ﬂol +%( p2 +m12 —mf);l. (28)

It is also useful to note similar properties involving the 7, functions,
9 [7: ]+ (P-0)[mo]==m3| 1-In m —lm -t M +p [ »(mfsp7.m) -2, (m?; p? mz)]
01 10 ﬂ, 2 i 1> 12 1 12 112
—(p-q) 2.09_aq)? m2)_ 2. 2 leo o 2,02 2
(p=a)’| Zo(mi:(p=a)’.m}) -z, (mi:(p—a)*.m}) [+ (" +mi —m?)[ 2, (m: 2.2 | 29)

—%[( p-a) +mi-m: | Z,(mis(p-0)".m:)] +%(q2 +m; =m0
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2

pz[nm]+(p~q)[7701]:%mf{l—ln[%ﬂ—%mj{l—ln(%

ﬂ +q2[Z2 (mf;qz,mf)—zl(mf;qz,mfﬂ

~(p-a)’[Z:(mis(p-a)’.m?) -2, (mis(p-a)’ m?) |+ (o mi - m ) 2, (misq2m? )| GOy

~2{(p-a) +m-mi ][z, (mis(p-a)’,m2) |+ (2 + mi - ]

Furthermore, note that when on the left hand side we
have &, for what n+m =3, on the right hand side we
will have only functions with n+m=2, and so on.
Such type of structures are precisely the expected ones
when the Ward identities are considered. It is clear that
other functions corresponding to higher values of n and

m, and analogous relations among them, can be obtained.

In the final Section 9 we will show how to generalize all
above functions and their relations to an arbitrary number
of points. At the present purposes the & . given above

will be enough.

4.3. Basic Four-Point Structure Functions

The finite parts of four-point functions calculations admit
a systematization analogous to the three-point functions.
The basic functions are defined as
iy ik
! 1-% 1=X =X XlI X2J X3
é,iik N J})dX, .[o dxzfo dx

= 31
" Q]

where

Q;Q(mf; p,mf,xlgq,mf,x2;r,m§,x3): P2X (1=% )+ 07%, (1=%, )+ 1% (1=%)=2(p-q) XX,

—Z(p-r)xlx3—2(q-r)x2x3+(mf—m§)xl+(mf—m§)x2+(mf—mj)x3—m,.

If the considered amplitude possesses at least two Lo-
rentz indexes it is useful to define another set of auxiliary
functions

ik
X %, X3

and if four or more Lorentz indexes are involved it is
convenient to define also the functions

Eio=foax [, [ ek L2 (32)

- I;dxl ; ax, J‘;fxl—xzd)% X)X XK ln( 32) (33)

2

The elements of the set of functions &y and 7y
defined above can be reduced to functions &y, if useful
or necessary. However, in order to give a compactation
of the results and operations, in intermediary steps of
calculations, frequently, it is convenient to maintain the
& and my  in the corresponding expressions. All the
functions of the set &y can be, at the final, reduced to
the most simple ones ¢, . As examples of such reduc-
tions let us consider those corresponding to i+ j+k=1.
They can be written as

1) Functions &,

:—{%foo(mzz; p—q,mf; p_ramf)_%éaoo(mf;q:mg;ramj)+%( p2 +ml2 _mg)[é/ooo]}

o ~(a-r)|
é’lOO C2
JL@n@p)-r@p)]

C2

LL@p)(ra)-a’(r-p)]

2

[(p~r)(r~Q)—r2(p-Q)]{1

Soto =

C, 2
+[p2r2‘(P'f)2]{1
C, 2
Lpra)(r-p)-p*(r-a)
C,

Copyright © 2012 SciRes.

500(m22§p_qam32;p_r

2,

{gfsoo(mz;p—q,m;;r—q,mz)—ggoo(mf;p,mz,r,mz)+§(q2+mf—m§)[:ooo]}
{%éoo(mf; p—r,mi;q—r,mi)—%%o (m; |0,m§;q,m§)+%(r2 +m; —mi)[éooo]},
) (52 (7 ) ]
—&y (M3 p-g.msr—q,m;) —%éoo(mf; |o,m§;r,mf)+%(q2 - —mi)[é”ooo]}

{%foo(mj; p_rsmzz;q_r:mi)_%foo(mf; p, mj;q,m§)+%(r2 +m12 _mj)[gooo]}»
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p-a)(a-r)-a’(p-r)| (1 1 1
4/001:[( )( C) ( )J{Efoo(mgap_Qamg;p_ramj)_afoo(mﬂq’mg;ramj)*'g(p2+m12_m22)[§000]}
2

. . —p? .
+[(p ) F():) L r)]{%foo(mf;p—q,mf;r—q,mf)—%foo(mf;P,mfs;rsmf)+%(q2+m12‘m32)[5000]}
2
p g —(p-q
+|:C—():|{ foo(m p—- rm 50— I’m) %foo(mf;psmzz;qntZ)_F%(rz+m12_m§)[§000]}’
2

where we have defined

22,2

=p’g’r’ +2(p-a)(p-r)(a-r)-p*(a-r) —a* (p-r)’ —r’(p-q).

Note that ¢, :gmo(p ©gq,m, o m) and Lo =Eg (P> 1,m < m,).
2) Functions &y, :

9’r>—(q-r 2 2 2 2
=#{—%[%O(m§;p—q,m§;p—r,mf)}+%[7700(mf;q,mf;r,mf)]+(pﬂ+nb)[§ooo]}

100

(LR (q'p”{‘%wms;q-p,m;;q_r,m:>J+§[noo<mf;mmﬁnmﬁ)%w[%l}

2

+

+[(q- P)(r~qc)2—q (r- P)] {_%[%O(mj;r— p,mf;r—q,mf)]+%[noo(mf; p,mzz;q,mf)]+(rL21_rrL‘)[§ooo]}’
_[(p~r)(r'q)—r2(p~q)J 1 2, 2. 2 1 2, 2. 2 (p2+m12_m§)
So10 = C, _E[Uoo(mz’ p-q.my;p-r,m )]+E|:7700(m1 50, Mg T, my ):|+f[‘§ooo]

+[p r=(p-r) ]{ o (M330-r,m33q— p,m? ) [+ 1[Uua(mf;p,mi;r,mf)]+w—l_m[§ow]}

2
[(pq

2, 2 2
{__ 7700 m ;r—p,m;;r—q,m; ):| %[ﬂoo(mlz;p»mzz;q»mszﬂ‘*‘w[fooo]}’

2
£ [(p q)(q ) [ (m m r.m )J l[ (mz. m:r mz):|+(p2+m12_m22)[§ ]
001 = C, 2 oo p—-q.my;p- > Moo \ My 5, M5 T, M, B 000
+[(p-r)(q-ﬁé)—p (q'r)]{_%[noo(mf;q—r,mf;q—p,mf” 1[ﬂ00(m] p,m;r, m4)] w[%o]}
p’a’ —(p-q)’ rm2—m?
+¥{_%[ﬂoo(m§§r— p, m32§r_qsmf)]+%[7700<m12§ pymgéq,msz)]"w[‘fooo]}

3) Functions 7, :

Tooo :%[Uoo(mzz; p—qg,m;; p—r,mz)]+l( p>+m’ —mzz)[gloo]‘i'%(qz +m; —m32)[§010]
+%(I’2 +m1 )[5001] _{ +m2 [égooo]}
oo =5 oo (3 P =05 p =) | [ (3 p =iz p—r.md ) |, (s p-qumés p-rom )

+%(p2+m1 mz)[éoo]"‘ (q +m1 )[é:no] (I’ +m f)[ém]_—{ +m, [5100]}
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Moto :%[7710 (m22§ p—q,m;;p-r,m; )]"’%( p*+m; —mf)[§110]+i(q2 +m’—

1

m;)[§020]

+%(i‘2 +m12 —mi)[‘:gon]__{24 +m2 [‘5010]}

Moot :%[7701(m22; p_va32§ p_r,mi):l

(p +m?>—m )[§IOI]+ (o +m;

)[5011]

+%(r2+mf—mf)[§ooz]__{ m [éom]}

The systematization obtained through the functions
Cik» S and 7y is enough to write all four-point
amplitude. In order to verify relations among Green

functions or Ward identities some properties of those
functions are useful too. In our case it is sufficient the
following properties:

i) i+j+k=1:
P[00+ (P-Q)[Sor0 ]+ (P 1) [So01]
=%[§oo(m§;p—q,mf;p—r,mf)—foo(mf;qampf,m )]+
p2[§100]+(p'q)[§010]+(p'r)[fom]
mj)—ryoo(mf;q,mi;r,mj)}r

mg)[gooo]’

1(|02+mf—
——%[noo(mj;p—q,mf;p—r, %(p2+mf—m§)[§ooo]-
2) i+j+k=2:

p2 [gzoo]+(p‘Q)[§110]+( p'r)[glol]

=l[§oo(m§; p-g.m?; p—r,mf)]—%[fw(mi; p—0,m;s p—r,m? )+ &, (M3 p—g,m; p—r,m; )]

)[5100]»

p2[gllo]+(p'q)[§ozo]+(p'r)[§011]
:%[eﬁo(mf; p-q,m2; p—r,mj)—fm(mf;q,mf;r,mj)}r

[fooo] (p +m

%( p+m; _mf)[gmo],
p2 [4/101]+(p'q)[é,ou]"'(p'Q)[é’ooz]
:%[501(%2; p—gms p-r,m;) =&, (msq,misrm; ) [+

p2 [5200]"‘( p'q)[‘fno]"'( p'r)[‘:glol]
—l[noo(mi; p-q,m;p-r,m;) ]+

%( pz +m12 _mg)[gom]s

%[mo(mi;p—q,mi;p—r,m§)+r7m(m§;p—q,mi;p—r,mi)]
1[77000]"' (p +m —-m )[5100]:

)[5020] (p'r)[fon]

2. 2 2. 2. 2
—q,m3; p—r,m; )=y (30, mesr,m? ) |

p*[&0]+(p-
:__|:7710(m
[5101]"' p- q)[§011]+(p-r)[§002]

(
=Ll (m

mzz)[gmo]’

1
+E(p2+mf—

p-q.mp—r.m;) -7, (mf;q,mf;r,mf)]%(pz - —m ) [ €y ]-
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3) i+j+k=3:

p2[§300]+(p'q)[§210] (p r)[§201]

:%[foo(mzz;P—q,m3;p—r,m ] [fm (m ;p—q,mf;p—r,mj)]—[fm(mzz;p—q,mf;p—r,mj)]
+l[§zo(m§;p—q,mi;p—r,mi)]{eﬂ,(mi;p—q,mi;p—r;mf)]%[s%z(mi;p—q,mf;p—r,mi)}
[5100]"’ (p +m -m )[gzoo]

P[0 ]+ (P ) [oz0 ]+ (P 1) [S1 ]

:%[éo(m;; p-g,ms; p—r;mj)—§20(mf;q,mi;r,mj)}%( p2+mf_m§)[§020]’
p2[§102]+(p'Q)[4012]+(p'r)[é’om]
=%[~§oz(m§;p—q,m§;p—r,mj)—goz(mf;q,mf;r,mf)]+%(p2+mf—m§)[§002],
p2[§210]+(p~q)[§120]+(p-r)[g’,l,]:%[f,o(mzz;p—q,m§;p—r mz):|
—%[gzo(mj;p—q,mf;p—r,mj)+§“(m§;p—q,m§;p—r,m ):| [6010] (p +m’ —m )[é’llo]
P* [Sonr ]+ (P-A)[Siai ]+ (P 1) [ 10 ]
=1[(§m(m§;p—q,m;f;p—r,mi)]—%[én(mi;p—q,mf;p—r,mi)+§oz(m§;p—q,mf;p—r,mi)]

[5001]*’ (p +m )[glol]a
p [§111]+(p'q)[§021]+(p'r)[§012]
=%[f§n(m§;IO—OI,m§;p—r,mj)—(,ﬁl(mf;q,mf;r,mj)}%(pz+mf—m§)[§0“].
4) i+j+k=4:

p2 [4/400]""( p'q)[é/310:|+( p'r)[C;SOl]
:%[500 (m3; p—g,m; p—r,mi)]—z[éo(mf; p-g.m;p-r,m;)] —%[501 (m3:p—a,m3; p—r,m; )]

)] +3[& (M2 p-amz: p-rm?)|+2[ &, (s p-aumz p-rm2)] - (34)
2

)]- é[fle(mz'|o—q,m§;|0—r,m§)]—%[<§12(m§;|0—q,m§;|0—r,mi)}

)

:| [":200] (p2+m12_m22)[§300]’

+%|:§2o(m§; p-a,m};p-
;5P

r,m
_%[QE}O(m;;p_q’m}; _rsmi
~2 [ (misp-q.mip-r.m

P*[Siao ]+ (P-0)[Soso ]+ (P 1)[Sos1] 5
35
=%[§3O(m§; p—q,m;; p—r,mj)—gm(mf;q,mf;r,mj)}r%(p2 M7 —=m3)[Soso -

p2[4”103]+(p-q)[§013]+(p-r)[§004] (36)
=%[§os(m§; p—q,ms; p—r,mj)—503(mf;q,m§;r,m§)]+%( P>+ —m3 ) [ S5
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p2 [4310]*'( p'q)[é/zzo] (p r)[é/zn

]
:%[éo(mi;p—q,mf;p—r,m )]=[ (2 p—aums p—rom}) |=[ & (m2s p—q,m?s p-r.m} )|

(37)
+2Gu(misp-amisp-rm) ]+ [ &, (mé:p-qmisp-rm)]
+%[§12(m§;p—q,m§;p—r,m )] [ 110] ;(pz-i-mlz_mzz)[gzlo],
P* [ S ]+ (P-Q) [t ]+ (P 1) [C202]
=%[§m(m§;p—q,mf;p—r,mi)]—[én(mi;p—q,mf;p—r,mf)]—[ffoz(mf;p—q,mi;p—r,mi)]
(38)
#o & (misp-aqumisp-rmd )+ [ &, (més p-qumisp-rmd) [+ 2[4, (ms p-g.mi p-r.mi) |
[5101] (p +m -m )[4/201]’
P [+ (P a)[Sin ]+ (P 1) [ ]
:%[él(mi;p—q,mi;p—r,mi)]—l[fn(mi;p—q,mf;p—r,mf)] (39)
—%[flz(mi;p—q,mi;p—r )] Slém]+ (p +mp =m3) [,
P [Coo ]+ (P @)[Sis0 ]+ (P T)[C1a1]
%[ézo(mi;p—q,mi;p—r,mi)]—l[éo(mi;p—q,mi;p—r,mi)] (40)
_%[le(mg;p_qamf;p_r»m:):l [5020] (p +m -m )[4120]7
p2[.{202]+(p-q)[§112]+(p-r)[§m]
:l[foz(mf;p—q,mf;p—r,mi)]—l[eﬂz(mi;p—q,mi;p—r,mf)] (1)
——[503(m2,p qm3sp ):| [5002]"’ (p +m )[4102]9
P*[Cis0 ]+ (P-Q)[Coio ]+ (P 1) [Cos] @)
:%[éo(mf;D—Q,mf;p—r,mﬁ)—e,go(mf;q,mf;r,mﬁ)}r%(p2+mf—mzz)[gom],
P [Sios ]+ (P ) [Sois ]+ (P 1) [Soos] @)

:%[503(”122; p—qg,m:; p—r,mj)—fm(mf;q,m},r,m )}

Similar relations can be obtained for others compo-
nents of the set by exploring the properties relating these
functions which are the interchanges p<>q, per,
m, <>m,, and m, <>m, (analogously to the &; func-
tions). The systematization allows us to treat the pertur-
bative four-point amplitudes in an exact way. By succes-
sive reductions all the content of finite parts of a four-
point function will be written in terms of only &,
(more &, and Z;). Let us now consider the evaluation
of the integrals (1)-(4) in terms of the systematization

Copyright © 2012 SciRes.

! (pz +m12 _mg)[§003]‘

introduced.

5. Manipulations and Calculations of the
One-Loop Feynman Integrals

After introducing the strategy to be adopted to handle
with the divergences in perturbative calculations of QFT,
as well as to state the standard divergent structures in
terms of which the divergent parts will be written and to
define the set of basic functions in terms of which the
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finite parts will be written, we can consider the solution
of the divergent Feynman integrals presented in (1)-(4).

5.1. One-point Feynman Integrals

If we want to solve the Feynman integral (I1 )# defined

kﬂ_ 1 A

(A (A)

in (1), by using the procedure described in previous sec-
tions, first we identify the divergence degree D =3.
After this we have to adopt the adequate representation
for the propagator. This means taking N =3 in the ex-
pression (5) to get

(A)

Sk
D M|(k-2) (e-22) (e-2) (k-2) (-2)'D,

(44)

Next we reorganize in a convenient way in order to get the basic divergent structures defined in Section 3. Then we

write the above expression in the form

(&j =k’ —2kakﬂ +(k2+12_m2)k"‘ 4Kk, _klﬂklaklv 24K Kk K,
D own (=22 ] -y 3 | (e-2)
4
—3(k12+/12—mf)2(2k1'k)k”+ (A) K,

where we have written only the terms which are even in
the loop momentum Kk by simplicity just because the odd
ones will be ruled out after the introduction of the inte-

k

(-22)" (-2)D

gration sign. Convenient reorganizations are made to get
the divergent terms written completely in combinations
of the five objects (7)-(11) and then we get

d*k 1 I 1
=] Gy Eﬁ =k [V, (2)] KKk [Oe(2)] ~Skukik (A, (2)] —E(kf)kf [8,6(27)]

6 ] b [ )

(A)'k,

e (2R ok |
3( m ) .[ +'[(2n)4 (kz—/lz)4 D,

T +A

(27[)4 (kz _ 22 )4

Only finite terms will be integrated in the next step and no additional modification will be made. The result is the

expression

=y =4 (5 gt [Dan()] 3Rk [ ()5 0 [ (4]

(420 [ ()] s ()] —/12)[|,0g(/12)}+ﬁ{(mf )em? 1[2‘_]}}

The reasons for the definition of the divergent objects
precisely on this form will become clear in future sec-
tions. It is possible to show that for any value of N in the
expression (44) major than 3 the result can be put in the
above form. Note that, following our strategy, no men-
tion needs to be made to regularization techniques until
this step. On the other hand, the above result can be con-
verted to any regularization prescription since all the
steps performed are perfectly valid in the presence of all
regularization distribution. Such eventually adopted regu-
larization, in this case, will be present only in the basic
divergent objects just because it can be removed from the
finite integrals by taking the connection limit. If, on the
other hand, we want to attribute a definite value for the

Copyright © 2012 SciRes.

involved divergent objects a regularization must be as-
sumed and the integration made. However, as we shall
see in a moment, this is not necessary in any situation.

Now we can consider the quadratically divergent inte-
gral defined in (1). For this purpose we follow the same
procedure applied above. Strictly speaking, the same
representation for the propagator used in (44) can be
adopted. However, algebraic effort can be avoided by
taking the value N = 2 in the expression (5) just because
the obtained expression may be put in the same form for
any superior value. Having this in mind in all situations
where we have to calculate the integral 1, we will have
to integrate the expression (omitting an odd term in the k
loop momentum)
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) 1

(k +1% -

ol

(e rp ey ey

2
o odkk, (Kt -my) (A)

So, taking the integration after some convenient reorganization, we will get

RSO

) ()] A ()]

ak (22 -m2)

(2n) (-]

- d*k (A)
(27t)4 (k2 2

Solving the finite terms we obtain

)3[(|<+|<1)2 —m?

1 =] Fua (47) [+ (7 = 22) [ 1, (27) ]+ ﬁ{mﬁ—/12—mfln(j—iﬂ+kfkf‘[A&(ﬂz)]. (45)

Again note the general character of the expression.
Only mathematical operations free from choices have
been made.

5.2. Two-Point Feynman Integrals

Now we consider the integrals having two propagators.
First we take the simplest one: the |, integral. When
this integral needs to be solved, as a consequence of the
application of Feynman rules, we first adopt the repre-
sentation (5) for the propagators. If one wants to use an
unique representation for the propagators the expression
may be that used in (44). However, given the divergence
degree involved, some algebraic simplification can be
obtained assuming the value N =1 for both propaga-
tors. We have to integrate the summation of terms

11 & A AA

where we have used the definition (6) in order to write
the expressions in a more compact way. Now we intro-
duce the integration sign to get

d'k 1 _ A
2r)' Dy, =Lt (#))- ZI ( -2Yp,
B f d*k AA

(2n) (k-2 D,
The finite ones can be integrated by using usual tools
to yield

|2=[|10g(,12)]—@[20(m3;p2,m§;/12)], (46)

where we have introduced the definition k, -k, =p.
The same procedure can be adopted when the integral

I,, needs to be solved. In our procedure, before taking

D, (kz_’12)2 = (kz_’iz)z D, (k2—12)2 Dlz’ thzé,integration, we first write
k_” :_l(k +k)§ 4k§ky +(k2+ﬂ,2—m2)(2k.kl)k‘u (k +12 )(2k k )k
D|2 even 2 : ! (k2—12)3 2 2 (k2_12)4 (k2—12)4
< A(A)K, L (AVk,  (AV(AYK,

2
i%j= 1([(2 ) j

(k? /12) D (k*-2°

) D,

Note that odd terms have been omitted. After some reorganization, we take the integration solving the finite integrals

obtained to get

=1 ()] -2 4, (7))

i

Zo(mf; pz,mzz;/lz) P

47

-——1p, Zl(mf;pz,mzz;/lz)—

(4n)°

Here we have defined P =k, +Kk,.

Copyright © 2012 SciRes.
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Next, we can follow strictly the same procedure to get the expression for the integral |,,, in our procedure. The

first step is to write

Kk, 1| o2kk | 4k k,
I T
24k _k k k
+%[k{’k{’ KL kK i _z;zﬂ);
(i a1 2 A 42 )| (kzkﬂ22)4
LAY kA (A (A) KK i( AV, & A(A) kK
Fofe-z) o (e-x) F(e-a) o T (e-2) D,

(A) (A) K.k,

LA (A

-3

= (k2—22)6 D, (k-2

)6 D, .

Now we take the integration, after a convenient reorganization of the terms to write the divergent terms as a combination
of the basic divergent structures, and perform the integration in the finite terms by using standard techniques, to get

1y = ;[ w(2)]+

+%(—2k22 +k, -k —2kf)[A

+ (2k kS +ky ke +k, kS +2k, K

2u

é(kfk; kT k) O (47 )]—%(2,12 -m—m)|

()]

(2 )] +i2gw (ks +kik? +kik? )[AQ (22 )]

[a: (#)]

+E(2k2Vk§ o, K kS + 20,k )] Ay, (22 )]+%gw [ (27)]

~5 0 (22 - - m )1, (2°)]-

(2kk+kk+kk+2kk

2u

=0, (k=K ) [ 1 (47)] (48)

log(
I |

+9,,p’ [Zz (mf; pz,mf;ﬂz)—%zl (mf; pz,mzz;/lz)}— P, pv[zz(pf,mf,mj;ﬂz)]

L (-2 2, (s 07m3: 2 |- (K, By K, 0, ) 2 (507, 27

—ki ki, [Zo(mf; pz,mf;iz)],

which completes the calculation of the Feynman inte-
grals having two internal propagators.

5.3. Three-Point Feynman Integrals

Now we evaluate the integrals having three propagators.
The first element of the set (3) is finite and may be cal-
culated by taking any value for N in the expression (5).
We write the result as

-[(2 ) D123 (47[) |:§00(m1’p mzsq m; ):|, (49)

Copyright © 2012 SciRes.

where we adopted the definitions k; -k, =q and

k, —k, = p. The definition (15) for the &, functions

has been used. The same comment applies to the second
element of the set (3). The result can be written as

B j d'k k,

7T) D123

_—2 p,,égol""q,,éaw -
() I ]

(50)

Wkly [500 ]

By simplicity, we will omit the arguments of three-
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point functions &, and 7, whenever it is not in- after taking the integration we have to adopt the adequate
volved four-point structures. The next integral of the set representation for the propagators. In this case we can

(3), which is 1, , is logarithmically divergent. Then first write

4 (k2 ) i=1 (kz ) D i (kz _12)3 Dij (kz = )3 Dy |

Only the first term will be converted in a divergent object after we take the integration. Solving the finite integrals we
can put the results in the form

1 2 1 2 |
|3;4v :Z[Auv (ﬂ' ):|+Zg/4v|:|log(ﬂ' ):|+(4T[)2
L L LD
+ (47[)2 1¥7] [ pv§01 + qv§10]+ (471:)2 1v |: p;z§01 + q‘u§10:|+ (47_[)2 Ty [600]

Now let us consider the linearly divergent structure, the integral | The first step is to rewrite it using (5), as we
did above, and next we solve the finite integrals to write the result as

{kﬂkvk}  (krko k) 24kak#kvk L AA AAA & (A) 3 A(A)

+

[kﬂkv} 1 4k, 23: kK, LS AAKK  AAAKK,
D123 cven

1
I:qvq,,fzo +P, P80 + P05, +0, P8 _Egv;ﬁoo:l
(51)

3uv *

2

_ S AA)(A) (A (A (A)
ij i'j’H(k2_lz)6 Djl (kz_ﬂ})6 D123 .

By reorganizing in a convenient way the first term so that it is written as a combination of the basic divergent objects
(7)-(11), and after this taking the integration and performing the operations in the finite terms the result can be put into
the form

I, = _é(kl +k, +k, )5 [Dg/wv(ﬂ'z ):I_L(kl +k, +k, )5 {gM [Agv (/12 )J +9,. [Aa (/12 )] +0, [Aéu (’12 )J}
-t 8, o [ ()] ) - ), fo 1 )2 ()
b oA (]

- q” p/lqvérzl - pyqlqvéﬂ - pﬂql pvé:IZ _q/l p/i pvé:IZ - p/l p/iqvng

+

23: AA(A) +Z3: (A)(A)

G (ke -22) D (k-2 D

{q”qqu§30 - pﬂ P pv§03 - q,,% pv§21

%[gv,,qm.o +0,,0,770 + gmqw,o]%[gw D701 + Q1 P01 + 9 P 7y ]}
—@{k ke [0 ]+ Kok [P+ 0,60 ] Kk, [P + 0,60 ]

+k ik, [ P&+ §lo]+km[pﬁp Ey + 030, En + T, PG+ D106y — Mnoo}
+kl{p P, S +0,0,$5 + P,0,8, +0,P,8, — . V,,noo}

1
+k]v [ pyq/lé:n + q# piégn + p;, p/lézoz + qul‘fzo _59/1/47700:|}~ (52)

Copyright © 2012 SciRes. JMP
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In fundamental theories the considered integrals are
enough to evaluate the one-loop amplitudes having three
internal propagators.

5.4. Four-Point Feynman Integrals

Finally, we consider the four-point function integrals.
Only one of them is a divergent structure which makes
the job easy. The first, the scalar one, can be written as

I, = i(47t)_2 [gooo]a (53)

where we have identified the four-point structure func-

tions previously defined in the Equation (31) and also the
external momentum r =Kk, —k; . Next, one can imme-
diatly see that, for the vector integral, we can write

I4H:J4ﬂ—kw[l4], (54)
J4/1 =i (475)72 { P, [4,100] +4, [§010]+ r, [4’001 ]}’ (55)
and that for the one having two Lorentz indexes, we have

|4/1|/ = ‘]4/11/ _kly [|4v:|_klv |:|4,u:|+klyklv [|4:|’ (56)

where

Juw :[J;V(mf; p,mf;q,m§;r,m§)]+[\];w(p oqm < mf)]+[\];v(p onm o mj)], (57)
. 2|1
J,’w <m12; P, mzz;q,mf;r,mf): —I(4n) ? {ggyv [‘):000]"' p.p, [§200]+ p.q. [Qm]"’ p.r [5101]} (58)
On the other hand,

I4yvi = ‘]4;,‘/4 _ku |:|4uv:|_klv|:|4ul:|_kly[I4V/1]+kluklv[|4l]+kl,ukl/1[|4v]+klvkl/1 |:|4”]—k1”klvku[|4], (59)

where

N :[J;M(mf; p,mf;q,m§;r,mf)] +[JLM (peam o m§)1+[J/’M (peornm o mj)] (60)

JI

_( py pyq/l + pyqv p/i +qy pv pi)[é/ZlO]_( p,u pvr/l + pyrv p/l +r/1 pv pi)[é/ZOl]}'

. - 1
wi -l (41I) ’ {_E(QW P, + g,ﬂ p,+30, py )[5100] - p,, P, P, [4/300]

(61)

The last one we consider is the logarithmically divergent one, which we write as

Lisnap = s +21—4[Daﬁw(/12)] +%{9W (850 (2°) [+ 0up [ 20 (2) ]+ 9 [ A (,12)]}

# ol 9 [ B ()] 0, [ 80 (29)] 5 [ 80 ()] + 5 (90,0850 + 00015+ 0,80 ) (2°)]

(62)

_(gapgﬂrgmgwl + gﬂpgwgargﬂi + gﬂpgﬂ7gvrga/1 + g‘/pgargmgﬂl)

i DS [0 ]S [ ]S Lo T [ - ),

where

“]4yvaﬂ = |:‘],

’
J nvap

:Jrl

n
wap + J

n
wap + J

Pvau

\]H

2, 2, 2, 2 '
yva/?(ml s p’m2’q’m3 ’r9m4 ):| +|:‘]/1va,8

(p<—>q;m22<—>m§)]+[J;Vdﬂ(p<—>r;m§<—>m§)}, (63)

. - 1 1
uvaf =1 (47'5) ’ {_E gaygﬂv [’7000]—"_5(9/10( pv pﬂ + gvﬁ p;z pa )[5200]

+%[9W (a,ry +1,0,)+9,(a,r, +r,0, )][5011]"”% PPy Py Pp [Sino] (64)

1 1
+(§ raq”qvqﬂ + rﬂqvqaqﬁj[§031]+(§qa r;lrvrﬂ + qyrvra rﬁj[§013]+(qyr\/qa rﬂ + ryqv raqﬂ)[é/OZZ]

(P8, Py + P, PGy + 0,1, P, +1, 0,0, P, )[ 5o, ]}

Copyright © 2012 SciRes.
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With the above results for the Feynman integrals at hand
we can perform all the one-loop amplitudes for one, two,
three and four fermionic propagators in the context of
fundamental gauge theories. In the next section we eva-
luate some representative amplitudes involving vector
vertexes.

6. Physical Amplitudes

In the preceding sections we have considered the evalua-
tion of the Feynman integrals introduced in the Section 2,
which are crucial for the one-loop calculation in the con-
text of fundamental gauge theories like QED. All the
integrals have been written in terms of the set of diver-
gent objects; [1,,, A, , V, ., |, and I, de-
fined in the Equations (7)-(11) and in terms of the func-
tions Z,, &, and, ¢, defined in the Equations (12),
(15) and, (31) for two, three and four-point functions,
respectively. By using properties relating the above cited
functions, all one-loop amplitudes can be reduced to a
combination of only three basic pieces: Z,, &, and,
Cooo -

In the present section we will evaluate some represen-
tative amplitudes of the perturbative calculations by us-
ing the systematization introduced in the preceding sec-
tions. We will consider an example for each number of
points taking the amplitude corresponding to the higher
degree of divergence. With this attitude we will have an
opportunity to use all the ingredients we have introduced
in our proposed systematization. In next sections we will
consider the relations among Green functions, ambigui-
ties and Ward identities. We choose for this purpose
simple but representative Green functions of the Standard
model; the one-loop Green functions having only fer-
mionic internal lines. It is simple to state relations among
these structures as well as to state Ward identities to be
obeyed by them.

In the construction of such Green functions through
the Feynman rules, apart from coupling constants, inter-
nal symmetry operators and so on, we have to state the
amplitudes for one value of the loop momentum K, which
are the quantities

LiCje-T

t =Tr{T;Se (k+k,:m, )T Se (K+Kyim, )---

(65)
T, Se (k+kg:my )}

The I' quantities are vertice operators belonging to
the set

Ui =1L75.70:7075s

appearing in the coupling of fermionic currents to the
bosonic fields in the Lagrangian. After defining the op-
erators corresponding Lorentz indexes are attached to
""" The quantities S, are fermionic propagators

Copyright © 2012 SciRes.

carrying momentum k+k, and mass m, which we
will write as

(k+k,)+m,
D

a

S, =

>

where through the quantity D, = [(k +k,) - sz we

a

state a connection with the procedure described in the
proceeding sections. The corresponding one-loop ampli-
tudes are obtained by taking the integration of the t
structures in the loop momentum Kk;

Thri- :J'(j4|()4 T
T

In the present work we will consider the cases where
the structures above correspond to divergent amplitudes
for one, two, three and four-point functions. They are all
connected due to relations among Green functions and
Ward identities as we will see.

6.1. One-Point Functions

We start by taking the cases having the highest diver-
gence degrees; the one-point functions. First, we write
for the one value of the k momentum, the quantities

th =Tr{T;S (k+kg;m,)},

or
k+k )
th =Tr{l“1ya}u+ mlTr{Fl}i. (66)
Dl Dl
The corresponding one-loop amplitudes, obtained by
integrating the above structures in the loop momentum,

o dk
(2n)’

are divergent quantities. The superficial degree of diver-
gence is cubic. Now, taking two different possibilities to
the vertice operators we can construct the one-point
functions which will be useful in future developments.
First we take the scalar one-point function which means
to assume I, =1. We get then

r
1
th,

k+k ) 1
£ :Tr{ya}%+mlTr{l}E,

1 1

or, solving the Dirac traces,

t° =4m, L1
Dl

At this point we adopt the adequate representation for
the propagator, as we have made when we discussed the
solution of the |, integral. Then we get
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4
T j(jﬁ'} t© = amkek [, (47)]

4 {[ Lo (47) ]+ (m? = 27) 1, (2°)]

+ﬁ{mf 2tem? ‘“(H]}

Note the presence of the basic divergent objects as
well as the presence of a potentially ambiguous term, the
last one, since here k|, is arbitrary.

Now taking I'; =y, in the expression (66) we get the
vector one-point function

k+k )
¢ =Tl C e L
1

1

Using the results for the Dirac traces involved we get

k 1
t =4 L4k, —|
! |:D1 1”Dl:|

Adopting the adequate representation for the propaga-
tor as we have made in the calculation of the integrals
I,, and I, we get

*k
)= - (4]
_|_2(k12 +24° —Zmlz)klf |:A§ﬂ (}“2 ):|
_§ kK[ (2]

+ 2K, Kk [Agl (12)].

1u

NI NS (e I e ]

e (2 =2 1 ()]

(4n)

ey

Note that the result is completely potentially ambigu-
ous since all the quantities involved are arbitrary (the
momentum K, and the scale A°). Let us now consider
an example of two-point functions.

6.2. Two-Point Function

If one wants to consider a representative Green function
of the perturbative calculation, concerning the consis-
tency in the manipulations and calculations involving
divergent Feynman integrals, certainly there is no better
one than the fermionic two-point functions. We will con-
sider three of such amplitudes related among them
through Ward identities. We write them from the defini-
tion (65) as

(k+k )" (k+k,)”
D12
(k+k1)a

th" =Tr {Fly/al"zyﬂ}
+m,Tr{ly,T,}
12

k+k,)* 1
D—2)+ mlszr{Fll“z}D—.

12 12

+mTr{l\ 7, } (

Firstly we consider the scalar-scalar where I, =
I', =1 (SS). For this case we get first (after taking the
Dirac traces)

ss 1 1 eV 21 1
R [(k—k,) (ml+m2)JDlz.

Now when the integration is taken the problems we
have to solve are the integrals (45) and (46). Following
the procedure we have adopted we get

T 1

. [mi 2 +m? 1n($—iﬂ—[p2 —(m, +mz)2]['log(’12)]

2

[~ 2 o [P o )

Next, we consider the amplitude scalar-vector (SV) by taking I', =1 and ', =y, , we get

sV
t/t

k 1
=2(m, +m1)D—”+2(mlk2# +m2k“‘)D_'
12

12

To calculate the corresponding amplitude we have to solve the integrals (46) and (47). We get then

sV sV
T, t, 1

B e [, (2 - )

(67)

——— p, {(me+m)[ Z, (s p2ms %) [-m [ Z, (mi 7 m3s 2) ).

(4m)°

Copyright © 2012 SciRes.
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Now we consider the most complex and interesting and
case; the vector-vector (VV) amplitude. It is obtained
from the general definition (65) by assuming I', =y, PP = _L_L+[p2 _(m “m )2JL’
I', =y, . We get the the expression D, D, »

e =2t (k.ko) ]+ 0, [t ],

which is precisely the pseudoscalar scalar (PP) two-point
where we have adopted the definitions

function. In the definition (68) above S assumes the val-

2uv (ki K ) ues =*1. After taking the integration in these expressions
1 (68) we have to solve the integrals (45), (46), (47) and, (48).
= [(k +k; )ﬂ (k +k; )V +s(k+k;), (k +k; )# }_= Substituting the obtained results we get

12

dk) ) (k) =4[V, (2)]-2(22 - + 22 —m2)[ 4, (2°)]
+§(—2k22 k=27 )] A, (27 )]+§(kfk{ kK ) D (47) ]

+§(—k2ﬂk§ 2k, K —2kfk,, —k, k) A, (,12)]+§(—k2Vk§ 2k k§ 2K, K kK7 )[ A, (22)]
2
2, kgt ki) g ()] 28,0 {pqm ()] (2 )1y ()] 2 22 m(;”_}
+29,, {[lqwd (/12)]—(,12 - mzz)[lmg (12)]+ m2 — A2 —m 1n[r;—§J}
_2 2 2 ; 2 2,02 20 42) 2.2 2. 42
3(gwp +2pvpﬂ)[llog(/1 )]+(4n)28(gwp pypv)[zz(ml,p M35 A7) =2, (m7 p?m3; A )]

+%Zgﬂv(p2 +m; —mg)[zo(mf; pz,mzz;/12)]— ! 4g,, (m —mj)[zl(mf; pz,mj;iz)],

(47) (4n)"
and
PP _ d*k PP _ 2V 4 (m2 =22 2) |+ i m? — 2+m2n/1—2
e (W N (N I e |
et 1)l el ]
+z[p2—(ml—mZ)Z]{[hog(%)]—ﬁ[zo(mf;pz,mf;ﬁz)}}—(p“p"’+P“Pﬂ)[Aaﬂ(/12)].
Then

T;y:g(g = 9,P. ) ()] -20,. (m =m. "1, (2)]

)2 2(4(9,. P>~ p,p, ) Za (mis p2,mis27) -2, (i 7 m3: 27|
,(mf - )[ o(mis mf;/lz)—zzl(mf;pz,mf;lz)}
(ml mz)[ (m125p2’m22;}“2)J}+Ayw

where we have defined the quantity

(69)

T
+9,

Copyright © 2012 SciRes. JMP



1430 O. A. BATTISTEL, G. DALLABONA

A, :4[VW(/12)]—2(2/12—mf—mg)[AW(/iz)]—é(SPz+5p2)[AW(/12)]

1

+§|:3p§pl — pEP% 4+ pPPf 4 pf pl][Dgﬂw(ﬂz)]-ﬁ-%[—:&PﬂPf +p, Pf][Agv (/12 )]

+§[—3PVP¢ +p,p° ][ A, (/12)}%9/” [-3P°P7 = pP7 4 p7P< —5p°p7 [ A, (2) .

Note the presence in the above expression of poten-
tially ambiguous terms since the quantity

P =Kk, +k,

is dependent on choices for arbitrary quantities as well as
the presence of terms dependent on physical combination
of the arbitrary internal momentum p =k, -k, which
are not dependent on the choices for the routing of the
internal lines momenta of the loop amplitude but are de-

SRR (20 o o

(k+k)" (k+k,)" (k+k, )

pendent on the arbitrary choice for the common scale.

6.3. Three-Point Functions

Now we consider the case of three-point functions. In
this case the higher degree of divergence involved is the
linear one. We will take three related amplitudes in order
to exploit the potentiality of the proposed systematization.
From the definition (65) we get first the expression

(k+k,)" (k+k, )’

D123

(k+k )" (k+k,)’

+m,Tr {3, 1,07, s
123

+ mlszr{F,F2F3ya}(

123

+ m2m3Tr{F1yal"2F3}(

123

+m,Tr{Ty,,y,0s}
k;—k3)+ mmTr{[\T,y,I;}

k+k )
D—l)+m,m2m3Tr{FlF2F3}D .

+mTr{C\T,7, T, S
123

(k+k ) (k+k, )’
Dl23

(70)
(k+k,)*

123

1

123

So if we take in all vertice scalar operators (Fl =I,=I,= i) we get

1 1 1
%% =2(m, +m3)D—+2(m1 +m2)D—+2(m2 +m3)D——2{m1 [(k3 —k2)2 —(m, +m2)2]

13 12

#m (k=) =(my+m,)* Jem, [ (k, —k, )7 =(m, _mﬂ}_

23

1
D

123

By using the developments made in solving the integrals (46) and (49) we get the expression

TSSS EJ_I(A‘]:SSS :4(m1 +m2 +m3)|:|10g (lz)]

d4
(2m)

+——2m, {—[ZO(mf;qz,mf;/lz)+20(mf; pz,mf;lz)]—[(p—qy —(m, +mz)2J[§oo]}

(4)

r—om, (-2, (més(p-a)7 i 22) 2, (s p2.mi 22) |-~ (my + ) L6 ])

(4n)

+%2m3 {—[Zo(mg;(p_qf =m32;/12)+zo(mf;QQamsz;ﬂz)]_[pz —(m, _ml)zJ[goo]}

(4)

On the other hand, taking I', =y,, I', =1 and, I'; =1 in Equation (70) and by using the results obtaining in the

study of integrals (46), (47) and, (49) we get

Copyright © 2012 SciRes.
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Tﬂ"ss=—2(k3+k1)§[Aﬂ(/12)]+2(q—2p)l[Ilog( {[ZO Yi(p-q) m§;12)+20(mf;p2,m§;/12)}
+2[p2—(p-q)—(m3+m2)(m2+ml)J[§m]+[ - 2:|[§00}
+ﬁ2%{[221(m5;q2,m§;12) (7P m},,12 [ 0(m, m3,/12)]
’l

+2[p2—(p~q)—(m3+m2)(m2+ml)J[§01] [p - m +m ’ [500}

Having two vector indexes we get the SVV amplitude

156k 15 (e o, 1 6. 0,07

where we have defined

>

(koK) = (k) (k) (k) (kovk) ]

! D123
with s==1, and

1 1 1
t¥% =-2(m, +m3)D——2(m1 —mz)D—+2(m2 -m,)—

13 12 23

#2{m [k =k ) =(my=m,)*|-ma (k=K )" =(m+m)* o[ (k= ) =(my e m ) ]} =

123

We get then
T =2(m+m){[ A, (2) ]+ 0,0 [ 1 (22) ]+ (4;)24{—9,,V(m1+m3)[f700] +20,0, [(m +m,)&, -mé&, ]
+2p, 0, (M +m,) (& =& )+ P, [(M +my) (28, &)= (m, +m,) & +m&,, | (1)

40,0, [(m+m,)(28, - &) - (m —m,) &, +m&y I} +9,, [T ],
)

i
Ty 2ml{— Z,(misq?,m2; 22)+ 2, (m?s p*m2; 22) |- [(k3—k2)2—(m3—m2ﬂ[§00]}
—i 2 2 02,92 2. n2 2. 92 2 2 (72)
+(4n)2 2m2 {_[Zo(mza(p_q) 9m3;ﬂ )+Zo(m1ap 9m2;/1 )]_[(k3_k1) _(m3+m1) j|[§00]}
Ty 2m, {—[Zo(mi;(p—Q)z,mf;zz)+zo(mf;qz,mi;/lz)}[(kz—kl)z—(m2+ml)2][§00]}.
Finally, let us consider the case of triple vector operators. First we get

e =4[t (ko) [+ 4Lt (o) [+ 4L E0, (ko ko) [+ 0, [ 67 T+ 0, [ 277 ]+ 0, [,

where the following definitions have been introduced
£VPP = { (k+k ), [(k+ky ) (kg ) =mym, T+ (k+k, ), [(k+k ) (k+ky)—mm, |

1
—(k+k3)1[(k+k1)~(k+k2)—m,m2}}D :

123

PVP
t

; =4{—(k+kl)#[(k+k2)~(k+k3)—m2m3]—(k+k2)# [(k+k)-(k+k)-mm,]
+(k+k3)ﬂ[(k+kl)-(k+k2)—m1m2]}DL

123
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(PP :4{(k+kl)v[(k+kz)'(k+k3)_m2m3:|_(k+k2)v [(k+kl)-(k+k3)—mlm3}
1

—(k+k3)v[(k+k1)-(k+k2)—mlm2]}

D E

123
and

(0 (kg ) = (k) | (k+ky), (k+ku)v+5(k+kj)v(k+"')f}D;

with s==x1. With the aid of the integrals (49), (50), (51) and, (52) the tensors '[3 v (k K; k) may be written
explicitly by

T}j},(kl,kz,kg)z—%(klf+k2§+k3§)(1+s)[m (/12)] 0 (s stk (1 9)[ 4, (22)]
—%gw(k,g+k2§+k3§)(1+s)[A§V(ﬂz)}—agm(klg+k2¢+k3¢)(1+s)[Aa(/lz)}
+i[— 1+5)k, +(5—s)k2v—(1—55)k3v}[%(,12)]
+_[ 1+5)k,, +(5-5)k,, ~(1-55)k,, [AMMZ)}—%(—SKM+ku+ku)(1+s)[AW<ﬂz)}
+Egh[qﬂ+spﬂ+(1—5)(q—p)#}[llog(ﬂz)}%g@[pv+sqv—(1—8)(q—p)v][hog(/lz)}

_%gw [P, +q/1](l+s)|:llog (12)]"%9@ { P, [(1"'5)7710 _37700}"% [(1"'5)7701 _7700}}

+%glﬂ{pv [(1+5) 0 =700 |+ 0, [ (14 5) 70, —Snoo]}+%gw{pi [(148)mo |+ 0, [ (1+5) 7, ]}
+ 0,0, P, (1+8) =& + &0 ] +9,0,0,, (14+8)[ =& + & ]+ P, 0,0, [ —(148) &y + &0y + &1 =& |
+ PP, [~(1+8) & +5(& +&1 =) [+ AP, P [~(148) &, +(145)&, ]

+9,0,0, [—(1+8)&, +(1+5)&, [+a,p,0, [ ~(1+8) & + &0 + &1 —Sur |

+0,0, P, [~(1+8) &, +5(& + &1 —n) ]

On the other hand, the expressions for Tﬂv TRV

TP =2k +k )[4, (47)]+2(2p-0), [Img(/lz)}w
+zo(m§;<p—q>2,mf;f)—z[pz—<p-q>+<mz—m1><m3—mz)][fm]+[p2—<m2—m1>1[foo]}

2P 2o (s ) o2, (-0 i)

=2 p*=(p-a)+(m, —m)(m, ~m,) ][, ]-[a" ~(m, -m)* ][, ]},

T =2k vk ) A (27)]+2(20-p), [ e (42)}@2%{[20(% pQ,mf;ﬂz)ﬂo(mf;(p—q)zamf;f)]
~2[z,(my; p,m3s4%) |-2[ @ =(p-@)—(m —m ) (m —m, ) ][5, ]
+[q2—(m3—ml)z}[e%o]}+ﬁ2q”{—[Zo(mf;qzamf;ﬂz)ﬂo(mf;(p—Q)zami;/lzﬂ

_Z[qz _(p‘q)_(ms _ml)(ms _mz)][gm]_[pQ _(mz _m1)2:|[§00]},

PPV
T\/

and, may be written as

2q, {—221(mf;qz,mf;/lz)+Zo<mf;q2,m32;/12)
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T =2{(k k) [, (#)]-(p+a), L, (fﬂ%*ﬁzm{[zo(mf; p*.m3:2°) -2, (mx(p-a)’.mi: 2 )|

+2|Z,(m3s(p-0)".m3s2%) |-2[(p-a)~(my = m)(m, ~m, ][, ]+ o ~(m; = m,)* [ 0]
+ﬁ2qv{[ZO(mf;qz,m§;/12)+zo(mf;(p—q)z,m§;/lzﬂ—2[z,(mj;(p—q)2,m§;ﬂz)]
—2[(p-q)—(m3—ml)(mz—ml)][§0,]+[p2—(mz—m,)z][goo]}.

Finally, in the next section we perform the calculation of four-point functions.

6.4. The Four-Vector Four-Point Function

As an example of calculation of a Green function of the perturbative calculations having four fermionic propagators, we
consider the four-vector four-point function, given by

VWY
t

=Tr 1 1 : 1
wat =V —m T kg —m, kg —m, Kk, —m, |

or
(krk )" (k) (k) (ko)
D1234

k+ky )" (k+k,)? k+k, )" (k+k,)?

( 3)D( 4) +m1m3Tr{7’”7’v7/r17a7/ﬁyfz}( 2)D( 4)
1234

(k+k, )" (k+k, ) (k+k)" (k+k,)™
D1234 D1234

(k+k )" (k+k,)? (k+k)" (k+k,)
D1234 D1234

VW
Cvap =TT {7,, Yo VoVe,YaVe, ¥ pYv, }

MM, 7,707 V7 |

1234

+mm,Tr {7,,7/,1 Yale, 7,3} +m,mTr {nnl VoVa¥ g7 }

T 7,707,707y V) M7, 7 7 0 V)

1

+ m|m2m3m4Tr{7,,7v7a7’ﬁ} D

1234

After performing the Dirac traces we identify the following structure

tx\:;/;/ _ 4t/4vaﬁ +0,, [tsﬂpvv :|+ 0, |: VPVPV :| + g”ﬂ[ vap:| +0,, [ VPPV ]+ gvﬁ[ VPVP:'+ gaﬂ[ WPP]

(920900 = 9100 + 0,00, )17 ] (73)
In the above expression a convenient and useful tensorial systematization was introduced
by = | Uiy (Koo ky) [+ [0 (ks ) = [tk (ks k) [+ [0 (i kaskask,) | .
) (korksk) [ £ [t (kKoo k,) .
where
2[00, () ) ()
1 (75)

<[ (k+k), (k+k,), +0, (k+k), (k+k,), |

1234

Here o, and o, assume the values 1. We also see that the coefficients of the metric tensor are four-point
amplitudes with vector and pseudoscalar vertices defined as

trvr2r3r4 —Tr 1 r, 1 r, 1 r, 1 .
“ k+k1—m1 k+k,—m, “k+k,—m; "k+k,—m,
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After performing the Dirac traces, the four-point amplitudes with vector and pseudoscalar vertices acquire the form

G20 =g [(korky)- (kg ) =mom, ][ (k+k,), (ke ks ), sy (k) (k) |

s [(kerky ) (ko kg ) =mym, [ (ko)) (k) s (k) (k+k), |
s [(krky)- (k) =mm, ][ (k+k,), (ke k), + 56 (k) (k+ky), |
4, [(krk)- (kv ) =mm, ][ (k+ky), (ke k), + 5 (ke ks ), (koK) | (76)
4, (k) (kb ) =mmy ]| (ke k), (K k,), 53 (k+ky), (KK, ), |
)

+4s, [(k+k)-(k+k,)-mm, ][(k+k3)y(k+k4)v+sl2(k+k3)

PPPP
+4Sl3gpv|: ]’

where T :{ys,yﬂ} and s, =+1 and

1 1 I I
S .
Pkak—m Ckek,—m Ckik—m  kik, —m,

Below we identify the values of s, according to the corresponding amplitude

<
—~
+
x~
1Y
~—

©

| I—

_F1F2F3F4 S1 SZ s} S4 SS S6 S7 SS S9 ]

SIO s11 S12 Sl}

PPVV - - + 4+ 4+ - - + -
- -+ 4+

PVPV + + - + - - - - -
+ + + -

PVVP - + - - 4+ - - + +
+ - - 4+

VPPV + - - - - 4+ 4+ - +
+ - + +

VPVP - - - 4+ + + + + -
+ + - -

VVPP -+ + - + - - +

Some algebraic effort is necessary in order to obtain an expression for the above amplitudes. This is a tedious task,
although easy, because the number of external momenta and Lorentz indexes involved produce very large mathematical
expressions. Consider first the tensor (74) for i=1, j=2, k=3 and |=4. From the results (53), (54), (56), (59)
and, (62) we get

T :%(H ) (145, D 4] +%gw (A (12)]%9&/, [, (2)] +%gw [8,(47)]
200 ()50 [ ()] 0 [ (7]
(9090 * 91 + 9900 )| Do () |41 8) (195,) [ 3,00 |

4(1+ ){(rﬂ+szqﬁ)[\lw]+(q +5,1,) [JM]}+4 (1+s,) { [Jﬂaﬂ}rslpﬂ[\]mﬁ}}
4(1+5) (00, + 5,050, )[ 3,0 ]+ 4 (0, +5,0,){ P, [ 3, [+ 510, [3,0])
+4(0, +5,0,) {0, [, ]+ 50, [ 3, ]} +4(ams + 50,0 ) {0, [ 3, ]+ 510,91}

+

+
N —

+
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where J, .5, J,,, J, and J,  are given by in Equations (55), (57), (60) and (63). Replacing the above result
(with appropriate values for the symbols o, and o, ) in Equation (74) gives

Tﬂmﬁ=§{|:Daﬂw(ﬂ.2ﬂ+lgw[AV(lz):|+ gaﬂ[ (/12)]+%gw[A”ﬂ(,12)]
3000 ()] 50 (80 () 500 [0 () ]|+ 50,010 10,80+ 8,0, ) 1 ()]

320305 JH16{0,[ 31 15 P [ Jup (0 +0)[ 3 ]+ (0 + D[ 3, I #8(P, ~ 1, ) [0 ]
+8(r,q, +a,r,)[J m]+8(p A, +6,,)[ 3, ]+8(, P, + P1s + .05~ 0,0, )[ 9, ]
+8(q,r, 1,0, + 1,0, + 0, )| Jys [+8(0urs + st + Py +0, P+ P =1, 0,)[ I ]
+4{p,(a,r,+a,r, )+ p, (a1, +a,n)-p, (a5, —q,0)}[ 3, ]
+4{p, (a.r; +a,r, )+ 0, (0,0, +a,r,) =P, (0,0, -0, )} [9,]
+41p, (a,r,+a,r, )=, (0,5, + 0,1, )+, (a,5, -5, )}[3,]
)

[3,]

p
p
p
+4{p,(ar,-q,5)-p (a5, -q.r,)-p, (95 -qr,
For the amplitudes listed in the table above we may write
Tt =si{[a,, () ]+ 0, [ 1 ()] + 0, [R ]+ bR R+ 0,0, [R]+nn [R ]+ pr [R]+rp.[F]
+ 0.0, [F]+a,p, [F]+a,n[R]+ra,[F]+s:0,, [T ],
where
Fy == [100 ] =% [1260 ] = 4 [260 ] = S5 [700 | + [( —q)2—(m4—ms)zJ[—Sl(“Sz)%oo]
#[(r=p) =(m,=m,)* [, (15, s ]+ (@=p) ~(m =m,)* [T (15, 7
+[r2—(m4—ml)zJ[—;(1+sg)77000]+[q2—(m3—ml)q[—sg(usm)nmo}
+[p2—(m2—ml)ﬂ[—su(Hslz)%oo],

F =2s] [52"0] +28] [§ZO]+ 2s; [fm’“‘ ":o”;'] +4s; [ég"”] (Sl +8,+5§5, + 59510)[621,:)]
—2(8,+5;+5,5+55,) [y |- 2(25,, + 25,5, +5; + 5, + 5,5 + 545, ) [ €]
—2(28),+25,,5,, +S; + Sy +5,5 + 8,8, ) [ €]+ 25, (1+53,) [ €]

+25,(1=0)" =(m, =m,)* [[=(1+5,) o +(1+5,) G ]+ 25, (1= ) ~(m,—m,)* [[=(1+5,) ¢ ]

+25 (09" =(my =) |[=(145,) Can J+257 [ 1= (m, =, ) [0 8) o + (145 G

425, @7 =(my=m ) [~ (14 810) oo + (14 810) G0 ]+ 280, [ P2 = (my = (=14 8, S0 -
F,=2s;[ &, [+280 [ ]+ 28 [ER]-2(s, +8,)[ & |- 2(8,8 +58,)[ & |=2(88 +5:)[ &)

=25+ 88, [0 ]-2(58 + 5+ 5+ 58 [0+ 28, (r =) = (my —my ) [[=(1+5,) im0 ]

428, (1= p) =(my =) |[=(1+5,) G + (15, G

+25:[ (0= p)" = (my=my ) [ (1450 oo J28, [ 12 = (my =m ) [=(14 8) S + (14 5) o )

25, @7 =(my=m ) [~ (1 510) s ]+ 250 [ P2 = (my =m, ) |[=(1455) G +(1+5) 10
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F3 = 25; [5(;,2] +25!; [ég(;;] +25; [5(;;,] _2(59 + 55)[5(;'1]_2(59310 + SSSG)[§(¥1]_2(SII + Ss)[éz(;'{]

=281 8586 )[ 601 ] = 2(511 85 +5181 8,80 ) [ 7]
#25, (=) ~(m,=m,) |[=(145,) G 25, (= pY =(m=m, )" |[~(14,) G ]
+255[ (= p) =(my =m,)" [~ (1% ) Sous + (14 5¢) G
25, [ = (m=m ) (=14 8) e ]+ 285 [ @ =(my =my)* | [=(15550) Cm + (1 510 ) o
25, [ P2 =(my=m )7 (= (14 5) S +(155) S

Fy =28, [ 5] - 25065+ &1 =28, +85)[€0 ] = 2(5 + 88, )[ €011+ 2811+ 8y 518 + 8810 +81, +88) [&11]
+2(s,, -+, )[ &0+ 25, [&0] =25 [+ 25, [ (r=0)" =(my =m,)* [[=(145,) s +:60ar |
+25,[(r=p)" =(my=m,)" |[=(1+5,) oy ]+ 25| (a=P) =(my=m, )" |[=(1+5) o+ i
28, [ 1= (my=m ) |T= (14 8) or+ oo J+255 [ 0 = (my =my) (=15 810) St + Shan * Saor = on
25, P*=(my =m, )" |[=(14 ) o1 + € )

Fy =28 [ ] =255 [0 + &1 2(880 +81 ) [ 601 ] = 2(85810 +5586 ) [ 10 ]

2811+ 8y + 87 + 85810+ 281,80 ) [ S0+ 2(811810 + 80810 ) [ £16]+ 255810 [ S0 ] — 251181 [ €66 ]
+25,[(1=0)" =(m, =) [[=(148,) G+ o+ 25, [ (1= B) = (my =) |[=(145,) 650,
25, (q=p)" (Mo =my )" |[=(145¢) Si +8eGion ]+ 255 [ 17 =(my =m))* [ (1 8) Gior + 5o
25, @7 =(my =m )7 (= (14 5.0) i+ 10 (oo + €100~ o)
+2sn[p2 -(m, —ml)z][—(lJrslz)g“m1 +5580 -

Fy =25 [ 2[5+ 671 -2(5+ 5[0 ]-2(5, +58,) [ ]+ 20255 5, +5, 45,5, +5,5,)[£7]
+2(5180 + 8, )[E0]+ 25, [0 ] - 2818 [ £06] + 28, [(r—Q)2 —(m, —ms)zJ[—(HSz)éHo+SQ§0]0]
+2s, [(r— p)’ —(m, —mz)ﬂ[—(u $4) S0+ S0 |+ 255 [(q —p)’ =(m, —mz)zJ[—(H sé)cj“o]
+257[r2 —~(m, —ml)zJ[—(l+sg)§UO+§100+§010 —gmo}rzsg[qz ~(m, —ml)z][—(nsm)gw +oo ]
+25,, [ p’—(m,-m, )2][—(1+slz)§110 +58 100 -

Py =2s; [ 80 ]=285 [ S50+ 611 = 2(85 + ) [€01] = 2(855 + 58, )[S10 ]+ 2(818 +8 811 + 8,85+, +8, ) [ 7]
+2(s, 5,5 )[601+ 25,8, [0 - 25, &1+ 25 [ (r=a)’ =(my =m, ) [=(1+5,) o0+ o]
+25,(r- py_(m4_m2)q[_<1+s4>4,0+54;,00}+235[<q_ p)’ —(my=m,)* [[=(1+5,)¢0n]

+257 |:|’2 :| 1+Sg)§110 +Sg (4010 +§100 gOOO)]
+2s, |:q2 j| 1+SIO)§110 +SIO§010:|
+2511|:p2 :I (1+512)é/110+§100:|
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Fo=2s,[&1]+2s:[&1]-2(s,, +55)[ &0 ] -

(Sll+s )[ o 2(511'|'S S )[501]

1437

(311+S7Sx)[ ”,’]""2511[6500"' ]

+2S| |:(r_q)2 _(m4 —m3)2:|[—(1+52)§0”:|+253 |:(r_ p)2 _(m4 —m2)2:||:—(1+84)§0|] +S4§001:|

+2s; [(q_ p)z —(m3 _mz)zJ[_(“'ss)Qu +§om]+257 |:r2

_(m4 _m1)2:||:_(1+58)§011 +Ss§001:|

+259 |:q2 _(m3 _m1)2:||:_(1+510)§011 +§010:|+2511|:p2 _(mz —m, )2:|[_(1+512)§011 +41010 +41001 _gooo]a

F9 = 25:1 [ 1”1,] +255 [ W] 2(511312 + Sa)[fgi] -

(511512+S7)[ ””] Z(SIISI2+SSSG)[§1':;]

2(511512+s9510)[ ””]+2511512[ ”(’)+ (;’(,),]+251|:( q)z_(m4_m3)2:|[_(1+52)§011]

+253 |:(I’— p)2 _(m4 _m2)2:|[_(1+s4)§011 +§001:|+255 [(q_ p)2 _(m3 —mz)z][—(l+sé)§0” +Se§010]

+257[r2

—(m, _ml)z][_(1+ss)§on +4,001]+259 [qz ~(m; —m, )1[_(1"’510);011 +SIO§010]

+2511|:p2 _(mz _m1)2:||:_(1+512)§011 +Sp, (§001 +§010 _é/ooo):|a

77 =4[, (27) ]2 2, (s (r - p) ) 2, (57 ) |

~2[a*~(r-q)+(r-p)-(a-p)J[&i] -2

-[207=2(q-p)][&]+| P (r=0)' 0> (r=p)' +1* (-

Above, the following compact definitions were also
used

(:Jznm gnm (ml > p’m q m )

2. 2
énm_ m( ’pva’r’m4)’

"

2, 2
m( laq’m3aram4)a

- pamz)’

& =& (Msa—p,m
and

=5 (1+5,)+5;(1+5,)+55(1+5)
+5, (1455 )+5, (145, ) +5,, (1+5,,),

+5, (1455 )5
+5,(1+5),

+5,(1+5,),

Our main purpose has been, at this point, fulfilled
which is to show how the proposed systematization

works in the calculation of physical amplitudes. However,

Copyright © 2012 SciRes.

[r*=(r-a)][&n]-2(r-p)[én]

) ][gooo]

another important aspect involved in perturbative calcu-
lations can be also considered which, within the context
of our procedure, became very simple and transparent,
that is the verification of relations among the Green
functions and, consequently, of the associated Ward
identities. We perform such task in the next section.

7. Relations among Green Functions

In the preceding sections we have described in details a
procedure to handle the divergences typical of the per-
turbative calculations in QFT. The procedure is very
general since all the choices involved have been pre-
served; the internal momenta were taken as arbitrary so
that all possible choices can be made in the final results,
the choice of regularization is avoided since all the steps
performed are allowed in the context of all reasonable
regularization prescription and an arbitrary scale was
adopted in the separation of terms having different de-
grees of divergent and finite ones. We can ask ourselves
at this point about the consistency of the performed op-
erations as usual in such type of manipulations and cal-
culations. In order to verify this aspect we can make a
minimal test of consistency by verifying if the relations
among the calculated Green functions remain preserved
after the realized operations. The required consistency is
to verify such identities without assuming particular

JMP
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choices for the involved arbitrariness, which means that
the relations need to be satisfied in the presence of poten-
tially ambiguous and symmetry violating terms. Essen-
tially, what we want to know is if the performed opera-
tions have preserved the property of linearity of the inte-
gration which seems to be a trivial task but, given the
mathematical indefinitions involved, it is not. Only if the
operations realized until this point possess the desired
consistency we can give an additional step which is to
verify if the potentially ambiguous and symmetry violat-
ing terms can be eliminated in a consistent way. Let us
consider this aspect in detail now.

We start by considering the VV two-point function

whose calculation we have considered in detail in the Sec.

(VD). In order to state a relation with other calculated
amplitudes it is enough to note the identity bellow

={“ [k+k11—ml]}_{7v [k+k21—m2]}

After taking the Dirac traces in both sides we can
identify that

k, -k, )"t
(2 1) U (77)
=tV (k,m)—t! (k,,m,)+(m,—m)t.®,

The above relation means that it is expected that if we
integrate both sides in the loop momentum k the corre-
sponding relation among the loop amplitudes remain
valid, i.e.,

N
(2 1) u (78)
=T (k,,m)-T) (k,,m,)+(m,—m)T".

This means that by calculating all the involved ampli-
tudes in a separated way and after this contracting the VV
amplitude the reorganization of the terms must allow the
identification of the amplitudes in the specific combina-
tion of the right hand side. This type of identity is highly
nontrivial to be preserved in traditional regularization
prescriptions. A similar procedure allows us to state that

k,—k )T
(2 1) H (79)
=T°(k.m)=T°(k,,m,)+(m,—m)T*,

Copyright © 2012 SciRes.

which implies that

(kz _kl)ﬂ (kz _kl)VT;\,/‘Y
:(kz _kl)ﬂ |:T;\1/ (kl’ml)_T;\z/ (kzamz)]
+(m2 _ml)[TS (kl’ml)_TS (kzamz)]

+(m2—ml)2T55.

(80)

We can note from the above expressions that all am-
plitudes of the perturbative calculations are related
among them. In particular, the above considered relations
involve the amplitudes: VV, VS, SS, PP, V and, S.

For the calculated three-point function structures we
can verify the relations

(k3 _ kl )/1 YW

Auv

(81)
=[T (ko ) J=[ T (s k) [+ (my =m)[ T2 ],
(k, =k ) T2

(82)
= [TVSV (k],k3)]—[TVSV (kz,k3)]+(m2 -m, )[TVSSV J,
(k3 _ k2 )V TVSSV

(83)

=[T% (kKo ) ][ T (kK ) ]+ (my —my ) [ T ],

Now we can note that all the three, two and one-point
calculated functions are in fact related among them
through precise relations. In the above considered rela-
tions the following structures are involved: VVV, VVS,
VSS, WV, VS and, SS plus the ones which appear as sub-
structures: VPP, SPP, PP and S.

If we consider four-point functions, the same will oc-
cur. To evaluate the VVVV function all the above men-
tioned structures will appear as well as other four-point
structures. This is a very crucial point. We can start from
a finite amplitude and by successive contractions we can
relate such amplitude with the cubically divergent one-
point function. The challenge is then to evaluate all the
perturbative amplitudes within a certain prescription
maintaining all the relations among them preserved in a
simultaneous way. Within the context of our procedure
we will show that all the relations presented above can be
verified in the presence of all remaining arbitrariness. We
emphasize that such type of verifications are very non-
trivial for all traditional techniques.

Let us start by the property (78). Taking the expression
for the VV amplitude, Equation (69), and contracting
with k,—k, =p we get
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P (k)

i oo )
+4(m,+m) p, [Zl (m?; pz’mzz;,f)}
—4m/p, [Zo(mf; p2,m22;/12)}}

+p" [ A, (k.k)]-

By comparing to the result (67) for the VS amplitude
we can identify

pTY (k. ky) = p'[ A, (ks )]
+2(m2_ml)(k2+k1) [ ’5"(/12)]
+(m2_m1)[TvVS(k1’k2)]'

In order to complete the verification of the property
(78), the last term in the above equation must be identi-
fied with the one-point vector functions. It is simple to
note that if an V,, is added and subtracted in the ex-
pression for A, , a reorganization allows us to identify

PrAL =[T) (k) =T (k)]
_Z(mz2 —mf)(k2 +k)* [Aﬁy (/12)]

So, the relation (78) is obtained preserved by our
calculation.

The relation (80) is, on the other hand, emblematic to
explain many aspects of our procedure and we will make
the discussion in details. First we note that by contracting
the expression (67) for the VS amplitude it is obtained

vaVS

=2(m +m,

) () (k) (k) (k) [ A (22)]
~2(m, - m,)p{mg( )] (84)
+4(m +m )pz[ J(mfs p? m2,/12)]
—4m1p2[20(mf;p2,m§;22)]

We know that this result needs to be related to the SS
amplitude as well as with S amplitudes having different
masses. This means that quadratic divergences need to
appear from the right hand side in a non-cancelling way.
At first sight it seems that it is not possible to satisfy the
relation. However, we note that on the left hand side of
the identity (84) we have the function Z; and in the right
hand side only Z, must appear. Let us consider the reduc-
tion of Z; to Z, through the property (13) in order to
adequate the right hand side of the Equation (84). The
referred reduction is the property (13) which allows us to
write

Copyright © 2012 SciRes.

2p°Z,(m; p7,m3; A7)

+(p2+mf—m22)[zo(mf;pz,mzz;/lzﬂ (85)
m; m;
=m’-m/ lnL/l—lzj—mj +m; ln[/l_;}
Now consider the result obtained for the |, integral

at the value k; =0, which is nothing more than a scale
property of the basic quadratic divergent object

quad (2’2)

Ly (M) = s (22) (7 = 27) 1 (27)]

; 2 (86)
: ~(m =22 +m! ln{%J :
(47'[) m1
We get then

L ()= g () = i [' (12)‘(4:[)2 h{j_ﬂ
| rare(E)
+ﬁ{mf mp m(;“_fj_m; o h{’z_j}

Now note that we can relate the reduction of the finite
functions to the scale properties of the divergent objects

ZpZ[Zl(mf;pz,mf;lz)]
—(p*+m; —mj)[zo(mf; pz,mj;iz)]

= [ ()]~ s (3
_m [hog(ﬁz) (4;)2 ln[j_ﬂ

o )G

Substituting in the expression for VS amplitude we
will identify the relation (79) among the Green functions
VS, SS, and, S. Note that the precise connection between
the finite functions and the basic divergent object allows
us to verify in an exact way the considered relation
among Green functions. It is not necessary to emphasize
that the same procedure is nontrivial within the context
of traditional regularization methods.

Let us now consider the relations among the three-
point functions calculated in the previous section. Con-
tracting the VVV amplitude, calculated in last section,
with q* and using the properties (23), (24), (25) and
(29) in order to eliminate the &, functions having
n+m=3 in favor of those having n+m=2 we get

JMP



1440 O. A. BATTISTEL, G. DALLABONA

qiTx\iXY:[Aw(klskz)}_[Aw(kzvk3)}+§(gwp2_ ] 4[9/4 (p q) }[ (ﬂ'z)J
_2gﬂv[(ml—m2)2—(mz—m3)2}[|]0g(/lzﬂ T ) — 4g, {2p2[22( m?; p?, m§) z,(mi;p%m;) |
+(m§—m]2)|:zl mf;pz,mf)}(m,—mz)ml[z (mP:p*,m3; /12)]

mis(p-a)'m )=, (mis(p-a) .m? )|~ (md ~m2)| ,(m3s(p-a)’m?)]

' 8p,p, {2, (m33(p-a) s 2?)

:: 8qq{ (mis(p-a) misa®) =22, (mis(p-a)f misa? )+ [, +(p-a)é ]

S =(m-m)* ][5 [noo]}+ﬁ8qﬂpv{—[Zz(mi;(p—q) 22)-2,(m3s(p-a)' mis ) |
+%[Zo( m?; p*,m;; ﬂz)—Zo(mi;(p—q)z,mf;/lz)]%[zl(mi;(p—q)z,mi;/lz)}[qzioz+(p-q)§n]
_%[(p'q)_(rm_ml)(mz_ml):l[glo]‘i'%[qz_(m}_m1)2:|[§00]_%[7700]_q2[501]}

i
+W8p#qv {—[Zz(mf;(p—q)2,mi;ﬂz)—zl(mf;(p—q)z,mi;/‘tz)}
T

+%[Zo(mf;pz,mi;iz)ﬂo(mi;(p—Q)z,mi;/lz)}—%[Zl(mf;pz,mi;ﬂz)}[qzéoz+(p~Q)§n]
+[0°6, +(p- ) ][0 +(p-a)& -5 o ~(p-a)=(my=m )"+ (m, = m)(m, - m,) ][5, ]
gl =mmm () fatm e m [, (2) e, [ (2]
oy 8 e om0 ), 28+ )00, )
+8(m+m,)a,p, [£,]+8(m +m.) p,a, [&,]}+[0,.T" ).

Given the obtained result, we now use the properties (19) and (20) to eliminate the & functions having n+m=2
in favor of those having n+m=1. We get then

A, T =[ A, (k.k)]- [A .k, ]+ (9,,*~p, p)[Img(ﬂz)}—g[gw(p—qf—(p—q) (p-a), [ 1w (#)]
W{sz[zz(mz p2, mz) 7 (mz 02, mz):|
+(m22—m12)|:zl m ;pz,mj)]—(mz—ml)ml[zo(mf;pz,mj;;tz)]

J-z,(m3s(p-a)’m?)]

)
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[z (0 i) -2, (s p.mis )|
a0 2oy )2 (w4
+@8q#pv{—[zz(mi;(p—qf,m:;f)—zl(mi;(p—qf,m;;f)}
# 5] 2o (misp2imisa?) - 2, (mis(p-a)f mis2®) |-+ (p-a) &y ]+ o ~(m, m)}[e‘oo]}
+@8pﬂqv{—[zz(m§;(p—q) mi: %)= 2, (mis(p-a)’ mis 2 |
22, (-0’ s |30 + (-0) T4 0 ~(m-m) JLa )

+(m, —ml){z(m1 +m3){[AW (/12 )}+ gﬂv[ og (/12 )J}

(41I)2 {_49;,‘/ (ml +m;, )[7700]

+8p, P, (M +my)(&, —&,)+80,0, [ (M +my) &, —m&, [+4q,p, [(m +m,)(2&, -&,)+(m,—m, )&, |

]
+4quv[(ml+m3)(2§11_§01) (m, +m,) 510} [g TSPPJ}

Finally, using relation (17) we write

q/ITLVVV:_ZQW(ml_mz)z[llog(}“zﬂ %(g pz_pﬂpv)[llog(/lz):l
e 5(0, 07—, )[Z (%)<, (st d, () 2 ()

(4m)
_4gyv (mz _ml)ml [Zo (m12; pz’mzz;/iz ):|}+|:Ayv (k19k2):|+2gyv (mz —m, )2 |:Ilog (/12 ):|

—:[gw(p a)’ (p—Q);,(p—q)v][hog(#)]

+(4:E)2{ 8[g,. (p-a) ~(p-a),(p-a), ]| 2:(mi:(p-a) .m?) -2, (ms(p-a) .m:)]
~4g,, (mt -m?)| 2, (m3s(p-a)’.m ) | +4g,, (m, —mz)mz[zo(mi;(p—q)z,mf;zZ)}}
—[Aﬂv(kz,k3)]+(m3—ml){Z(ml+m3){[AW</12)]+gW[I]Og(/12)]}

L
(4m)°
+4qy P, |:(m1 +m3)(2§11 _501)+(m2 _m1)§10 + m1§00]

+4p.4, [(ml +m3)(2§11 _‘:Zol)_(mz +m1)(§10 + m1‘§00]}+[guv-rspp]},

{_4gyv (ml +m3)[7700]+8p,u p, (ml +m3)(‘§20 _§IO)+8quv [(m1 +m3)§02 _m1501:|

If we consider the results for the amplitudes VV and (k4 _k )# [TVVWJ
SVV , Equations (69) and (71), it is now easy to note that vl
the expression above may be identified as being the [TL\;V (k. Ky, k )] [TV\QZ:V (ky, ks, k )]
relation (81). It is not difficult to verify the relations (82) N (m “m )[T SVW]
and (83) by performing the same sequence of steps. 4 T vep

The procedure used above can also be adopted to state In order to show that the calculated four-point ampli-
analogous constraints to the four-point Green function. tude VVVV satisfies this relation, at first we contract Eq-
As an example of such constraint we have uation (73) with (k,—k )" and eliminate the ik

Copyright © 2012 SciRes. JMP
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having i + j + k=1 in favor of those having i + j + k= 0.
The next step is to use the properties (34)-(43) in order to
eliminate the & and &, functions having i+ j+k=
4 in favor of those having i +j + k = 3 and so on. The
calculation is easy but involves a lot of algebra, therefore
we will not show it explicitly. All the required ingredi-
ents have been given in the preceding sections.

8. Ambiguities and Symmetry relations

In the Section 6 we have evaluated, within the systema-
tization proposed, Green’s functions which are typical of
the perturbative calculations. In particular, all the con-
sidered amplitudes appear in the context of Standard
Model. In all the evaluated Green’s functions, having
degree of divergences higher than the logarithmic one, it
is possible to note the presence of terms where the de-
pendence on the internal momenta appear as arbitrary
quantities (the summations of them). This is expected
since a shift in the integrating momentum generates sur-
faces terms which implies that different choices for the
label of the internal lines momenta lead to different am-
plitudes. This possible dependence on the choices for the
labels of the internal lines momenta characterizes what
we denominate as ambiguities. This situation is not ac-
ceptable just because, in this case, the power of predict-
tion of the theory is destroyed. In addition, fundamental
space-time symmetries like the space-time homogeneity
are not preserved in the perturbative calculations. It will
not be surprising to find global and local gauge symme-
tries as well as internal symmetries violated in physical
amplitudes having the space-time homogeneity broken.
There is only one possibility to save such type of calcula-
tions: to eliminate the ambiguous terms in a consistent
and universal way. Within the context of the adopted
strategy the ambiguous terms are automatically separated
and preserved so that it is easy to identify them.

In the case of one-point function it is simple to identify

(7 s =4[ 8 (27)

[T/\f/ :|ambiguous - _4(k1 )5 [V@‘ (/12 )J

#2( 4227 -am () [, (4]

#2(k), (), (k), [Ag (2]

In the two-point functions we get

[T Lo = PePs[ 20 (£°)

|:T/‘SV :Lmbiguous - _2(m2 + ml) P* |:A"‘!‘ (12 ):| i
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[T D = PP [ 2 (27)]

(2 T =3 P20 (2]

+%[3P5P" - P+ pP? [y, (47) ]
~P,P[A,(27)]-RP[A,(4)]

+%gw (3PP = p P+ p < ][ A, (7).

In the case of three-point functions we found

] =2(k+k)[ A5 (27)]
(ky+k ) [ &.(ﬂ,z)],
[

_|
o
T
<
L1 L1
Il
N
—~
Fol
3
+
~
M
S [y
1
>
Uy
<
—_—
N
©
N L ~—
1 L—1

+§(_k1 +2k, + 2k, ),, |:AM (12 ):|

In all the above listed ambiguous terms it can be noted
that they invariably appear as multiplying the objects V,
A and, [J. All these terms present simultaneously
scale ambiguities because such objects are dependent on
the arbitrary mass scale A . This is due to the fact that in
all amplitudes the obtained expression is independent of
the parameter A’ if the terms containing the objects V,
A and, [ are absent. This statement can be verified
directly by differentiating the expression or changing the
scale to another one, like for example one of the involved
fermionic masses, through the scale properties of the
finite function and of the basic divergent objects
liog (22) and 1, (/12) . The referred properties are

e (M) = Vg (42 )+ (2 —ﬂz)[llag (/12)]
i S +m’In 2 ,
+W{ml A ;1 (mlzﬂ
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g (M) = e (27) - (4;)2 1n(2—'22j,

Z, (mf; pz,mj;ﬂf) =[Zk (mf; pz,mzz;/%z)]

2
+Lln[j12j,
k+1 A
nnm(mlz;p’mzz;qamg;jzz):nnm(mlz;psmzz;qamf; 2)
1 A
— —In| =+ |.
“(ne(m) (@j

This means that there are terms in the expressions for
the perturbative amplitudes which are nonambiguous
relative to the choice for the internal lines momenta, but
are ambiguous relative to the choice for the common
scale for the finite and divergent parts. This aspect can be
easily noted in the considered amplitudes. In the VV
two-point function

[T L
- 4[ » (42)] ~2(24%-m} - mj)[AW (,12)]
- > [, (/12)]—%% p°p*[ A, (27)]
+% Py p§ |:A5V (42 ):| +% P, pét |:A§/1 (42 ):|
+% p¢p” [D@W(iz)}
Inthe SVV amplitude
[T:‘:N :Lcalciamb - 2(m1 +m, )[A”V (/12 )J ’

and in the VVVV amplitude

[ vvvv}
apuv scale_amb

- ;‘[DM 2) +§gm [ (2)]
595 [8.(2)] 308, (2)]
+§gvﬁ,[AW(/lz)]

—ggm [Aﬂﬂ (’12)]'

In such examples the listed terms are independent of
the choices for the internal momenta. They can be con-
verted in ambiguities through their evaluation in inter-
mediary steps within the context of traditional regulari-
zation techniques. Again we can note that all the poten-
tially scale ambiguous terms are combinations of the
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objects V, A and, [J.

Let us now consider the symmetry relations. It is easy
to see that the situation is completely similar to the ques-
tion of ambiguities considered above. There are two
types of impositions coming from the symmetries for the
amplitudes. The general ones, coming from Lorentz and
CPT, present in the Furry’s theorem, whose implications
states that all amplitude which has an odd number of
external vectors and only one species of fermion at the
internal lines must vanish identically, and that coming
from the divergence of the fermionic vector current
which states a precise relation with the corresponding
scalar current. The first of the impositions mentioned
above implies that the amplitude T (k1) must be iden-
tically zero, which means that it is required

0=-4(k),[ V. (4]

+2(k7 +227 -2m? ) (k,), [ A, (27) ]
4

_§(k1 ) (k), (k). [D5IT”(/12)]
£2(K), (k) (k)[4 ()]

Due to the same reasons, the theorem states that the
amplitude for the process V —VV , which is the VVV
amplitude symmetrized in the final state,

T oW =TV (k. k,,k )+TWV (1,1,,15),

Auv Auv Avu

must vanish for the case of equal masses. The arbitrary
internal momenta for the second channel obey, q=1, -,
and p =1, -l . This means that it is required

- _g(k1 +k, +ky)° [Dim(iz)]

J%guﬂ(zk2 +2k, —k, )| A

v

[
+§ghv(z|<1 2k, k) A
[

2
+3(2K 2k, k), (8, (2

(

(
+§gw(2k1+2k3—k2)5 A (2)]

)

)

2
+3(2K —k, +2k,), (8, (2

2
+§(—kl +2K, +2k;), [AM (/12 J
+{k >, x> vy

Concerning the symmetry relations coming from the
proportionality of the divergence of the fermionic vector
current with the scalar current, we note that in the VV
two-point function we get
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T (K, k, ) = (m, -ml){—z(m2 —m,) p#[llog (/12)}
+4(m,+m)p, [Zl (m? pz,mﬁ;/lz)}
—4mp, [ZO (mf: p?m3; 47 )]}
+p" [ A (k.k,) -

By comparing to the result (67) for the VS amplitude
we can identify

vaXIY (k1’k2): pV[A;zv(kI’kZ ):|
+2(m3 —m?)(k, +k, )° [A@, (/12)}
+(m2—ml)[TVVS(k1,k2)],

which means that the symmetry relation is broken by the
terms which are all combination of the objects V, A
and, []. In fact this result requires the same as the Fur-
ry’s theorem, a vanishing value for the vector one point
function. Following this line of reasoning we note that
the SVV amplitude possesses a symmetry violating term
which is independent of the choice for the internal lines
momenta

(o] L =2(m+m)(p+a)[a,, ()]

sym_break -

The same occurs for the VV —VV process where
the violating term is proporcional to DW&(/IQ) with a
nonanbiguous coefficient.

In view of the above comments and others omitted, it
is very simple to conclude that all these unwanted prob-
lems can be removed from the amplitudes in a consistent
way. There are simple but powerful arguments. If we
consider that a perturbative solution for the amplitudes of
a QFT must be compatible with the space-time homoge-
neity or it does not make any sense, if we cannot admit
that the scale independence can be broken by any method
or strategy adopted to give some meaning for the pertur-
bative amplitudes and if we also cannot admit that an
acceptable interpretation for the perturbative solution
breaks symmetry relations of the underlying theory, then
it becomes necessary to impose a set of properties for the
divergent Feynman integrals in order to recover these
symmetries, due to the fact that the perturbative series is
not automatically translational and scale invariant and
symmetry preserving. Fortunately all these problems can
be solved simultaneously. It is enough to impose that

V=A=0=0.

We can look at these conditions as a set of properties
required to a regularization method in order to produce
consistent results or we can think that this is the set of
properties required to the perturbative series in order to
get the space-time homogeneity maintained in the calcu-
lated expressions (among others). Due to these reasons

Copyright © 2012 SciRes.

we denominated them as Consistency Relations. Such
conditions can be easily understood. In fact the definition
of the objects V, A and, [] has been conveniently
made in order to get clean and sound clarifications. First
note that

o Ko | 9w 2kk
% (k2:ﬂ,2) _(kzjiz) (kz—ﬂ;)Q, 87)
) k 9 4k, k
& jeay | sy eeny ™
o | kykk, k k, Kk,
. = gaﬁ +3,, 3
ok, (kz _/12)3 (kz _12)3 (kz _/12)‘ )
Kk, 6k k k k
* 0o (kzilzf _(kg—iz)i ’
so that we can identify
d'k o K,
I(2H)4 akv <k2 _liz) :_VW’ (90)
ak o | k|
/ (2n) ok, | (-2 | B ©b
LR LT . ©2)

(271)4% (k2—12)3 4 b

The factor 4 in the last condition is justified by the
symmetrization in the Lorentz indexes. In order to give
symmetrical role to all indexes four terms need to be
introduced in the left hand side given the factor 24 to the
fourlinear in loop momentum integral. Frequently it is
convenient to write such integral in symmetrized form.
We adopted the definition of the object [] in a non-
simmetrized way only to reduce the mathematical ex-
pressions. Note that through the Gauss theorem these
quantities are identified as surfaces terms. It becomes
clear now that if these conditions are not imposed the
perturbative calculations simply does not make any sense.
It is on the other hand simple to verify that these condi-
tions are satisfied in the presence of any distribution.
Without these conditions being fulfilled space-time, local
and gauge symmetries are violated as well as the ampli-
tudes may be ambiguous quantities. The prescription is
universal since in other dimensions as well as in theories
or models where higher degree of divergences are pre-
sent analogous conditions can be identified. This inter-
pretation of the perturbative calculations provides us the
required consistency. The calculated amplitudes are am-
biguities free and symmetry preserving.
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If one agrees with the arguments put above then the
adoption of a regularization become completely unnec-
essary for any purposes in the perturbative calculations.
All the required manipulations and calculations, includ-
ing the renormalization, can be performed, following our
strategy, without any mention to the word regularization.
And, which is better, the results are so consistent as de-
sirable and no restrictions of applicability exist.

9. Generalizations of the Finite Functions
and Their Relationship

Through the proposed method to manipulate and calcu-
late divergent integrals, in the above sections we have
been learning how to systematize the finite parts of the
one, two, three, and four-point integrals which are pre-
sent in the relevant amplitudes belonging to fundamental
theories. It is not hard to see that this systematization
could be generalized to amplitudes with an arbitrary
number of points. In this section we discuss some aspects
of this generalization. We begin by defining the set of
functions

(:JZIEn)Ik (ml; P, M5 pk,mk+1;/12)

:J(jdxl...dxk Xlil"'X'i(k &{h’l Q

n! (—/12)

—w(n+1)—y},
if n=0,1,2,--

(93)
f.fn).k (m]; p,my5--; pk’mk+1)

1 coo (94)
=.f0dx1---dxk X < [Q] if n=-1,-2,-3,--

P I:fu,nuz :| (p pz)[‘§|1|2+1|3 |:|+"'+(p1 pk)lif.,.z

where k=1,2,3,---, and
0]
1//(n+1)+7/zzl—,

1=1

with » being the Euler-Mascheroni constant. The fol-
lowing shorthand notation has also been used

1 o 1% -3 . k-1
Jodx-dx = [ dx [ dxg [ dx, w1th2:§xi,

Q= Q(mls Prs My, X5 9pk>mk+lsxk)
_|le<pl ) i( ij Xj)
k
+Z( |+1) _m12'

i=1

with 0 representing a Kronecker delta symbol. All fi-
nite parts of the one-loop Feynman integrals with an ar-
bitrary number of points, handled by the proposed ap-
proach, can be systematized through this set of functions.
We recognize that Equation (93) is the generalization of
definitions (12), (16) and (33) and Equation (94) is the
generalization of Equations (15), (32) and (31).

In the preceding sections we have systematically eva-
luated the one, two, three, and four-point vector ampli-
tudes and verified their Ward identities. Within our ap-
proach, the verification of the Ward identities is greatly
simplified by using a set of identities characteris-

tic of 5, i, » like those given by Equations (17)-(29). In

order to obtain such identities for an arbitrary number of
points first we note that

i1k :|

=Ll [@jﬁ{m%—w(m1>—y}+wiaf?&mik},

ox, ) n!

where n>0 and i,i,,--,i, =0,1,2,--
equation may be rewritten as
n+1
J.ldxl...dxki Xl'l...xl'(k Q In Qz
0 OX, (n+D)IL -2

2

. After an integration by parts, the first term on the right hand side of the above

. i1 . Q™ Q
—(//(n+2)—}/} =i, e [ln_f—w(n+2)—y}.

(n+1)!

The first term is a total derivative in X, . So, performing the integral over X, , we write the above expression as

2 n+l s el
é‘k,ié‘il,o M|:ln[r;:]—§2]—l//(n+2)—7/:| —(L)

(n+1)!

+6,, (1—a‘ibo)%{m@—gj—w(nw)—y}&mo(1—5&1)[ o)

b

+(1=6,,)(1-5

[=0,=0  l_,=0
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(g

(n+1)!
_éz T;l i :|_il
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where - E§<m2’pl pz’ma;“';p1_pk’mk+1;ﬁ*2)a
ézé(mﬁ Py, Mys5e-es pk:mk+1;ﬂ'2)a qil - (—1)|1 I]' '
) N (A P 11 ey P TR I W 1

&'=¢ (mz’ Po>Mysees P M3 4 )’ Finally, we get a recurrence relation

P |:ég|1+1 |k:| (p p2)|:‘§|1|2+1|3 |:|+"'+(p1 pk)l:é:|l|2 |k+1:|

:(1—5},1)( )ZZ Z qll T [é;’jlﬂlz iyt~ i+l 1J+é‘i1 (1 §k1)[§lz Ir;” S n;l J

1=01,=0  l_,=0

oo G (8 e-

9 (1—%)ﬂ{mEm—;J—w(nﬂ)—y}%( i+ —m?) &7, .

(n+1)! 2

Extending these relations for functions with arbitrary n is straightforward. The result is very similar

p12 [éfi)l.k ]"'( P, pz)ligif?ilﬂ,i;,m,ik ]"'"""( Py Py )[‘;ﬁllkn]

~(1- 6k1)< )i'z S G (85 [+ 00 (=4 v )[;g:*‘ —&i ]

=0,=0 =0

+ %{((_:2): {m[l‘_g}v,(n +2)—4}—%{m@—§}—ﬂn + 2)—yﬂ ©3)

n+l1
(1-6,0) (-m3) m’ 1
, mh _ MY 22 (n)
+5k,1 N (n+l)! In PE V/(n+2) Ve +2(p1 +m m2)|:‘§|“.,,.k:|,
with may be used to get more k—1 similar identities. If we
n+l ifn<—1 perform this operation in Equation (95) we get a system
N = ) of linear equations given by
1 ifn>-1
g
The symmetry of (fifrl)”‘ik functions by interchanging Pi-Pr PPy PPy ip+Liy i
momenta and masses p2 P, p2 Py PP || G, _ b,
éll Ik(lepJ’mJHmHl) ’ ’ - : :
PP PPy PR g b,
i,y el i +1

where j=23.4,-- with

1-9, i b . 1—5, o(nt J(n+
bl = (1 - 51(,1) ( ./V-Il ,0) llg()lzZo lkZI; C'l e |:77i'2'(+n|132,i3+|2—|3,:"ik+|k,1 :|+ é‘il,o %{[mz(gl),lk :I_ |:77|2(r:31)|k :|}

S o 3t e o v
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with the j-esimo term given by
b =b1(pl < p;;m; <—>mj+l) and i, <> i;. If, in a par-
ticular kinematical situation, the matrix A

P, - Py P, - P, P, - Py
A= pz.'p1 p2:pz pz:pk ,
P P PP Pr - Pk

has det A = 0, the solution of the above system of linear
equations can be written in a formal way by

W 13
§i1+1,i2,---,ik - det A = AIJ‘bJ’
(v _ s

éil,i2+1,i3,---,ik - tAjZ:;Azij’

de

n 13

é(”vi)lflvilﬂ’ilﬂv”‘ :M;Aljbj’
where A; is the cofactor of a; = p;-p;. By recursive
use of the above relation it is possible to reduce all
functions ;E”),k to functions with i =i, =---=i, =0.
This type of reduction is useful, for example, in
applications where we are interested in numerical results
because within this procedure we have to manipulate
only a low number of mathematical structures saving, in
this way, considerable computational time.

10. Conclusions

In the present work we considered general aspects in-
volved in the calculations of perturbative amplitudes of
QFT’s. A very general procedure is presented for this
purpose. The work can be considered as an extension of a
previous one where only one species of fermion has been
considered [2]. In addition, the calculations in the present
contribution have been done by adopting an arbitrary
scale parameter putting the calculations in the most gen-
eral way. All the arbitrariness involved in the calcula-
tions were preserved in intermediary steps. The adoption
of a regularization was avoided, the internal momenta are
assumed as arbitrary and the common scale for the finite
and divergent parts was taken as arbitrary too. Divergent
integrals were not really evaluated. Only very general
properties of such quantities were used. This became
possible through a convenient interpretation of the
Feynman rules. The perturbative amplitudes after written
for one value of the loop (unrestricted) momentum are
not integrated before a convenient representation for the
propagators is assumed. When the integration is taken all
the dependence on the internal arbitrary momenta is pre-
sent in finite integrals. In the divergent ones no physical
quantity is present. Only the arbitrary scale appears there.

Copyright © 2012 SciRes.

The divergent parts are written as a combination of stan-
dard mathematical objects which are never really inte-
grated and the finite parts are written, after the integra-
tion is performed, in terms of finite structure functions.
So, two very general types of systematization are pro-
posed;

1) Divergent parts. The divergent content of one loop
amplitudes perturbative amplitudes belonging to funda-
mental theories can be written as a combination of five

objects; I, (/’Lz), | (/12) , Daﬂw(/tz), A, (/12)
and V,, (/12).

2) Finite parts. The finite content can be written as a
combination of only three functions Z, ( pz;mz) ,
&0 (P,q) and £y (Pp,q,r) for amplitudes having two,
three and four internal propagators.

All self energies, decays and elastic scattering of two
fields can be calculated by using the results presented
here as well as their symmetry relations can be verified.
The results written in terms of the systematization above
can be used in the context of regularizations since all the
operations performed are valid in the presence of any
reasonable regularization distribution. All we need to
evaluate is the standard divergent objects.

As a last comment we argue that if we want to give
some meaning to the perturbative calculations we have to
impose that the space-time homogeneity and the scale
independence need to be recovered. Otherwise, the am-
plitudes become completely arbitrary quantities as well
as local and gauge symmetries may be violated (invaria-
bly by the ambiguous terms). If we agree with this argu-
ment, our procedure makes this job easy. All we need is
to impose that the conveniently defined objects [,
A, and V,  become identically vanishing. This as-
sumption can be viewed as completely reasonable since
these objects can be identified as surfaces terms which
are really vanishing quantities in the presence of any dis-
tribution. The same will occur by assuming the analytic
continuation of the integrals to a continuum and complex
dimension which is the ingredient of the dimensional
regularization. So, in any consistent interpretation of the
perturbative amplitudes only the basic divergences
lhoe (/12) and 1, (/12) will remain in a calculated
divergent amplitude. They need not to be calculated since
they will be absorbed in the renormalization of physical
parameters. The calculation of beta functions can be done
by using the scale properties of such objects.

All these comments allow us to conclude that within
the context of our strategy the amplitudes are automati-
cally ambiguities free and symmetry preserving and no
regularization method needs to be used for any purpose.
The strategy, in addition, is universal since it can be ap-
plied to any theory or model, renormalizable or not, and
formulated in odd and even space-time dimensions in an
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absolutely identical way. And, which is still better, the
results are as consistent as desirable. Investigations in-
volving higher space-time dimensions (odd and even) as
well as nonrenormalizable theories in four dimensions
are presently under way and the obtained results are in
accordance with our best expectations.

In addition, other authors have been made investiga-
tions by using the procedure adopted in the present work.
In particular in [31] the authors explored some very in-
teresting aspects of the systematization proposed in [2]
concluding that there are important advantages relative to
the traditional ones.
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