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ABSTRACT 

The objective of this paper is to propose an adjustment to the three methods of calculating the probability that regulari-
ties in a sample data represent a systemic influence in the population data. The method proposed is called data profiling. 
It consists of calculating vertical and horizontal correlation coefficients in a sample data. The two correlation coeffi- 
cients indicate the internal dynamic or inter dependency among observation points, and thus add new information. This 
information is incorporated in the already established methods and the consequence of this integration is that one can 
conclude with certainty that the probability calculated is indeed a valid indication of systemic influence in the popula- 
tion data. 
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1. Introduction 

Suppose that in a sequence of observations one observes 
a striking regularity; for example suppose that the values 
arrange themselves in an increasing or decreasing order 
of magnitude, or a maximum or a minimum is indicated. 
Many questions arise. Is the observed regularity a general 
phenomenon, or is it true only of the sequence of the data 
set sampled. Is the observed regularity due to the par- 
ticular sequence sampled or is it due to sampling from a 
random sequence. In other words, in recurrent sampling, 
is it reasonable to believe that approximately the same 
general results will occur. Is it the manner of sampling 
that creates artificial regularities. The occurrence of regu- 
larity in a data set that results from random sampling is 
highly improbable; thus regularity in a sample data is a 
justification for regarding regularity as a true representa- 
tive of the population data. The assumption is that unless 
the probability of random occurrence is small, there is no 
objective proof that there exists an actual regularity in the 
population data. 

To explore regularities in random sample data sets 
many researchers have made significant contributions, 
[1-6]. For example, assuming that the sequence of indi- 
vidual numerical values is available, they have applied 
various tests based on characteristics of a random se- 
quence. For example, they concluded that the number of 
maxima in a sequence of unrelated numbers is one-third 
of the number of data points. The deviation of any se- 
quence of data in any characteristic from what is as- 
sumed for a random sample of sequences implies that 

there is a systematic influence, the extent of which de- 
pends on the magnitude of deviation and the number of 
data points in a sample. In general, random sampling of 
data is not a sufficient criteria for proving systematic 
influence. It is shown that unless there are a large number 
of data points, the proof of the existence of systematic 
influence remains unresolved.  

Up to now, the attempts to determine the probability of 
getting a short sequence of terms having a strict appear- 
ance of regularity have proven to be rather misleading. 
Given the uncertainties researchers have modified the 
analysis of regularities in random samples. In the new 
approach a sequence of averages of groups of individual 
observations is obtained in a systematic way. For exam- 
ple, random samples are drawn any number of times. The 
averages of each sequence of data sample are calculated. 
These averages form a composite sequence that can be 
used in testing the systematic influence in samples. The 
statistical significance of such a sequence of averages 
can be determined by comparing the variance of the in- 
dividual observations in a random sample computed di- 
rectly with that calculated from the variances of the av- 
erages, [7-14]. This analysis of variance principle can be 
applied to a general case where the values of the inde- 
pendent variable are related to each of a number of cor- 
related independent variables. This is a problem of mul- 
tiple curvilinear correlation, where a sequence of aver- 
ages of the dependent variable is computed with respect 
to each independent variable and correlated to the con- 
stant values of the other independent variables, [15-17].  
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 o  and  nA method of testing the statistical significances of each 
sequence of averages as well as the composite signifi-
cance of all of the sequences is derived. 

  should be less than the sampling error. 
If this principle holds then, Cox employed the criterion of 
significance. If the error of standard deviation of  o  is 

Although the use of a sequence of averages is a logical 
approach this method is highly uncertain and in some 
cases inapplicable. Analysis of variance principle, and 
the multiple curvilinear correlation have a solid logic, 
they provide approximate indications of any systematic 
influence. The main shortcoming of these models is that 
they do not detect the source of variability in a data set. 
The focus of the three models is on the variability within 
and the correlation among averages in a sample. To ad-
dress this shortcoming of the three approaches, a modifi-
cation to these models is proposed. The modification 
consists of detecting the correlation among individual 
observations both within and across groups in a data 
sample, or in another word, data profiling. This aim is 
achieved by calculating vertical v

n

o

n

   and horizontal 

h   correlation coefficients, and incorporating them in 
the calculations. The precise definitions of these vari-
ables are given and the manner in which they are inte-
grated into the three models are demonstrated in the fol-
lowing sections. 

2. The Approach Based on the Theory of 
Large Samples 

Commonly, the values of sequences in a data sample are 
averages of measurements or numbers grouped in some 
systematic fashion. There are many readily available 
methods that calculate the probability of such systematic 
grouping of data. These methods are based on calculating 
the variability between the averages and within the 
groups. These methods are extended to special cases 
where the regularities of a sequence are periodic, [7-14]. 
The method based on the theory of large numbers devel-
oped by [9] consists of computing the standard deviation 
of the groups means multiplied by the square root of the 
number of observations  n n , and the standard de-
viation of the entire series in a data sample o  . Let m 
= number of columns or groups, n = number of entries 
per column, sy  a  group mean, and y  = the grand 
mean, then the group standard deviation is given by the 
following: 

 2

sy y

m

  
 
 


nn n             (1) 

The sample standard deviation is calculated using the 
following equation: 

 2

sy y

mn


o                  (2) 

It is assumed that the difference in value between 

small, then the standard error of the ratio ( ) should  


n ). Cox assumes that if there are  be proportional to (

systematic influences, then the expression 


1n

o

n



 

  
 

should on the average equal zero given the theory of 

large samples, and the standard error 2n

o

n
m




 

  
  .  

Practice has shown that this method that is based on the 
theory of large samples is often inapplicable. One way to 
circumvent this problem is to introduce vertical and 
horizontal correlation coefficients. Correlation coeffi-
cients show the variations between observations, and 
across groups. A minor change of notation is introduced. 
The  ys  that represented the group mean is modified 
to  , 1, ,y j m j  to reflect the mean by group of the 
observations or vertical means. Horizontal means  
 , 1, ,iy i n   reflect observation means. Each obser-
vation is represented by  , 1, , ; 1, ,y i n j m  ij . The 
vertical  v  and horizontal h   correlation coeffi-
cients are calculated using the following formulas: 

    
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0
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and 

   
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    (4) 

If the ratio 
max

max
v

h




 


 
  is equal to one, then the  

indication is that each observation is related to the other, 
both within each column and across columns; in other 
words, there is evidence of systematic influence or sys-
tematic regularity. On the other hand, if the ratio  

 
 

max

max
v

h




 
  
 

 is either less than one or greater than one,  

then the evidence points to the contrary, which translates 
into the lack of any systematic influence. Thus, in  

general if the ratio n

o

n


 
  
 

 
 

 is equal to 
max

max
v

h




 
  
 

,  

equal to one, then there is absolute certainty that the po- 
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lation data exhibits systematic influence. The reverse 

case where the ratio n

o

n



 


 

 is equal to 
 
 
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v

h




 
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 

 , , ,L A P R 

, ;n j  0y L

, 

is either less than or greater than one, then there is no 
systematic influence in the population data. 

The approach based on the theory of large samples 
looks at the sample data from the macroscopic level, 
meaning sample averages and sample standard deviations. 
Data profiling explores the data set from the microscopic 
level, meaning the vertical and the horizontal correlation 
coefficients. Data profiling method adds new information 
which allows for an efficient and accurate detection of 
systemic influence. To state this formally, let  

 be the space of almost surely random 
sets, where (Ω) is the set of all random sets, and (A) is a 
subset with σ-algebra. It can be stated that the sample 
data ij , and ij  exhibits 
systemic influence if and only if the probability that  

0
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exists and is equal to 1, or 
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where (t) is some constant. Data profiling assigns to the 
space ( ) a metric (d) which is associated with the 
probability of convergence. Let 
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then it is easy to notice that (d) represents a distance in 
, and is invariant under any transformation (no  

matter which subset of random sets is used). If n

o

n


 
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 

 
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and 
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v

h




 
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 are true representations of data at the  

two levels (macroscopic and microscopic respectively), 
then one would expect  
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In fact the convergence of (d) to zero causes the con-
vergence of the probability. This is due to the Bienaymé- 
Tchebychev or Markov inequality and the fact that as 

1

t
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The conclusion is that 
max

max
v

h




 
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 
  assures almost 

surely the detection of systemic influence in a data set. 

3. The Approach Based on the Method of 
Analysis of Variance 

This method finds the probability that any variation in 
between averages is purely random, [18]. An outline of 
the procedure follows: 

sn  = number of entries in column (s) 
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sN n   is the total number of entries 
a = a reasonable estimate of y  

 h y a   
The mean variance between columns is calculated: 

 

 

2 2
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a Nh
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 
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0

m
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             (5) 

The residual variance is calculated using the formula: 
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Let log s
e

r

V

V

 
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 

 

Z , then the probability of no syste- 

matic influence is found from tables, [18-20] given (Z), 
and the degrees of freedom 1 , and n 2 . The method 
of analysis of variance looks into the variability between 
column means and the variability of individual observa-
tions from the corresponding mean within each column. 
This method has a shortcoming in that it does not look at 
the corresponding correlations between individual ob-
servations in each column and across groups. Data pro-
filing allows for a better analysis and detection of inter-
nal or systematic variability. To account for data profil-
ing, the formula for (Z) should be modified in the fol-
lowing way:  

n
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The addition of a log of the fraction of vertical and 
horizontal correlation coefficients has one major effect; it 
either augments the value of (Z), in which case lowers 
the probability of systematic influence or lowers the 
value of (Z), in which case raises the probability of sys-
tematic influence. 

4. The Approach Based on Multiple 
Regression 

Up to this point, we have been dealing with one inde- 
pendent variable only. [17] generalizes the method of 
analysis of variance to many independent variables which 
may be mutually correlated. In other words, the group 
averages are given as a multiple regression of (K) inde-
pendent variables. He thus modifies the mean variance 
between columns sV , and the residual variance  r , 
using the multiple regression method. The outline of the 
procedure is as follows: 

V

M = Total number of columns (groups) to be averaged 
with respect to all the independent variables 

K = Number of independent variables 

Ky' = Value of an observation corrected with respect to 
all except the kth independent variable 
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The overall variance between columns is calculated: 
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The residual variance is calculated using the formula: 
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influence is thus . The shortcom- 

ing of the generalized method of the analysis of variance 
is that although it tries to look more closely at individual 
data sets, it does not look at the strength of the relation- 
ship between each individual data points. Data profiling 
in this case allows for adjusting for this shortcoming. The 
vertical and horizontal correlation coefficients,  v , 
 h  are modified to adjust to the (K) independent 
variables. Let  1, , K

v v   be the vertical correlation coe- 
fficients calculated for the K independent variables, and 
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 be the horizontal correlation coefficients 
calculated for the K independent variables. New correla- 
tion coefficients are introduced:   1 , , Kr r 
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the vertical and horizontal correlation coefficients,  v , 
 h  are calculated as before: 
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and 
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The overall variance between columns is then modified as follows: 
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                  (11) 

In order to modify the residual variance, residual ver- 
tical and horizontal correlation coefficients are calculated 
using (ky'), the value of an observation which is cor- 
rected to constant values of all the rest except the kth 

independent variable given in McEwen’s generalized 
method of the analysis of variance, [17]. The residual 
vertical correlation coefficients are calculated: 

Copy
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
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  
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


                     (12) 

and the residual horizontal correlation coefficients are given by: 

 
    
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i n k K

ky y
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 
 

                   (13) 

The residual variance is modified as: 

    
  

  2

max

max

1

k
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h

r
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N K M n




rV
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   
  

   


        (14) 

The probability that data exhibits systematic influence  

log s
e

r

Z
V

V 
 is obtained using  

1n 2

and the degrees of free- 

dom ( ), and ( n ) as is already explained. 

5. An Example: Sunspot Numbers 

In this section the validity of the improvement in the 
form of data profiling is tested. For this purpose the data 
set used in [17] is revisited and the probability of the 

existence of systematic influences in the data is calcu- 
lated once given the proposed analysis of variance method, 
which is already demonstrated in [17], and once with a 
modified version. Consider the data corresponding to 
sunspot numbers arranged with respect to a trial cycle of 
length 11 years, i.e. from 1749 to 1826. The sunspot 
numbers exceeding 99 are excluded. The data is shown 
in a matrix form as (Table 1): 

The averages s jy y  are given: 




52.5,  43.2,  26.0,  21.5,  13.5,  

6.5,  7.5,  12.7,  24.5,  30.5,  43.2

sy 

n

 

The number of columns is (m = 11). The number of 
observations in each column is ( s  = 4). The number of 
observations of the dependent variable is (N = 44). The 
overall average is y  = 25.59. The degrees of freedom  
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Table 1. Sunspot numbers arranged with respect to a trail 
cycle of 11 years, 1749-1826. 

 
 

 1749-1759 1794-1804 1805-1815 1816-1826 

1 81 41 42 46 

2 83 21 28 41 

3 48 16 10 30 

4 48 6 8 24 

5 31 4 3 16 

6 12 7 0 7 

7 10 15 1 4 

8 10 34 5 2 

9 32 45 12 9 

10 48 43 14 17 

11 54 48 35 36 

 
 1n , and  2n  11 1 10  
 44 11 33  

 are respectively , and 

2 . The averages 
1n

n  sy  decrease up to 
the 6th column, and then increase from then on. To cal-
culate the probability that the sample data is indicative of 
the population data, and thus there are cyclic effects, the 
(Z) statistic is calculated. The statistic (Z) is calculated 
using the mean variance between the columns  sV

V
, and 

the residual variance ( ). rV 956.32s  , and 265.0rV  . 

The statistic 
956.32

log 0.6408
265.0

s
e

r

V
Z

V

 
     

. 

The value of (Z) corresponding to the 20, 5, 1, and 0.1 
percent points are respectively 0.19, 0.38, 0.54, and 0.71. 
Since (Z = 0.64) is greater than 0.54, then the probability 
of random effects is 0.01, which makes the probability of 
systematic influence to be 0.99. Though the results seem 
to point in favor of systematic influence or the existence 
of cycles, the evidence is not conclusive. To find out if 
the sample obtained implies cyclic appearance of sun 
spots, the data profiling method is tested. The vertical 
and horizontal correlation coefficients are calculated 
given Equations (3) and (4). The vertical averages  
 , 1,2,3,4y j j  are calculated as:  
( 41.5,  25jy  .4,  14.3,  21.0 v). The two statistics (  ), 
and ( h ) are calculated. 




13.82,  5.40,  4.06,  1.41,  1.12,  1.85,  1

6.00,  12.22,  15.99

v  .13,  3.85,  

,  1322.41

 

( 3280.54,  54.19,  1214.77h    

v

) 

The max of (  ), and ( h ) are calculated as well. 

 max v 15.996053

54.188689

 

 max h  

The ratio 
max

max
v

h




 
  
 

 
 

 is calculated as: 

max
0.2951917

max
v

h




 
  

 

 
 

. 

The value 
max

log
max

v
e

h




       
 is equal to 0.2586587. 


The modified value of the statistic (Z) is then obtained by 
adding the two values of  

 
 

max
log log

max
vs

e e
r h

V
Z

V




                       
 

which then would give (0.6408 + 0.2587 ) = 0.8995. 
Since the value (0.8995) is higher than (0.71), it indicates 
that the probability that the population data is random is 
less than 0.001 which is less than 0.1 indicating with 
certainty that the number of sunspots is cyclic. The exis-
tence of systemic influence is indisputable. Applying the 
approach based on the method of large samples, the  

8n

o

n


statistic  is obtained. There is a large dis- 

crepancy between this statistic and the adjustment pro-

posed in Section 2, 
 
 

max
1 0.71

max
v

h




  
       

. The statis-

tic n

o

n
 is thus inapplicable. The statistic  



elog 0.6669s

r

V
Z

V

        
 calculated using the ap- 

proach based on multiple regression is a slight im- 
provement over the statistic obtained using the method of 
analysis of variance (Z = 0.6408). 

Using data profiling method, the statistic Z is corrected 
to (Z = 1.0). As in the case of the analysis of variance 
method, it can be stated with absolute certainty that there 
is indeed a systemic influence in the sample data.  

6. Conclusion 

The objective is to derive conclusions about the random- 
ness of observations in a population given that the sam- 
ple data set exhibits strict regularities. Three methods are 
analyzed and their shortcomings are indicated. An im- 
provement to the three methods is suggested and formu- 
lated. The improvement comes in the form of data pro- 
filing which in essence is the integration of vertical and 
horizontal correlation coefficients in the equations. Through 
a simple example, it is shown that data profiling is indeed 
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a compliment of the original formulation. 
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