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ABSTRACT 

Human Immunodeficiency Virus (HIV) is especially 
difficult to treat due to its rapid mutation rate. There 
are currently eleven different genomic subtypes of 
HIV-1, as well as a number of recombinant subtypes. 
An area of study in bioinformatics is the development 
of algorithms to identify the subtypes of HIV-1 ge-
nomes. Ant-based algorithms have the ability to find 
global solutions in optimizations problems, and are 
also able to process complex data efficiently. We pro-
posed a new technique named Ant Colony Anchor Al-
gorithm (ACAA), using anchors of training data on a 
topographic map to categorize HIV-1 sequences based 
on ant-based clustering. We used three sets of se-
quences from the POL region of the HIV-1 genome. 
We categorized these three dataset with the Subtype 
Analyzer (STAR), a current HIV-1 categorization al-
gorithm, and the ACAA. We found that the ACAA 
returned higher accuracy values of 83.2%, 67.1%, and 
53.5% for our three datasets respectively, than the 
STAR’s 47.3%, 49.4% and 18%. The results of the 
ACAA are the average results of 20 runs of the algo-
rithm. We also observed the performance of the algo-
rithm on specific subtypes, and observed that while the 
STAR and ACAA performed with similar accuracy on 
several subtypes (A, B, and C in particular), the ACAA 
had a significant advantage over the STAR in others, 
especially in categorizing recombinant subtypes. 
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1. INTRODUCTION 

1.1. HIV-1 Subtype Categorization 

Human Immunodeficiency Virus (HIV), which causes 
Acquired Immunodeficiency Syndrome (AIDS), falls 
into two broad categories: HIV-1 and HIV-2. HIV-2 is 
largely constrained to West Africa, and has a relatively 

lower transmission rate. HIV-1, on the other hand, has a 
very high transmission rate, and accounts for most HIV 
infections on a global scale.  

Treatment of HIV-1 is a difficult process because of 
the virus’ exceptionally high mutation rate. When DNA 
is replicated in the reproductive cycle of the virus, any-
where between 1 in 1000 and 1 in 10000 nucleotides will 
be improperly transcribed. This has lead to an exception-
ally diverse pool of viruses, genetically speaking. HIV-1 
has been classified into 11 subtypes based on genomic 
patterns and variations (subtypes A-H, J, N, and O).  

Additionally, there are recombinant types of these vi-
ruses, which contain combined DNA from two or more 
viruses. These recombinant subtypes are caused by the 
infection of a single cell by multiple viruses [1].  

There is neither a cure for HIV-1 nor a preventative 
vaccine. Antiretroviral drugs have been shown to be an 
effective treatment. These drugs interfere with the DNA 
of the virus. As such, the genetic makeup of the virus has 
tremendous effect on its resistance to the treatments. 
Because the subtype has such a significant impact on the 
effectiveness of the drugs, categorization of different 
subtypes of HIV-1 is critical to the treatment process.  

The development of an algorithm to effectively cate-
gorize HIV-1 is of prime interest in this area of study. 
One current categorization algorithm is the STAR (Sub-
type Analyzer), developed by University College Lon-
don Centre for Virology. The STAR functions by main-
taining profiles of these 11 categories. These profiles are 
calculated based on aligned training sequence data. Each 
profile is a two-dimensional frequency matrix, where the 
number of rows in the matrix is the length of the training 
sequences in amino acid positions, and the number of 
columns is 20—one for each possible amino acid. These 
profiles are calculated based on training sequence data, 
where each position in a subtype profile is the frequency 
of that particular amino acid at that position in all train-
ing sequences of that subtype. A global profile matrix is 
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also calculated, using the amino acid frequency from 
all training sequences rather than just a single subtype 
[1]. 

Each test sequence to be categorized receives a 
Z-score based on each subtype profile. The test se-
quence is categorized as the subtype which gives the 
score closest to the mean. If the sequence is not within 
1.5 standard deviations of the mean for any of the sub-
types, the virus is categorized into the lump category, 
‘unassigned’ [1]. This is not an innately helpful cate-
gory; however neither is it innately harmful. It is pre-
ferred to leave a sequence unclassified rather than mis-
classified.  

There are other algorithms, similar in nature to the 
STAR, which have also been turned towards the purpose 
of subtype categorization. The SUDI algorithm1, devel-
oped by Los Alamos National Laboratory, uses phylo-
genic analysis to determine subtype. The HIV Genotyp-
ing algorithm2, developed by NCBI uses both a similar-
ity search as well as a bootscanning similarity process to 
categorize subtypes. Stanford’s HIVseq3 algorithm cate-
gorizes based only on a simple similarity search [2].  

1.2. Ant-Based Clustering Algorithms 

Ant-based algorithms fall under a category of algorithms 
which model their behavior from ants in the wild. These 
algorithms have found effective applications in bioin-
formatics because of their ability to find global solutions 
in optimization problems, as well as for their ability to 
efficiently process complex data quickly [3].  

Ant-based clustering algorithms refer specifically to 
those algorithms which model the clustering behavior of 
ants in the wild. The behavior of these social insects 
displays a high level of swarm intelligence. In this in-
stance, the habits of many relatively simple individuals 
form a pattern of behavior with distinct order and pur-
pose. In the same way that real ants will cluster objects 
into like piles within a space (e.g., within a colony, eggs 
will be clustered into one chamber, while food will be 
clustered into another), the algorithm will cluster like 
pieces of data into the same area on a two-dimensional 
topographic map, forming clusters. Clustering data on a 
two dimensional map can greatly reduce the dimension-
ality which needs to be analyzed, allowing for much 
more efficient analysis and evaluation than would be 
possible with the raw data [4].  

Ant-based clustering algorithms were originally pro-
posed in 1991 by Deneubourg et al. [5], and were de-
signed to emulate the sorting and clustering behaviors of 

ants. Early algorithms of this variety were ineffective, 
but showed enough potential for clustering data that new 
improvements continued to occur [3].  

One such improvement, called ATTA (Adaptive Time- 
dependent Transporter Ants), was proposed by Julia 
Handl [3], and is effective at clustering like data points 
on a two dimensional map. A sample output of the ATTA 
can be seen in Figure 1. The ATTA utilized formulae 
which were altered from those used in previous algo-
rithms. Several other changes were made to the process 
of the algorithm which increased the ability of the algo-
rithm to produce a distinct clustering [6].  

The goal of this study is to develop a new algorithm 
based on the ATTA to categorize HIV-1 subtypes, and to 
compare the performance of our algorithm with that of 
the STAR (http://www.vgb.ucl.ac.uk/starn.shtml). 

2. DATA 

2.1. HIV-1 Sequence Data 

An analysis of the STAR algorithm used sequence data 
which includes the entire protease region of the HIV-1 
genome and 340 amino acids of the reverse transcriptase 
(RT), making for a total sequence length of 439. The 
protease and RT regions of HIV-1 play a role in the re-
productive cycle of the virus. Common antiretroviral 
treatments interfere with the functions of these regions. 
Because of their medical significance, sequence data of  
 

 

Figure 1. ATTA. This is visual representation of the ATTA. To 
generate this plot, 800 two-dimensional vectors were generated, 
each containing values close (within a vector distance of 1) to 
one of the points [2, 2], [2, 8], [8, 2] or [8, 8]. The points were 
assigned colors based on which of the four points they were 
associated with, then clustered using the ATTA. 

1http://www.hiv.lanl.gov/content/hiv-db/SUDI/sudi.html 
2http://www.ncbi.nih.gov/projects/genotyping/ 
3http://hivdb.stanford.edu/ 
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protease and RT has a high availability, making them 
prime for use in categorization algorithms [1]. In this 
study, we used three datasets, each covering different 
subtypes and different portions of these genomic re-
gions.  

Dataset 1 contained sequences of the same 439 amino 
acid region as in Myers et al. [1]. We include data from 
8 subtypes (Table 1). We obtained these sequences from 
the Los Alamos National Laboratory HIV Sequence Da-
tabase. Each subtype contained no more than 50 se-
quences and no less than 35.  

Dataset 2 contained sequences of a shorter length: 99 
amino acids from the protease, and only 240 amino acids 
from the RT (339 amino acids total, nucleotide positions 
2253 to 3270). These were also downloaded from the 
Los Alamos National Laboratory HIV Sequence Data-
base. 10 subtypes were covered, with sequence numbers 
between 35 and 50 (Table 1). 

Dataset 3 contained sequences of the protease ge-
nomic region (99 amino acids, ranging from nucleotide 
positions 2253 to 2550). These were downloaded from 
the Stanford drug resistance database. This dataset con-
tained 10 subtypes (Table 1). Again, each data type had 
no more than 50 and no less than 35 sequences.  

Because misaligned sequences can significantly re-
duce the effectiveness of sequence analysis, we per-
formed a multiple alignment on all sequences in each 
dataset using the ClustalW2 algorithm. 

In each dataset, every subtype was separated into 
training and test data. For the purposes of consistency, 
we used 30 sequences as training data for every subtype. 
All other sequences (between 5 and 20 in number) were 
used as test data to be categorized.  

All datasets are available on request from the author.  

2.2. HIV-1 Sequence Encoding 

Each dataset was a collection of sequenced HIV-1 ge-
nomes. Each sequence consisted of a list of amino acids. 
In order to properly analyze these sequences, we con-
verted each into a binary vector. Because there are 
twenty different possible amino acids, we mapped each 
amino acid to a unique twenty-dimensional binary vector. 
For example, we mapped the amino acid Alanine to the 
point [1, 0, 0, 0, 0...], while we mapped Arginine to [0, 1, 
0, 0, 0...]. After all the amino acids in a sequence were 
converted, we concatenated these individual vectors into  
 

an ordered, high-dimensional sequence vector, with di-
mensionality of 20N, where N is the number of amino 
acids in the sequence. In this manner, each unique amino 
acid was represented in the sequence vector. 

3. METHODS 

3.1 The ATTA Algorithm 

The ATTA takes as input a collection of vectors, called 
documents—a term used by the ATTA. These documents 
are distributed randomly across a two dimensional grid 
called a topographic map. The vector data of the docu-
ments bears no relation to their initial coordinates on the 
topographic map. The goal of the algorithm is to cluster 
the documents on the topographic map such that the 
documents which are similar to one another will be lo-
cated near one another on the map.  

The ants are simple entities which have the ability to 
wander freely across the map. They are able to pick up, 
carry, and drop documents as the algorithm runs. The 
probability that a document is picked up or dropped by 
an ant is dependent on the nearby documents.  

For each iteration of the algorithm, a random ant from 
the colony is chosen. The ant moves to a different loca-
tion on the map within a user-defined distance (our 
maximum movement distance was 50). At the beginning 
of the algorithm, this movement is randomly generated, 
but later is based partially on previous movements of 
that ant. The ant attempts to drop the document it is car-
rying based on a probability calculated from the pdrop 
formula. If the drop action is successful, the ant will 
choose a new document at random, and attempt to pick 
with a probability calculated from the ppick formula. If 
this operation is unsuccessful, the ant will choose an-
other document at random, and try again. This continues 
until the ant has successfully picked a new document [3].  

The ppick and pdrop formulae are defined as:  
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Table 1. This table contains the subtypes used for each dataset, as well as the number of test data sequences for each subtype. Any 
subtype with the heading N/A was not included in that dataset. 

Subtype A B C D F F1 G J K O U AE AG 

Dataset 1 20 20 20 20 N/A 7 19 N/A N/A N/A N/A 20 20 

Dataset 2 20 20 20 20 N/A 20 20 N/A N/A 8 10 20 20 

Dataset 3 20 20 20 20 20 N/A 20 20 20 N/A N/A 20 20 
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where i is the candidate document, σ is the neighborhood 
size, J is the set of documents in the neighborhood, j is 
the current document in J, δ(i, j) is the vector distance 
between document i and document j, and α is a 
user-defined constant. It is important to note that since 
the vector information of all documents is constant, 
δ(i, j) need only be calculated once for all possible 
document pairs. Because the algorithm merely refer-
ences pre-calculated values, it is able to process even 
high dimensional vectors very efficiently.  

The value of f* becomes larger as i becomes more 
similar with the other elements in J. As such, ppick¸ 
which has an inverse relation to f*, becomes smaller as 
f* increases, leading to a dramatically decreased likeli-
hood that the element is picked up when it is nearby 
similar elements. By contrast, pdrop skyrockets when f* 
increases, leading to a very high likelihood that an ele-
ment will be dropped amongst like elements. These 
formulae are specific to the ATTA, and are revised from 
those used in previous ant-based clustering algorithms 
[7].  

In this manner, after a large number of successive it-
erations, the documents with similar vectors are likely to 
have similar Euclidian positions, forming clusters of like 
documents on the map.  

The output of the ATTA is a clustering of the input 
vectors. The quality of these clusters is measured by a 
Pearson Correlation, which evaluates the correlation 
between the distances of two documents on the topog-
raphic map and the distances between the vectors of the 
two documents [7].  

3.2 Modifications to the ATTA 

The ATTA is a clustering algorithm, not originally in-
tended for categorization purposes. Where the ATTA 
takes in all documents at once, and clusters them all in 
the same manner, categorization algorithms build a clas-
sifier based on training data, and then apply the classifier 
to the test data to categorize. Using the ATTA as a base, 
we built a categorization algorithm to categorize input 
test sequences using a classifier build from training se-
quences.  

Our classifier takes the form of anchors of training 
data in fixed positions on the topographic map. We as-
sign each subtype of training data a unique square region 
on the topographic map, called the anchor area. The 

Euclidian positions of the training documents are fixed.   
This anchoring technique ensures that the training 

documents of each subtype are well separated, and will 
not move through the clustering phase of the algorithm. 
As a result, the ants will tend to drop test documents of a 
given subtype near the pre-defined anchor of the same 
subtype. We call this the Ant Colony Anchor Algorithm 
(ACAA). A sample output of the ACAA is visible in 
Figure 2. The pseudo-code for the ACAA is available in 
Section 1 of the supplementary file. 

3.3 Subtype Categorization Based on Clustering 

When running the ACAA on HIV-1 sequences, we con-
verted each sequence to a binary vector as in Subsection 
2.2. Each document in the ACAA represents one HIV-1 
sequence.  

After the clustering process of the ACAA is finished, 
we defined a local area for each test document. The ra-
dius of this local area was one half the width of the an-
chor areas. Each test document was classified as the 
subtype which has the highest representation of training 
documents within the test document’s local area. This is 
a modified version of the classification strategy used in 
the study by Lee et al. [8].  

Because the ACAA is non-deterministic, we utilized 
repetition to stabilize the results of the categorization. 
We recorded each test sequence’s predicted subtype in 
each repetition of the ACAA. There are a total of 20 
repetitions in our experiment—further repetitions did not 
 

 

Figure 2. ACAA. This figure clearly shows the anchors of 
training data on the topographic map, with test data clustering 
around the training anchors of appropriate type. 
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improve performance significantly. The final categoriza-
tion is based on majority votes. 

4. RESULTS 

We categorized our test data using the ACAA and the 
STAR’s online interface. For each dataset, we main-
tained a record of the number of sequences correctly 
classified, the number incorrectly classified, and the 
number left unclassified.  

The STAR is deterministic in nature, and so the cate-
gorization was only run a single time. Because the 
ACAA is non-deterministic in nature, we ran the algo-
rithm on each dataset twenty times, taking the average 
values of the twenty runs. We also recorded the individ-
ual run which produced the highest rate of correct cate-
gorization (Table 2). 

The ACAA yields a more accurate classification than 
the STAR for all datasets. For the ACAA, the lengthier 
Dataset 1 yields the best results, while Dataset 2 still 
gives reasonable accuracy. The STAR was able to cate-
gorize both Datasets 1 and 2 with approximately the 
same level of accuracy. In both the STAR and the ACAA, 
the categorization of Dataset 3 was not very successful, 
although the ACAA did categorize with a much higher 
accuracy than the STAR.  

In all datasets, we observe that the ratio of inaccuracy 
to unclassified sequences is higher in our algorithm than 
in the STAR. In addition, in Datasets 2 and 3, we ob-
serve a higher number of misclassified sequences in the 
ACAA than in the STAR.  

The statistical significance of these results is undeni-

able—every accuracy rating of the ACAA had a P-value 
of 0.0. The accuracies generated by the STAR had 
P-values of 0.0 for Datasets 1 and 2, and 0.004 for 
Dataset 3.  

The statistical significance was determined by gener-
ating 10,000 randomized classification predictions for 
each dataset, and comparing the accuracy of each against 
the accuracy of the prediction generated by the ACAA. 
The statistical significance was the percentage of ran-
domly generated predictions with accuracies greater than 
those produced by the ACAA.  

In addition to analysis on each specific dataset, we 
also observed distinct differences in the ability of both 
algorithms to categorize specific subtypes. To measure 
this, we maintained records of the accuracy for each 
specific subtype in each dataset (Table 3).  

In so doing, we observed that there are clear differ-
ences in how certain subtypes categorize. Typically the 
subtypes A-D are easier to categorize than others. The 
ACAA gives a more accurate classification on recombi-
nant subtypes, especially AE. Other subtypes, particu-
larly J, K, and U were problematic to classify in both 
instances.  

We observed in both algorithms that, while the accu-
racy for some subtypes increased as sequence length 
increased, there were some subtypes which were more 
accurately categorized when the sequence length was 
shorter—the G subtype, for instance.  

Overall, however, we find that the ACAA gives a more 
consistently accurate categorization for the subtypes used 
in this study than the STAR gives for all sequence lengths. 

 
Table 2. Results of Analysis. This table shows a synopsis of the performance of the ACAA and STAR. Accuracy is the percentage of 
sequences correctly classified, inaccuracy is the percentage incorrectly classified, and unclassified is the number of sequences which 
were not assigned a category. The ACAA results are the average values from 20 runs of the algorithm, with the values in parentheses 
being the results of the run which. 

 STAR accuracy STAR inaccuracy STAR unclassified ACAA accuracy ACAA inaccuracy ACAA unclassified 

Dataset 1 47.3% 16.4% 36.3% 83.2% (85.6%) 6.9% (6.1%) 10.1% (8.2%) 

Dataset 2 49.4% 16.9% 33.7% 67.1% (70.2%) 19.9% (16.9%) 13.0% (12.9%) 

Dataset 3 18% 17% 65% 53.5% (57%) 27.3% (30.5%) 19.2% (19.5%) 

 
Table 3. Subtype specific Results. This table shows the accuracy for each subtype for both the ACAA and the STAR. Results of the 
ACAA are the average of the same twenty runs as used in Table 2. 

Subtype A B C D F F1 G J K O U AE AG 
Dataset 1  

   ACAA 
   STAR 

 
86.7% 
55% 

 
97.7%
95% 

 
95% 
100% 

 
78.2%
5% 

 
N/A 
N/A 

 
6.4% 
0% 

 
46.8%
21% 

 
N/A 
N/A 

 
N/A 
N/A 

 
N/A 
N/A 

 
N/A 
N/A 

 
100%
0% 

 
100% 
80% 

Dataset 2 
   ACAA 
   STAR 

 
82% 
75% 

 
94.7%
80% 

 
49.5% 
55% 

 
71.7%
75% 

 
N/A 
N/A 

 
55% 
0% 

 
4.5% 
25% 

 
N/A 
N/A 

 
N/A 
N/A 

 
100% 
100% 

 
1% 
0% 

 
100%
0% 

 
99% 
90% 

Dataset 3  
   ACAA 
   STAR 

 
56.5% 
60% 

 
91.2%
0% 

 
85.5% 
80% 

 
37% 
15% 

 
17.2%
0% 

 
N/A 
N/A 

 
75.7%
25% 

 
27.2%
5% 

 
8% 
0% 

 
N/A 
N/A 

 
N/A 
N/A 

 
65% 
0% 

 
71.2%
0% 
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5. SUMMARY 

We proposed to use ant-based clustering as a method to 
categorize HIV-1 sequences according to subtype. We 
developed the ACAA algorithm to utilize the approach 
of anchoring test data on a topographic map in order to 
categorize test data.  

We ran our algorithm on three distinct datasets, con-
taining varied HIV-1 subtypes and sequence lengths. For 
comparison, we also ran the STAR algorithm, a previ-
ously developed algorithm for HIV-1 subtype classifica-
tion, on each dataset.  

We have demonstrated increased accuracy of the 
ACAA algorithm over the STAR algorithm based on 
HIV-1 subtype classification. Our results imply that the 
ACAA is a viable alternative for the algorithmic classi-
fication of binary vector-based data. 
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