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ABSTRACT 

In decision modeling with influence diagrams, the most challenging task is probability elicitation from domain experts. 
It is usually very difficult for experts to directly assign precise probabilities to chance nodes. In this paper, we propose 
an approach to elicit probability effectively by using the concept of interval probability (IP). During the elicitation 
process, a group of experts assign intervals to probabilities instead of assigning exact values. Then the intervals are 
combined and converted into the point valued probabilities. The detailed steps of the elicitation process are given and 
illustrated by constructing the influence diagram for employee recruitment decision for a China’s IT Company. The 
proposed approach provides a convenient and comfortable way for experts to assess probabilities. It is useful in influ-
ence diagrams modeling as well as in other subjective probability elicitation situations. 
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1. Introduction 

An influence diagram (ID) [1] is a directed acyclic graph 
for modeling and solving decision problems under un- 
certainty. It provides a more compact way to represent 
complex decision situations than a decision tree does. In 
recent years, influence diagrams have been used as ef- 
fective modeling tools for Bayesian decision analysis. 

The work of constructing an influence diagram can be 
divided into two sub-works: The first one is to build the 
influence diagram structure; the other one is to assign 
parameters to all kinds of nodes, including assigning 
conditional probabilities for chance nodes, acquiring the 
utilities for value nodes and generating decision al- 
terna-tives for decision nodes. The whole work is chal- 
lenging and time consuming, and a number of difficulties 
may be faced. Bielza et al. have discussed the important 
issues in modeling with influence diagrams [2-4]. 

During the entire construction process, the assignment 
of conditional probabilities for chance nodes is consid- 
ered the most difficult problem. There are two common 
used solutions to get probability values: learning from 
data or acquiring from experts. In the machine learning 
community, many algorithms have been presented to 
learn probabilities from data [5-7]. However, in many 
real-world applications, we do not have available data set 
and have to elicit probabilities from experts. The prob- 
abilities are thus called subjective probabilities. 

To deal with the imprecision and inconsistence of sub- 
jective probabilities, quite a few methods are developed 
to guide experts correctly giving probabilities, such as 
using visual tools like probability scale [8], probability 
wheel [9] and scaled probability bar [10], adapting Ana- 
lytic Hierarchy Process (AHP) [11]. Wiegmann gives an 
overview of the popular elicitation methods [12]. 

In this paper, we focus on probability elicitation for 
influence diagrams. We present a new approach to elicit 
probabilities from experts. Our approach does not require 
experts to give point-valued probabilities but to give in- 
terval-valued probabilities instead. Because in daily life, 
it is unrealistic to expect experts to provide exact values 
of many probabilities. They are used to describing prob- 
abilities by verbal or other inexact expressions, such as 
“possible”, “rare” or “likely”. Each expression is an im- 
precise or fuzzy description of probability that actually 
means an interval of probability. Cano and Moral pointed 
out that imprecise probability model such as interval 
probability is more useful than exact probability model in 
many situations [13]. The experts would be more con- 
fident and feel more comfortable to deal with intervals 
probabilities. So, we apply the concept of interval proba- 
bility [14-18] to elicit probabilities, and we combine 
multiple experts’ judgments to increase the accuracy of 
the final results. 

The paper is organized as follows: In Section 2, we 
briefly introduce influence diagrams. Section 3 shows the 
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basic concept of interval probabilities. In Section 4, we 
describe our approach of probabilities elicitation from 
experts. First we introduce the entire process of the ap-
proach, and then give the details of each step. In Section 
5, we illustrate our approach by a real application: estab-
lishing an influence diagram model for employee re-
cruitment decision for a China’s IT company. Finally, we 
give a conclusion in Section 6. 

2. Influence Diagram 

An influence diagram can be defined as a four-tuple [19] 

 , , ,rID G X P U  

such that, 
1) G = (V, E) is a directed acyclic graph (DAG), with 

nodes V and edges E. V are partitioned into three sets, V 
= C D UV V . VC, VD and VU are the set of chance 
nodes, decision nodes and value nodes, respectively. The 
dependence relations and information precedence among 
all the nodes are encoded in E. 

V 

2) X is a set of variables. X = C DX X , XC is a set of 
random variables, and each variable in XC is represented 
by a chance node of G. XD is a set of decision variables, 
and each variable in XD is represented by a decision node 
of G . 

3) Pr is a set of conditional probability distributions. 
Each random variable i C  associates with a dis-
tribution 

C X
 i iP C Par C



. 
4) U is a set of utility functions. Each value node 

 contains one utility function u(Xpa(vi)).  1, 2i UV V i 
In influence diagrams, the chance nodes are repre-

sented by circulars, and each chance node associates with 
a probability distribution. The decision nodes are rectan-
gles. Each decision node has a set of alternatives. The 
value nodes are diamonds. The parameters of each value 
node show the utility of various outcomes according to 
the decision makers. Directed arcs in influence diagrams 
have different meanings. Arcs pointing to decision nodes 
are called information arcs, which indicate information 
precedence. An information arc from a chance node A to 
a decision node B denotes that variable A will be ob-
servable before the decision is made. Arcs pointing to 
chance nodes are called relevance arcs, which represent 
the dependency between the variables and their parents. 
The missing arc between two chance nodes means condi-
tional independence. 

An example of an influence diagram is shown in Fig-
ure 1. Bob is going to decide whether to go to watch a 
football game tomorrow. The only factor he considering 
is the weather. If there is no rain, he will go; otherwise he 
prefers to stay at home. He has a weather forecast sensor, 
from which he can know whether it will rain or not to-
morrow. But the sensor has a small probability to make 
wrong forecast. As shown in Figure 1, there is an infor-

mation arc from the node “weather forecast” to the deci- 
sion node, and a relevance arc from the node “weather 
forecast” to the node “weather”. Bob’s utility varies with 
various instances of decisions and weather conditions. 

The evaluation of an influence diagram is to find the 
best alternative by comparing the expected utility (EU) 
among every decision alternatives. Suppose Dj is a deci- 
sion node with a set of decision alternatives 1, , nd L d . 
First we calculate the EU of each decision alternative di: 

    d d ,i i j
j

EU U c P c e j        (1) 

in which e represents the evidences. 
Then we select the best alternative d* in 1, , nd L d , 

which satisfies 

 * arg max id EU d            (2) 

The original evaluation approach is to unfold an in- 
fluence diagram into a decision tree. Obviously it is inef- 
ficient. Shachter presents a way to evaluate influence 
diagrams with two operations: node-removal and arc- 
reversal [20]. By recursively using the two operations, an 
influence diagram is transformed into a diagram with 
only a utility node. The utilities for individual decision 
alternatives are computed during the process. F. Jensen et 
al. describe a way to convert an influence diagram into a 
junction tree [21], and then the message passing algo-
rithm is operated on the junction tree for calculating the 
expected utility. Zhang describes a method to reduce 
influence diagrams evaluation into Bayesian network 
inference problems [22], so that many Bayesian network 
inference algorithms can be used to evaluate influence 
diagrams. 

3. Interval Probability 

The theory of imprecise probability has received much 
attention [13-17,23-26]. Interval probability is a major 
expression of imprecise probability that has been used in 
uncertain reasoning [14,18], decision making [15,16], 
and some other applications. It is an extension of classi- 
cal probability so that can be adapted in more complex 
uncertain situations. 

Definition 1. (Interval probability) [14,17,27]: Let Ω be 
 

Weather

Weather 
forecast

Watch 
the game?

Utility

( ) 0.15p rain  { , }yes no

( , ) 0

( , ) 100

( , ) 60

( , ) 20

u yes rain

u yes no rain

u no rain

u no no rain







( | ) 0.90

( | ) 0.05

p rain rain

p rain no rain




Figure 1. An influence diagram. 
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a sample space,  1,  2,...,i A a i n   be a σ-field of 
random events in Ω，a set of intervals    ,i iL a U a   is 
called interval probabilities if it satisfies the following 
conditions： 

   ,0 1i ii L a U a              (3) 

     , ,i ii p a L a U a     i , such that  
1

1;
n

i
i

p a


  (4) 

   

   

        

, inf
,

,sup

where | ,

i i
p P

i i
p P

i i i

i p a L a

i p a U a

P p L a p a U a i





 

 

    

 (5) 

The intervals satisfy conditions (3)-(5) are also called 
reachable probability intervals [14] or F-probability [17].  

Condition (4) can be modified as: 

   
1 1

1
n n

i
i i

L a U a
 

   i



           (6) 

Condition (6) and (4) are equivalence, while (6) is 
easier to understand. Condition (5) can be modified as 
[14,16]: 

       
1 1

1, 1,
n n

i i i i
i i
i j i j

L a U a U a L a j
 
 

        (7) 

Condition (7) is a more strict constraint than (6). 

4. Probability Elicitation 

4.1. The Process of Probability Elicitation 

Figure 2 shows the entire process of probability elicita- 
tion from multiple experts. It consists of four main steps. 
In the first step we select a group of appropriate experts 
in related domains. Then in the second step we elicit in- 
terval probabilities from the selected experts. In step 3, 
we combine different interval probabilities to form a sin-
gle interval probability distribution. The linear opinion 
pool approach is adapted to complete the combination. In 
the last step, the interval probabilities are converted into 
point-valued probabilities, because only point-valued 
probabilities are recognized by influence diagrams. We 
deal with the conversion by a maximum entropy princi- 
ple. 

4.2. Selection of Experts 

The elicitation work begins with selection of a group of 
appropriate experts. Each selected expert should meet the 
following four criteria: 1) Have to be specialists in the 
relevant fields; 2) Should be familiar with probability 
thinking and probability language; 3) Should have good 
communication skills so as to clearly express his opinion; 
4) Should be quite patient to take time to engage in the  

Four criteria

Domain 
experts

Setp 1. Selection of domain experts

Appropriate 
experts

Setp 2. Elicitation interval probabilities from the experts

The linear 
programming model

Semi interval 
probabilities

the software tool

Interval 
probabilities

The linear opinion 
pool

Setp 3. Combination the interval probabilities

Combined interval 
probabilities

Exact interval 
probabilities

The maximum entropy 
principle

Setp 4. Converting interval probabilities into point-valued 
probabilities

Point-valued 
probabilities

Combined interval 
probabilities

 

Figure 2. The process of probability elicitation. 
 

modeling task. 
The number of experts depends on the complexity of 

the influence diagram model, however, at least 3 experts 
should be guaranteed. 

4.3. Interval Probability Elicitation 

To help experts make judgments, we develop a software 
tool. The main window of the tool is shown in Figure 3. 
Two probability scales are arranged on the window. The 
above one is used to decide the lower bound of interval 
probability and the below one is used to decide the upper 
bound. The experts can drag the slider thumb on the 
scales to change the probability. 

Using the tool, experts can rapidly assign intervals to 
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Local Structure

Probability Scale 

Lower Bound Upper Bound

Global Structure

 

Figure 3. The software tool for eliciting interval probability. 
 

probabilities. We denote them by  and 
call them semi interval probabilities. Then we need to 
check if   fully meet the definition of 
interval probabilities. If not, we use the following linear 
programming model [16] to elicit interval probabilities 

 from 

   ,i iL a U a  

   ,i iL a U a 

 i iU a    ,L a    ,i iU a  L a  with least 
change. 

   

   

   
   
   

1

1

. . 1,

1,

,

,

,

n

i j
i
i j

n

i j
i
i j

i i

i i

i i

s t L a U a

U a L a j

U a L a i

U a U a i

L a L a i







 

  

 

 

 





j

         (8) 

The model ensures  

       , ,i i i iL a U a L a U a      


 and at the same time  

keeps the interval  as big as possible. For 
example, the intervals on a random event are {[0.35, 
0.40], [0.20, 0.30], [0.40, 0.45], [0.01, 0.05]}. The inter-
val probabilities elicited from them are {[0.35, 0.39], 
[0.20, 0.24], [0.40, 0.44], [0.01, 0.05]}.  

   ,i iL a U a

4.4. Interval Probability Combination 

In order to improve the accuracy of the probabilities val- 
ues, we elicit probabilities from multiple experts. Each 
expert assigns interval probabilities to chance nodes in- 
dividually, and then their opinions are aggregated. By 
using multiple experts, we may get more precise results 
and eliminate the biasing effects. 

A number of methods have been proposed for 
prob-ability combination. Here we take the linear opinion 
pool method [24,28]. The result is a linear combination 
of all the probability distributions given by different ex- 
perts. The linear opinion pool is a simple but very useful 
method to combine probabilities. It allows us to assign 
weights to the experts. The weight is a scale for reflect- 

ing the difference of expertise. An expert with larger 
weight would have greater influence on the final results. 

Let    ,j jL A U A      1,  2, ,j  

 

m  are interval 
probability distributions of a discrete random variable A 
that assigned by expert j. Define  *,U A  

*L A  as 
weighted sum of all the distributions: 

       * *

1 1

, ,
m m

j j
j j

j j

L A U A L A U A 
 

 
     

 
     (9) 

where j  is the weight of expert j that  

satisfies 
1

1j
j




m

 . 

Proposition 1.    * *,L A U A    is an interval prob- 
ability distribution. 

For combination, the important thing is to assign 
proper weight to each expert. Since the probabilities are 
subjective, some experts’ judgments may be more pre- 
cise than the others. They should have greater influence 
on the final result. So the weight of individual expert 
should reflect the degree of expertise and would be dif- 
ferent.  

In most group decision-making situations, the weights 
are subjective. Here we propose a method to assign 
weights objectively. In detail, we give the weight to an 
expert by measuring the average distance (AL) between 
the probability distribution given by him and the distri- 
butions given by others. The value of AL shows the av- 
erage similarity between a certain probability distribution 
and the other distributions. We consider if an expert’s 
judgment is closer to the most experts’ judgments, we as- 
sign him a higher weight; otherwise we assign him a 
lower weight. 

Definition 2. The distance between two interval prob- 
ability distributions 

   ,b bL A U A    and    ,c cL A U A    is defined as 

          22

1

, ) (
n

b c b c
i i i i

i

D b c L a L a U a U a


     

(10) 

Definition 3. The average distance between an interval 
probability distribution    ,b bL A U A    and all the 
other distributions     ,j jU A j b    L A  is defined as 

        
2 2

1 1

1
( )

1

m n
b b j b

i i i i
j i
j b

L L a L a U a U
m  



   
   j a

(11) 
Definition 4. The weight  of expert b is defineb d as 

 
1

1

1

b

b m

j

AL

jAL








            (12) 
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4.5. Convert Interval Probability into  
Point-Valued Probability 

The evaluation algorithms of influence diagrams are all 
based on point-valued probabilities. After combination, 

oint-valued 
prob ow that there always 

For example, the interval probability distribu

we need to convert interval probability into p
ability. By definition 1, we kn

exists point-valued probability distributions P(A) for 
each interval probability distribution [L(A), U(A)]. How- 
ever, P(A) is not unique. In case we have no additional 
information, the most reasonable converting method is to 
use maximum entropy principle [15,29]. As shown below, 
the point-valued probability distribution is the solution of 
the linear programming model. 

     

     
1

* *

max log

0 1

. .

n

i i
i

i i i

n

H P p a p a

L a p a U a

s t



 

    





     (13) 

 
1

1i
i

p a






tion is  

        0.35,  0.39 ,  0.20,  0.24 ,  0.40,  0.44 ,  0.01,  0.05 .

Then the point-valued probability elicited from it is  

5. Case Study 

om 
several candidates who are all recent graduates. The 
company will make the decision after assessing individ- 

andidates. On the basis of analysis on 

 0.35,  0.20,  0.40,  0.05 .  

A China’s IT Company is going to hire employees fr

ual ability of the c
the relevant factors, we construct an influence diagram 
model, as shown in Figure 4. The nodes of the model are 
explained in Table 1. 

After building the structure of the influence diagram, 
we consider the parameters of the nodes. We start with 
the conditional probability distribution of node “TC”. 
“TC” represents the teamwork spirit and communication 
skill of candidates. The company tests “TC” of candi- 
dates through a test and ranks it with four grades: “Ex- 
cellent”, “Good”, “Fair” and “Poor”. However, the result 
of the test does not always according with the real per- 
formance. The conditional probability  p TC AT  re- 
presents the degree of the deviation. 

For  p TC AT , we need to obtain sixteen probabili- 
ties, as shown in Table 2. 

Here we illustrate the elicitation process of p(a1) to 
p(a4). We select five experts. By using th ool, 
the semi interval 

e software t
p

 

robabilities given by each expert are 
shown in Table 3. 

Using model (8), we transform them into real interval 
probabilities, which are shown in Table 4. 

The weights of the experts obtained by formula (12) 

A T

W H

C O

U

LAT C

PT

PS

W T

IE

M A A D

G PA

 

Figure 4. Influence diagram for employee recruitment. 
 

Table 1. The description of the nodes. 

Node Description 

AT The result of aptitude test: {Excellent, Good, Fair, Poor} 

TC 
G

Major: {A
tion, Not according with the position} 

t 

n test: {Excellent, Good, Fair, Poor} 

CO 
raduated from: 

AD 

}

} 

hat 
, Somewhat introverted, Very in- 

Teamwork spirit and co munication skill: {Excellent, m
ood, Fair, Poor} 

ccording with the position, Related to the posi-
MA 

IE 
Internship experience: {Having been trained in the relevan
fields, Having been trained in other fields, None} 

The grade of writteWT 

PS Practical skill: {Excellent, Good, Fair, Poor} 

What kind of university the candidate g
{Top, Superior, Fair} 

Academic degree: {PhD, Master, Bachelor, None} 

GPA Grade point average (GPA): {Excellent, Good, Fair, Poor

LA Learning ability: {Excellent, Good, Fair, Poor

PT 
The result of personality test: {Very extroverted, Somew
extroverted, In the middle
troverted} 

WH Whether hiring: {Yes, No} 

U Value node 

 
 2. Conditional probability table of node “TC”. Table

TC 
Fair Poor 

AT 
 Excellent Good 

Excellent p(a1) p 1) p(c1) p(d1) (b

Good p(a2) p(b2) p(c2) p(d2) 

Fair p(a3) p(b3) p(c3) p(d3) 

Poor p(a4) p(b4) p(c4) p(d4) 

 
are listed as fol  lows:

1 2

3 4

5

0.183214,  0.203496,

195304  0.20 ,

 0.208627.

0. , 9359

 
 


 




 

The combined interval probabilities obtained by for-
mula (9) are shown in Table 5. 

At last, we convert interval probabilities into point- 
valued probabilities by using model (13). The results are 
shown in Table 6. 
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terv

E3 E4 E5 

 
Table 3. Semi in al probabilities. 

 E1 E2 

p(a1) [0.75 0.77] [0.75 0.78]  [0.80 0.82] [0.77 0.80] [0.81 0.84] 

p( ) [0.2 2] [0.1 7] [0.1 3] [0.1 5] [0.1 0] a2 0 0.2 5 0.1 2 0.1 3 0.1 4 0.2

p(a3) [0.03 0.04] [0.04 0.07] [0.03 0.05] [0.04 0.05] [0.03 0.05] 

p(a4) [0.00 0.02] [0.01 0.02] [0.02 0.04] [0.01 0.03] [0.02 0.04] 

 
 Interval probabiliti  

 E1 E2 E3 E4 E5 

Table 4. es.

p(a1) [0.75 0.77] [0.77 0 [0.77 0.78] [0.80 0.81] .80] [0.81 0.83] 

p( ) [0.2 2] [0.1 7] [0.1 3] [0.1 5] [0.1 5] a2 0 0.2 5 0.1 2 0.1 4 0.1 4 0.1

p(a3) [0.03 0.04] [0.04 0.07] [0.03 0.05] [0.04 0.05] [0.03 0.04] 

p(a4) [0.00 0.02] [0.01 0.02] [0.02 0.04] [0.02 0.03] [0.02 0.03] 

 
Table 5. The combined interval probabilities. 

p(a1) p(a2) p(a3) p(a4) 

[0.78 .03]  0.80] [0.15 0.16] [0.03 0.05] [0.01 0

 

p(a1) p(a2) p(a3) p(a4

Table 6. The point-valued probabilities. 

) 

0.78 03 0.15 0.04 0.

 
6. Conclusion 

Influence diagrams have be  widely used for decision
ertainty. The major obstacle of build- 

 is that it is difficult to get
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