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ABSTRACT 

New electronically-controllable lossless grounded and floating inductance simulation circuits have been proposed em-
ploying Voltage Differencing Transconductance Amplifiers (VDTA). The proposed grounded inductance (GI) circuit 
employs a single VDTA and one grounded capacitor whereas the floating inductance (FI) circuit employs two VDTAs 
and one grounded capacitor. The workability of the new circuits has been verified using SPICE simulation with TSMC 
CMOS 0.18 μm process parameters. 
 
Keywords: VDTA; Inductance Simulation; Filters 

1. Introduction 

Several circuits and techniques for the simulation of 
grounded and floating inductance employing different 
active elements such as operational amplifiers, current 
conveyors, current controlled conveyors, current feed- 
back operational amplifiers, operational mirrored ampli- 
fiers, differential voltage current conveyors, current dif- 
ferencing buffered amplifiers, current differencing trans- 
conductance amplifiers, operational transconductance 
amplifiers (OTAs) have been reported in the literature 
see [1-33] and the references cited therein. Many active 
elements have been introduced by Biolek, Senani, Biol-
kova and Kolka in [34], VDTA is one of them. A CMOS 
realization of VDTA and its filter application have also 
been reported in [35]. The purpose of this pa- per is, to 
propose new electronically-controllable VDTA- based 
lossless GI and FI circuits employing a grounded capaci-
tor. The GI uses only one VDTA along with a grounded 
capacitor and does not require any matching condition 
whereas FI employs two VDTAs, a grounded capacitor 
and requires matching conditions. The worka- bility of 
the proposed new circuits has been verified us- ing 
SPICE simulation with TSMC CMOS 0.18 μm proc- ess 
parameters. 

2. The Proposed New Configurations 

The symbolic notation of the VDTA is shown in Figure 
1, where VP and VN are input terminals and Z, X+ and X– 

are output terminals. All terminals of VDTA exhibit high 
impedance values [35]. The VDTA can be described by 
the following set of equations: 
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The proposed grounded and floating inductance cir-
cuits are shown in Figures 2 and 3 respectively. 

A routine circuit analysis of the circuit shown in Fig-
ure 2 results in the following expression for the input 
impedance 
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The circuit, thus, simulates a grounded inductance 
with the inductance value given by 
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*Corresponding author. Figure 1. The symbolic notation of VDTA. 
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Figure 2. Proposed grounded inductance simulation con-
figuration. 
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Figure 3. Proposed floating inductance simulation configu-
ration. 

On the other hand, analysis of the new FI circuit  

shown in Figure 3 yields 1 21 1
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which proves that the circuit simulates a floating lossless 
electronically-controllable inductance with the induc-
tance value given by 
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3. Non-Ideal Analysis and Sensitivity  
Performance 

Considering the various VDTA non-ideal parasitics i.e., 
the finite X-terminal parasitic impedance consisting of a 
resistance X  in parallel with capacitance X  and the 
parasitic impedance at the Z-terminal consisting of a re-
sistance ZR  in parallel with capacitance C

 

Z .  
The non-ideal input impedance for the circuit shown in 

igure 2 is given by F 
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 From Equation (6) a non-ideal equivalent circuit of the 

grounded inductor is derivable which is shown in Figure 
4. 
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From the above, the sensitivities of LGI with respect to 
various active and passive elements are found to be 
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Similarly, for the circuit shown in Figure 3, the input-output current and voltage relationships are given by: 
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The non-ideal equivalent circuit of floating inductor of 
Figure 3 is derivable from Equation (8) and is shown in 
Figure 5. 
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The various sensitivities of LFI with respect to active 
and passive elements are: 
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Figure 4. Non-ideal equivalent circuit of Figure 2. 
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Figure 5. Non-ideal equivalent circuit of Figure 3. 
 

Taking gm1 = gm2 = 631.702 μA/V, Cz = CZ = 0, Rx = 
Rz = ∞ and C = 0.01nF, these sensitivities are found to be 
(1, 0, 0, 0, 1, 1) and (1, 0, –1, –1) for Equations (7) and 
(9) respectively. Thus, all the passive and active sensi-
tivities of both grounded and floating inductance circuits 
are low. 

4. Simulation Results of the New Proposed  
Grounded/Floating Inductance  
Configurations 

The workability of the proposed simulated inductors has 
been verified by realizing a band pass filter (BPF) as 
shown in Figures 6 and 7. 

The transfer function realized by this configuration is 
given by 
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from where it is seen that bandwidth and centre fre-
quency both are independently tunable, the former by R1 
and the latter by any of the transconductances gm1, gm2 
and C2. 

The transfer function realized by the configuration 
shown in Figure 7 is given by 
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Figure 6. Band pass filter realized by the new grounded 
simulated inductor. 
 

Vin

R

C0
V0

+

_

Z

VDTA
x+ +

_
Z

VDTA
x-

C1

0

1 2

 

Figure 7. Band pass filter realized by the new floating si-
mulated inductor of Figure 3. 
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In this case, bandwidth is tunable by R0 whereas centre 
frequency can be tuned by C0. 

Performance of the new simulated inductors was veri-
fied by SPICE simulations. CMOS-based VDTA from 
[35] was used to determine the frequency responses of 
the grounded and floating simulated inductors. The fol-
lowing values were used for grounded as well as floating 
inductor: C = 0.01 nF, gm1 = gm2 = 631.7 μA/V. From the 
frequency response of the simulated grounded inductor 
(Figure 8) it has been observed that the inductance value 
remains constant upto 10 MHz. Similarly, from the fre-
quency response of the simulated floating inductor (Fig-
ure 9) the inductance value also remains constant up to 
10 MHz. 

To verify the theoretical analysis of the application 
circuits shown in Figures 6 and 7, these configurations 
have also been simulated using CMOS VDTAs. The 
component values used were for Figure 6: C1 = 5 pF, C2 
= 0.01 nF, R1 = 1.58 kΩ and for Figure 7: C0 = 0.01 nF, 
C1 = 5 pF, R0 = 1.58 kΩ. The VDTAs were biased with 
±0.9 volts D.C. power supplies with IB1 = IB2 = IB3 = IB4 = 
150 μA. Figures 10 and 11 show the simulated filter 
responses of the BP filters. A comparison of the other  
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previously known grounded and floating inductance 
simulators has been presented in Table 1. 
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Figure 8. Frequency response of the simulated grounded 
inductor. 
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Figure 9. Frequency response of the simulated floating in-
ductor. 
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Figure 10. Frequency response of BPF using the proposed 
simulated GI. 
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Figure 11. Frequency response of BPF using the proposed 
simulated FI. 

 
Table 1. Comparison with other previously known grounded and floating simulators. 

Reference 
Inductance 

type+ 
Number of 

active devices
Number of 

resistors 
Number of 
capacitors 

Required Matching  
condition 

Electronic  
Tunable Inductance

[4] F 3 3 1 YES NO 

[7] G 2 0 1 NO YES 

F 3 0 1 YES YES 
[10] 

F 4 4 1 YES NO 

[11] F 4 3 1 YES NO 

[12] F 4 2 1 NO NO 

[14] G 2 2 1 NO NO 

[15] F 3 2 1 NO NO 

[16] F 3 2 1 NO NO 

[17] F 4 2 1 NO NO 

[18] F 2 2 1 NO NO 

[22] F 3 0 1 YES YES 
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Continued 

[23] F 3/4 4 1 YES YES 

[24] G 1 2 1 YES NO 

[25] F 3 0 1 YES YES 

[26] F 4/3 3 1 NO NO 

[27] G 2 0 1 NO YES 

[28] G 3 3 1 NO NO 

[29] G 3 4 1 NO NO 

F 3 4 1 NO NO 
[30] 

G 2 0 1 NO YES 

F 3 0 1 YES YES 
[32] 

G 2 0 1 NO YES 

F 3 0 1 YES YES 
[33] 

F 2 3 2 YES NO 

G 1 0 1 NO YES 
Proposed 

F 2 0 1 YES YES 

G = Grounded, F = Floating. 

 
The above results, thus, confirm the validity of the ap- 

plications of the proposed grounded and floating simu- 
lated inductance circuits. 

5. Conclusion 

New electronically-controllable circuits of lossless ground- 
ed and floating inductance have been proposed employ- 
ing VDTAs. The proposed grounded inductance circuit 
employs only one VDTA and one grounded capacitor. 
On the other hand, the floating inductance configuration 
uses two VDTAs and one grounded capacitor, requires 
realization conditions for floatation. A comparison of the 
other previously known grounded and floating induc- 
tance simulators has been presented in Table 1. The 
SPICE simulation results have confirmed the workability 
of the new proposed circuits. 
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