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ABSTRACT 

The dispersion characteristics of binary 1D-PPCs having inhomogeneous plasma in the unit cell are studied. Using the 
transfer matrix method the required dispersion relations are obtained. Here the linear and exponential plasma density 
profiles are considered and compared with the homogeneous plasma having uniform density profile. It is observed that 
the inhomogeneity in plasma layer highly affect dispersion curves. By comparing the dispersion curves obtained in all 
considered cases, it is found that the widths of band gaps and phase velocities are always larger for exponential density 
profile than the linear uniform density profiles in the considered frequency range. 
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1. Introduction 

Photonic crystals (PCs) are periodically structured elec-
tromagnetic media in which certain range of electromag-
netic (EM) waves are not allowed to propagate through 
the structure. This range of frequencies is called photonic 
band gaps (PBGs). The periodicity of the structure and 
the periodic variation of dielectric constant of different 
materials are the essential parameters for the formation 
of these PBGs [1]. These PCs have achieved archival 
interest worldwide because for its numerous applications 
such as: Filters, optical switches, waveguides, cavities and 
design of more efficient layers, etc. [2]. 

Recently, plasma photonic crystals (PPCs) have attracted 
the attention of researchers because the properties of these 
PPCs are externally controllable and it possesses the cha- 
racteristics of conventional PCs and plasma. The unit cell 
of PPCs consists of periodic arrangement of plasma and 
dielectric/air. The dispersion relation of binary one di-
mensional plasma photonic crystals 1D-PPCs by solving 
Maxwell equations using a method analogous to the Kro- 
nig-Penny’s problem in quantum mechanics is derived by 
Hojo et al. [3] and discussed the effect of plasma density, 
thickness of plasma layer and dielectric constant of dielec-
tric media on the dispersion characteristics. Subsequently 
many research groups analyzed the dispersion and optical 
properties of 1D-PPCs [3-8]. The dispersion relation of 
binary 1D-PPCs considering the collision effect in plasma 

with obliquely incident EM waves is deduced by Guo Bin 
[6]. Also the dispersion and propagation characteristics of 
ternary 1D-PPCs have been studied by Prasad et al. [7,8] 
and they found that the ternary 1D-PPCs provide addi-
tional degree of freedom to control the dispersion and 
propagation characteristics compared to binary 1D-PPCs. 
But most of the researchers have analyzed the dispersion 
characteristics, modal propagation characteristics, reflec-
tion and transmission coefficients of 1D-PPCs in which a 
unit cell consists of homogeneous plasma and homoge-
neous dielectric materials and they obtained that these 
properties are being controlled by plasma density, thick-
ness of plasma layers, collisions in plasma layer, dielec-
tric constant of dielectric materials and external magnetic 
fields [9,10]. The PBGs of 1D-PPCs can also be impro-
vise in desire range by considering inhomogeneous dielec-
tric layer in the unit cell of PPCs [11,12]. 

Similarly, the dispersion characteristics and optical prop-
erties of PPCs can also be controlled by considering in-
homogeneous plasma in the unit cell. This consideration 
is more practical also because homogeneous plasma hav-
ing uniform density is rarely realized in the laboratory 
plasma [13]. The inhomogeneities in the plasma layer may 
occur due to spatially dependent plasma density. There-
fore, in present communication the propagation of EM 
waves in 1D-PPCs having inhomogeneous plasma in the 
unit cell is considered. By using the transfer matrix method 
(TMM) the dispersion relations of proposed structures are 
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obtained. The dispersion characteristics of PPCs are com-
pared by taking exponential density profile and linear den-
sity profile with uniform (constant) density in the plasma 
layer. The inhomogeneous plasma with linear density pro-
file [14] and exponentially density profile [15] have been 
chosen because their closeed form solutions are available 
in terms of special mathematical functions such as Airy 
and Bessel functions. The paper is organized as follow: 
In Section 2 formulas for the dispersion relation of the 
proposed structure is given. The other necessary formu-
las used in this paper are also presented. Section 3 is de-
voted to result and discussion. A conclusion is drawn in 
Section 4. 

2. Theoretical Modeling 

A plane EM waves with angular frequency ω is assumed 
to obliquely incident on the 1D-PPCs structure. The unit 
cells of considered 1D-PPCs have periodic arrangement 
of inhomogeneous plasma and homogeneous dielectric 
material. The unit cell is shown in Figure 1. The dielec-
tric material and inhomogeneous plasma are assumed to 
be non-magnetic. For simplicity, collisions in inhomoge-
neous plasma are neglected. The plasma density varies 
either linearly or exponentially in space and is given by 
n(x). The linear plasma density profile is given as: 

( )  crn x n p x b               (1a) 

Similarly, the exponential plasma density profile is given 
as: 

 

( )
p x

b
crn x n e



               (1b) 

where b is the width of plasma layer, p is gradation pa-
rameter for controlling variation of density in the plasma 
layer and ncr is the critical density [14] 2 2

0crn m e  . 
The permittivity profile for inhomogeneous plasma and 
dielectric media is given by: 

 

 

Figure 1. Schematic representation of the unit cell of binary 
1D-PPCs having inhomogeneous plasma density layers with 
homogeneous dielectric layers. 
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For linear plasma density profile, the permittivity is 
written as: 
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with condition that   x x     . Here ε1 is the di-
electric constant of dielectric layer, , a and b 
are widths of dielectric and plasma layer respectively. The 
permittivity profile is linearly varying with space along 
x-direction. The electric field in the case of TE mode is 
in y-z plane. Along the z-direction there is no change in 
permittivity, so z-component of wave vector is conserved. 
The one dimensional wave equation for the spatial part of 

a b  
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Typical field solution can be expressed as  
   , i zE x z E x e  and using this in Equation (3) we can 

write the above equation both regions: inhomogeneous 
plasma layer and dielectric medium in the nth unit cell as: 
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where β is the z-component of wave-vector and is given 

by  1 sin
c


1   . Using Snell’s law, angle θ1 can be 

calculated. If θ is the angle of incidence then 
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1 2
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
    with 1n 1 . Here, it is assu- 

med that EM waves incident from vacuum at certain an-
gle θ. 

The solutions of above equations for electric fields in 
the nth unit cell are given by 
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where m11, m , m and m22 are elem f unit transla-
tion matrix [16], which relates com mplitudes of 
incident and reflected wave in  1n  th
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 Floquet Theo-
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Here scr k  is dropped for simplicity in no-
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It follows from Equations (7) and (8) that the column 
vector of Bloch wave satisfies the following eigen-value 
problem 
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The phase factor eiKΛ is the eigen-value of the unit 
translation matrix (m11, m12, m21 and m22) and is given by: 
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So using Equation (11), the dispersion relation for pro-
posed structure can be written as: 
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ements for exponential 
density profile and linear density are given in the Appen-
dix 1 and Appendix 2, respectively. In case of uniform 

(constant) density, the unit translation element
ily obtained [6]. 

3.

dth a. Here the thickness of inhomo-
ogeneous dielectric 

  (12) 

Similarly, we can also find the unit translation elements:
m11, m12, m21 and m22 for exponential density profiles. 
The elements of unit translation el

 can be eas-

 Results and Discussion 

The Equation (12) is known as dispersion relation which 
will give all the information regarding PBGs of the con-
sidered (linear plasma density and exponential plasma den-
sity) profiles. The unit cell of proposed PPCs structure con-
tains inhomogeneous plasma of width b and homogene-
ous dielectric of wi
geneous plasma b is related with hom
layer width a by the relation  for 1,b d a d a b    . 
Here d is the ratio of thickness of two layers. The permit-
tivity profile in inhomogeneous plasma layer is 

 2

2
1 p x




   and homogeneous dielectric layer is glass 

with dielectric constant 1 = 2.25. In the case of homo-
geneous plasma layer, the plasma frequency ωp is con-
stant and its value is 96 10 -
tion parameters; incident angles θ, gradation parameter p, 
a, d and 1 involved in the numerical calculations. 

Figure 2 are plotted to observe the effect o

sec . There are five selec

f incident 
angles on the 
inhomogeneous plasma density profiles. These figures show 

dispersion characteristics of PPCs having 

the variation of normalized wave-vector (KL) with nor- 

malized frequency 
n



 

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ous angle of incidence, 

where 

  at vari  

n c a  . For the comparison purpose, the expo-
nential plasma density profile and linear plasma density 
profile are chosen in such a way that their volume aver-
age permittivity is constant at 0.5. It is clear from Figure 
2(a) that the lower edge frequency of first band gap  
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   are nearly 
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ond b
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r exponesame fo ntial density (solid line) and linear den-
sity (dash line) profiles at incident angle π 10  . Also, 
the width of band gap is large for exponential plasma 
density profile than the linear plasma density profile. By 
comparing these results with the case of homogeneous 
plasma having uniform density profile (dotted line), it is 
observed th ap of unifo
profile and linear density profile is approximately equal 

dence in

at the width of band g rm density 

for first band gap but differ in higher order band gaps. 
Figure 2 show that as the angle of inci creases 
from π 10   to π 3  , the lower edge frequencies 
of first and second band gaps of exponential density pro-
file (solid line) remain intact with linear density profile 
(dash line) and are shifted towards higher frequency. 
Such types of behaviors are not observed in the case of 
uniform density profile (dotted line). This is a remarkable 
result of present investigation. It is also observed that with 
increase in angle of incidence, the width of band gaps 
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(a)                                                       (b) 

     
(c)                                                        (d) 

Figure 2. The variation of normalized wave-vector (KL) with normalized frequency (/n) for a = 5000 µm, d = 0.1, 1 = 2.25 
at (a) θ = π/10; (b) θ = π/6; (c) θ = π/4 and (d) θ = π/3. 

 

increases in all considered profiles. It is also clear from
Figure 2 that the width of ba

density profile and uniform density profile in the consid-

y pro-
fil

(a) and (b), the lower edge fre-
qu

niform density profile remains intact and are shift  to-
n Figure 3(c)) 

 
observed that as the thickness of plasma layer changes 

 u ed
nd gaps and phase velocities wards lower frequency. At d = 2.0 (shown i

are always larger for exponential density profile than cor-
responding band gaps and phase velocities of the linear 

the lower edge frequency of first band gap become dif-
ferent for all profiles. From the analysis of Figure 3, it is 

ered frequency range. The reason is that in the case of 
exponential density profile, the permittivity contrast cha- 
nges rapidly than the linear density profile and uniform 
density, hence produces more Bragg’s reflections. 

Figure 3 are plotted to analyze the effect of thickness 
of inhomogeneous plasma layer on the dispersion charac-
teristics. Figure 3(a) shows that the lower edge frequency 
of first and higher order band gaps for exponential density 
profile (solid line) are different from linear densit

e (dash line) at d = 0.5. 
The interesting feature of this graph is that the lower 

edge frequency, of first band gap, of linear density profile 
is now intact with uniform density profile (dotted line). As 
the thickness of plasma layer increases from d = 0.5 to 
1.0, as shown in Figures 3

ency of first band gap for linear density profile and 

from d = 0.5 to d = 2.0, number of band gaps get in-
creased. Also, it is found that widths of first and higher 
order band gaps are different for all three density profiles 
and larger for exponential density profile. 

Figure 4 is plotted to analyze the effect volume aver-
age permittivity on the dispersion characteristics for a = 
5000 µm, d = 0.1, π 10  , ε1 = 2.25. In this case, the 
considered volume average permittivity is 0.8394. By 
comparing Figure 4 from the Figure 2(a) which is plot-
ted at the same parameter with volume average permit-
tivity 0.5. It is observed that as the volume average per-
mittivity increases the widths of band gaps also increase 
for all profiles and the lower edge frequency of first band 
gap of all considered profiles remains intact but shifted 
to

 
wards lower frequency. 
From this study, it is found that position and width of 
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(a) 

 
(b) 

 

 
Figure 4. The variation of normalized wave-vector (KL
with normalized frequency ( n) for a = 5000 µm, d = 0.
θ = π/10, 1 = 2.25 at volume age permittivity = 0.8394. 

The onic crys-

d because homogeneous plasma 
having uniform density is rarely realized in the labora-
tory plasma. A comparison is also made with 1D-PPCs 
having homogeneous plasma with uniform density profile. 
It is observed that, for a constant volume average permittiv-
ity, the exponential density profile will always give lar-
ger band gaps widths than linear density profile and uni-
form density profile. With increase in angle of incidence, 
the widths of band gaps increase and at the same time 
band gaps are shifted towards higher frequency for all 
considered profiles. The number of band gaps also in-
creases with increase of the thickness of inhomogene-
ous/homogeneous plasma layer. This analysis shows hat 
with increase in the volume average permittivity, the w ths 

 
dge frequency of first band gap 

sity profile and linear density profile 

) 
1, /

 aver

4. Conclusions 

dispersion characteristic  of a plasma phots
tal having inhomogeneous plasma density profile have been 
studied at the first time in our knowledge. The exponen-
tial and linear types of inhomogeneity in the plasma den-
sity profile are considere

 t
id

of band gaps are increased and the lower edge frequency 
of first band gap remains intact but shifted towards lower 
frequency for all profiles. The important finding of this
study is that the lower e
for exponential den
remains intact and shifted towards higher frequency with 
increase in incident angle. 

Finally, it is concluded that the width and position of 
band gaps strongly depend on the type of density profile 
of the plasma layer. Therefore, for correct prediction about 
the width and position of band gaps, the type of density 
profile should be ensured in PPCs. 

5. Acknowledgements 

The authors are grateful to Dr. B. Prasad and Dr. R. D. S. 
Yadava for their continuous encouragement and supports 
in many ways. 

(c) 

Figure 3. The variation of normalized wave-vector (KL) 
with normalized frequency (/n) for a = 5000 µm, θ = π/10, 
1 = 2.25 at (a) d = 0.5; (b) d = 1.0 and (c) d = 2.0. 

 
band gaps strongly depend on the density profile and by 
choosing suitable profile; one can tune the band gaps in 
desired frequency range. 
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Appendix: 1 

Unit Translation Matrix Elements for 1D-PPCs with Exponential Plasma Density 
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2 2 2 3

x

x

p p p pp p pik a

p p

p p p p p p

p p pik a

qJ q qt J q q p J q pt J qJ t t J t pt J t
e

t pt p J q qt p J q
m

pt J q J q qt J q J q qt J q J q

Y t t Y t pt Y t
e p

t

  



   



     
            

 

 
 

 
      

            
1

1 1

2 2

2 2 2 2

p p p

p p p p p p

qJ q pt J q qt J q

pt J q J q qt J q J q qt J q J q



   

 
 
  
     
     

    

 

              
       

            

         

1

11

1

12

1 1

1

2 2 2 3 2cos π 2cos π

2 2 2 2

3 1 3 1 3
sin π

2 2 2 3

x

p p p pp p p

p p

ik a
p p p p p p

p p p
p

t pt p J q qt p J q
m

e pt J q J q qt J q J q qt J q J q

Y t t Y t pt Y t
p qJ q p

t

  



   




            

 

 
    

 
    

            

2 cos π 23 1 3 1 3 qt J q qJ q q p J q pt J qJ t t J t pt J t     

1

1

1 1

2 2

2 2 2 2x

p p

ik a
p p p p p p

t J q qt J q

e pt J q J q qt J q J q qt J q J q



   

 
 
  
  
  
     

    

 

               
       

            

       

1

1

11

1

21

1 1

1

2 cos π 23 1 3 1 3

2 2 2 3 2cos π 2cos π

2 2 2 2

3 1 3 1 3
sin π

2 2 2 3

x

x

p p p pp p pik a

p p

p p p p p p

p p pik a

qJ q qt J q q p J q pt J qJ t t J t pt J t
e

t pt p J q qt p J q
m

pt J q J q qt J q J q qt J q J q

Y t t Y t pt Y t
e p

t

  



   



     
            

 

 
   

 
      

            
1

1 1

2 2

2 2 2 2

p p p

p p p p p p

qJ q pt J q qt J q

pt J q J q qt J q J q qt J q J q



   

 
 
  
   
  
     

    

 

               
       

            

         

1

11

1

22

1 1

1

2 cos π 23 1 3 1 3

2 2 2 3 2cos π 2cos π

2 2 2 2

3 1 3 1 3
sin π

2 2 2 3

x

p p p pp p p

p p

ik a
p p p p p p

p p p
p

qt J q qJ q q p J q pt J qJ t t J t pt J t

t pt p J q qt p J q
m

e pt J q J q qt J q J q qt J q J q

Y t t Y t pt Y t
p qJ q p

t

  



   



     
            

 

 
    

 
    

            1

1

1 1

2 2

2 2 2 2x

p p

ik a
p p p p p p

t J q qt J q

e pt J q J q qt J q J q qt J q J q



   

 
 
  
  
  
     

    

 

 1 1 1cosxk
c

   ;  2
1 12 1 sin

b
p i

c

  


   ; where 

2
b

q i
c




  ; 
 

2

1

1 1cos

e
t



 


 ; 
 2

1 1

1

cos
t

 


 ; 2t qe  
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Appendix: 2 

Unit Translation Matrix Elements for 1D-PPCs with Linear Plasma Density 

               
               

         

1

2

2

11

2 1 3 2 3 1 2 3 1 2 3

2 1 3 2 3 1 2 3 1 2 3

1 3 3 3 3

xik a
Ai zi t Bi zi Ai zi Bi zi t Ai zi Bi zi t Ai zi Bi zi

e
Bi zi t Ai zi Bi zi Ai zi t Bi zi Ai zi t Bi zi Ai zi

m
t Ai zi Bi zi Bi zi Ai zi

       
  

          
 

 

               
               

         

1

2

2

12

2 1 3 2 3 1 2 3 1 2 3

2 1 3 2 3 1 2 3 1 2 3

1 3 3 3 3

xik a
Ai zi t Bi zi Ai zi Bi zi t Ai zi Bi zi t Ai zi Bi zi

e
Bi zi t Ai zi Bi zi Ai zi t Bi zi Ai zi t Bi zi Ai zi

m
t Ai zi Bi zi Bi zi Ai zi


       
  

          
 

 

               
               

         

1

2

2

21

2 1 3 2 3 1 2 3 1 2 3

2 1 3 2 3 1 2 3 1 2 3

1 3 3 3 3

xik a
Ai zi t Bi zi Ai zi Bi zi t Ai zi Bi i zi t A zi Bi zi

e
Bi zi t Ai zi Bi zi Ai zi t Bi zi Ai zi t Bi zi Ai zi

m
t Ai zi Bi z Bi zi Ai zi

       
  

          
 

 
i

               
              

         

1

2

22 3 1zi Ai zi t
22

2 1 3 2 3 1 2 3 1 2 3

2 1 3 2 3 1 2 3
xik a

Ai zi t Bi zi Ai zi Bi zi t Ai zi Bi zi t Ai zi Bi zi
e

Bi zi t Ai zi Bi Bi zi Ai zi t Bi zi Ai zi
m


        
  

          

where 

1 3 3 3 3t Ai zi Bi zi Bi zi Ai zi


 

 1 1 1cosxk
c

   ;   
2 3

2
1 12 sin

b
zi p

cp

  
 

1   
 

; 

  
2 3

2
1 13 sin 1

b
zi

cp

  
 

  
 

; 

1 32

2

1
1x

b
i

c p
t

k

 
 
   


