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ABSTRACT 

This paper, we develop a numerical method for solving a unilateral obstacle problem by using the cubic spline colloca-
tion method and the generalized Newton method. This method converges quadratically if a relation-ship between the 
penalty parameter   and the discretization parameter h is satisfied. An error estimate between the penalty solution and 
the discret penalty solution is provided. To validate the theoretical results, some numerical tests on one dimensional 
obstacle problem are presented. 
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1. Introduction 

Let  be a bounded open domain in  with smooth 
boundary , and let 

 nR
   be an element of  1H   

with 0   on . Set  

  1
0 . . in .K v H v a e      

We consider the following variational inequality 
problem:   

   
Find such that

d d 0,

u K

u v u x f v u x v K
 


          ,

   (1)  

where f is an element of  2L  . This problem is called 
a unilateral obstacle problem. It is well known that prob-
lem (1) admits a unique solution u, and if  2L   , 
then u is an element of  2H   (see [1,2]). There are 
several alternative solution methods of the obstacle 
problem; see, e.g., [1,3-5]. Numerical solution by penalty 
methods have been considered, e.g. by [4,6]. In this pa-
per we develop a numerical method for solving a one 
dimentional obstacle problem by using the cubic spline 
collocation method and the generalized Newton method. 
First, problem (1) is approximated by a sequence of 
nonlinear equation problems by using the penalty method 
given in [2,7]. Then we apply the spline collocation 
method to approximate the solution of a boundary value 

problem of second order. The discret problem is formu-
lated as to find the cubic spline coefficients of a 
nonsmooth system  Y Y  , where . In 
order to solve the nonsmooth equation we apply the gen-
eralized Newton method (see [8-10], for instance). We 
prove that the cubic spline collocation method converges 
quadratically provided that a property coupling the pen-
alty parameter 

: m R Rm

  and the discretization parameter h is 
satisfied.  

Numerical methods to approximate the solution of 
boundary value problems have been considered by sev-
eral authors. We only mention the papers [11,12] and 
references therein, which use the spline collocation me- 
thod for solving the boundary value problems. 

The present paper is organized as follows. In Section 2, 
we present the penalty method to approximate the obsta-
cle problem by a sequence of second order boundary 
value problems. In Section 3 we construct a cubic spline 
to approximate the solution of the boundary problem. 
Section 4 is devoted to the presentation of the general-
ized Newton method. In Section 5 we show the conver-
gence of the cubic spline to the solution of the boundary 
problem and provide an error estimate. Finally, some 
numerical results are given in Section 6 to validate our 
methodology.  

2. Penalty Problem 

Let   be an element of  with  1H  0   on  . *Corresponding author. 
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Assume that   is an element of , then the 
solution u of problem (1) is an element of 

 2L 
 2H   and 

can be characterized as (see [1], for instance):  
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        (2) 

The penalty problem is given by the following bound-
ary value problem (see [10], p. 107, [12]):  

   max ,0

0

u f

u
 



    



inu  
on .

f 
 


 (3) 

where   is a sequence of Lipschitz functions which 
tend to the function   defined by  

 
1

0 0

t

t

0

,
t


  

               (4) 

almost everywhere on , as R   goes to zero. Assume 
that the function  , , is uniformly 
Lipschitz, non increasing and satisfy . Then 
problem (3) admits a unique solution (see [2] p. 107). We 
now specify the function  

 t < <t 
 t0 1

 
1, 0,

1 , 0 ,t

0, .

t

t t

t
 




  
 



u

          (5) 

We have the interesting properties.  
Theorem 1 ([2,7]) Let u denote the solution of the 

variational inequality problem (1) and  , > 0 , de-
notes the solution of the penalty problem (3) with   
defined by relation (5). Then  u  is a nondecreasing 
sequence and  

    , ,u x u x x   u x for  > 0.  

3. Cubic Spline Collocation Method 

In this section we construct a cubic spline which ap- 
proximates the solution u  of problem (3), with   is 
the interval  and  b,I a R   is the function given 
by (5).  

Cubic Spline Solution 

Let  

a x


0 1

2 3n

x3 2 1

1 1n n n n

x x x

x x x x

   

 

  

  x b 

 

 

 

 

i

 

be a subdivision of the interval I. Without loss of gener- 

ality, we put x a ih  , where  and 0 i  n
b

h
a

n


 .  

Denote by 4 ,S I   the space of piecewise polynomials 

of degree 3 over the subdivision   and of class  
everywhere on 

2C
 ,a b . Let i , , be the 

B-splines of degree 3 associated with 
B 3, , 1n i  

 . These B- 
splines are positives and form a basis of the space 

 4 ,S I  . If we put  

  
   ,0

x

     )  ,
,

max

J x u

(x f x u f x  x x
 

   
(6) 

then problem (3) becomes  

 

,u

b


  u a

 


u J

u
 

 





o  n ,

0.

I            (7) 

It is easy to see that J  is a nonlinear continuous 
function on u ; and for any two functions u  and v , 
J  satisfies the following Lipschitz condition:  

     
  

, ,

n ,

J x u x J x x

L u x a I

   

  . . o

v

ev x



x  
      (8) 

where  

   1 1
x .L f x f

 
    ma

x I
x     

Now, we define the following interpolation cubic 
spline of the solution u  of the nonlinear second order 
boundary value problem (7).  

Proposition 2 Let u  be the solution of problem (7). 
Then, there exists a unique cubic spline interpolant 

 ,I4S S   of u  which satisfies:  

    , 0 ,i iS t u t n  , 2,i    

where 0 0t x , 1

2
i ix x

it
 , , 1, ,i n 1 1n nt x    

and 2n nt x .  

Proof Using the Schoenberg-Whitney theorem (see 
[13]), it is easy to see that there exits a unique cubic 
spline which interpolates u  at the points ,  it

0, ,i 2n  .   
If we put 

3 ii

1

,

n

iS c B 
, then by using the boundary 

conditions of problem (7) we obtain 

 

  u  0a3,c S a      , and 

   1, 0nc S u  b b    

Hence  
2n

,
2

i i
iFurthermore, since the interpolation with splines of 

degree d gives uniform norm errors of order 

.S c   B

 1d

rth
O h  

for the interpolant, and of order  for the  
derivative of the interpolant (see [13], for instance), then 
for any 

 1d  rO h

  4 ,u a C b  we have  

      1, ,i iS t J t u h n 
2, , i 1.O        (9) 

The cubic spline collocation method, that we present 
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in this paper, constructs numerically a cubic spline 

3
 which satisfies the Equation (7) at the 

points , . It is easy to see that  

1

,

n

i ii
S c




  

it 0,i 
B




, 2n

3, 1, 0,nc c      

and the coefficients ,ic  , 2, , 2i n   , satisfy the 
following nonlinear system with n + 1 equations:  

   
2 2

, ,
2 2

, ,

1, , 1.

n n

i i j j i i j
i i

c B t J t c B t

j n

  

 

 

     
 

 

  



    (10) 

Relations (9) and (10) can be written in the matrix 
form, respectively, as follows  

ˆ ˆ= ,

ˆ = ,
C

AC F E

AC F

  

 

 

 


              (11)  

where  

     1 1 1 1, , , ,
T

n nF J t u t J t u t        ,

,

 

     1 1 1 1[ , , , , ]T
n nC

F J t S t J t S t   
   

and Ê  is a vector where each component is of order 

. It is well known that  2O h
2

1
Â A

h
 , where A is a 

matrix independent of h given as follows:  

15 1 1
0 0

4 4 2
3 3 1 1

0
4 4 2 2

1 1 1 1
0 0

2 2 2 2

.1 1 1 1
0 0 0

2 2 2 2
1 1 3 3

0 0
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1 1 15
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Then, relation (11) becomes  
2

2

,

,
C

AC h F E

AC h F


  



  
  

              (12) 

with E  is a vector where each one of its components is 
of order .  4O h

The results of this work are basically based on the 
invertibility of the matrix A. Then, in order to prove that 
A is invertible we give the flowing lemma.  

Lemma 3 (de Boor [13]) Let  such that 1kS S

0S   on 1 1, ,p p q qx x x x       
,

 where . If S 

admits r zeros in 

< qp

p qx x    then .   1k r p q  

Proposition 4 The matrix A is invertible.  
Proof Let  be a vector of  1 1, ,

T

nD d d    1nR   

such that 0AD  . If we put   2

2

n

j jj
S x d B




  , then  

we have     0S a S b 
1n

 and  for any   0iS t 
1, ,i   S S . Since 4  ,I   then  2 ,S S I   . 

If we assume that 0S   in  0 , nx x
S 1n 

, then using the 
above lemma and the fact that  has  zeros in 
 0 , nx x , we conclude that , which is impos-
sible. Therefore 

1n   2n 
0S   for each x I . This means 

that the function S is a piecewise linear polynomial in I. 
Since     0S bS a   , then we obtain   0S x   for 
any x I . Consequently  and the matrix A is 
invertible.  

0D 

Proposition 5 Assume that the penalty parameter   
and the discretization parameter h satisfy the following 
relation:  

2 .h f A 1 
 

             (13) 

Then there exists a unique cubic spline which ap-
proximates the exact solution u  of problem (7).  

Proof From relation (12), we have 2 1
C

C h A F 

  
 . 

Let 1: n 1n R R  be a function defined by  

  2 1 .
Y

Y h A F                  (14) 

To prove the existence of cubic spline collocation it 
suffices to prove that   admits a unique fixed point. 
Indeed, let  and  be two vectors of 1Y 2Y 1nR . Then 
we have  

   
1 2

2
1 2 .Y YY Y h A F F 

 
       (15) 

Using relation (8) and the fact that 
2

2
1

n

jj
B




 , we 

get  

     
   
1 2

1 2 1 2

, ,

,

i Y i i Y i

Y i Y i

J t S t J t S t

L S t S t L Y Y

 

  



   
 

where 
1

L 


f


   . Then we obtain  

1 2 1 2 .Y YF F L Y Y 
    

From relation (15), we conclude that  

    2 1
1 2 1 2 .Y Y L h A Y Y  


    

Then we have  

   1 2 1 2 ,Y Y k Y Y 


    

With 2 1 .k L h A
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by relation (13). Hence the function   admits a unique 
fixed point.  

In order to calculate the coefficients of the cubic spline 
collocation given by the nonsmooth system  

  ,C C                   (16) 

we propose the generalized Newton method defined by  

    1( 1) ( ) ( ) ( )
1=k k k k

n kC C I V C C   
      ,    (17) 

where 1nI   is the unit matrix of order  and  is 

the generalized Jacobian of the function 

1n  kV

 C C 
  , 

(see [8-10], for instance).  

4. Generalized Newton Method 

Let  be a function. Consider the equation  : mF R Rm

  0.F x   

The Newton method assumes that F is Fréchet differ-
entiable, and is defined by  

    1

1 ,k k k kx x F x F x


            (18) 

where  is the inverse of the Jacobian of the 
function F. However, in nonsmooth case 

  1

kF x


 
 kF x  may 

not exists. The generalized Jacobian of the function F 
may play the role of F   in the relation (18). Rade-
macher's theorem states that a locally Lipschitz function 
is almost everywhere differentiable (see [14], for in-
stance). Assume that F is a locally Lipschitz function and 
let FD  be the set where F is differentiable. We denote  

    lim , .
i

B i i
x x

F x F x x D


   F  

The generalized Jacobian of F at , mxR  F x , in 
the sense of Clarke [15] is the convex hull of  BF x :  

   .BF x conv F x              (19) 

For nonsmooth equations with a locally Lipschitz 
function F, the generalized Newton method is defined by  

 1
1 ,k k k kx x V F x
              (20) 

where k  is an element of V  kF x . If the function F is 
semismooth and BD-regular at x, then the sequence kx  
in (20) superlinearly converges to a solution x (see [8,9, 
16,17]). A Function F is said to be BD-regular at a point 
x  if all the elements of  BF x  are nonsingular, and 
it is said to be semismooth at x if it is locally Lipshitz at x 
and the limit  

 , , 0
lim ,

V F x th h h t
Vh

    
  

exists for any . The class of semismooth func-
tions includes, obviously smooth functions, convex func-

tions, the piecewise-smooth functions, and others (see 
[10,18], for instance). Since the function 

mhR

J  defined by 
(6) is a Lipshitz and piecewise smooth function on u , 
then the function  given by (14) is also a 
Lipshitz and piecewise smooth function on . Hence 
we may apply the generalized Newton method to solve 
the problem (16).  

: m R Rm

mR

5. Convergence of the Method 

Theorem 6 If we assume that the penalty parameter   
and the discretization parameter h satisfy the following 
relation  

2 12 .h f A 
 

         (21)   

then the cubic spline S
  converges to the solution u .  

Moreover the error estimate u S  
   is of order 

 2O h .  

Proof From (12) and Lemma 4, we have  

 2 1
C

C C h A F F 1A E .   
    



   

Since E  is of order , then there exists a 

constant 

 4O h

1K  such that 4k h1E 
 . Hence we have  

2 1 4
1 .

C
C C h A F F K h   

 

 
   
 1A

 
 (22) 

On the other hand we have  

     
   
       

, ,

.

i i i i

i i

i i i i

J t u t J t S t

L u t S t

L u t S t L S t S t

  

  

     



 

   







 

Since S  is the cubic spline interpolation of u , then 
there exists a constant 2K  such that  

4
2 .u S K h u   

             (23) 

Using the fact that  
2

2

,
n

j
j

S S C C B C C     



 


          (24) 

then, we obtain  

4 4
2 .

C
F F L C C L K h u      

   
  

By using relation (22) and assumption (21) it is easy to 
see that  

 
2 1

4 (4) 2
2 12 1

2 (4)
2 1 2

1

h A
C C K L h u K h

L h A

K L h u K
h

L

   


 






 





  







 (25) 
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We have  

.u S u S S S      
       

Then from relations (23), (24) and (25), we deduce 

that u S  
   is of order  2O h . Hence the proof is 

complete.  
Remark 7 Theorem 6 provides a relation coupling the 

penalty parameter   and the discretization parameter h, 
which guarantees the quadratic convergence of the cubic 
spline collocation S

  to t  solution uhe   of the penalty 
problem.  

6. Numerical Examples 

In this section we give numerical experiments in order to 
validate the theoretical results presented in this paper. 
We report numerical results for solving a one dimen-
sional obstacle problem by using the cubic spline method 
to approximate the solution of the penalty problem (7), 
and the generalized Newton method (20) to determine 
the coefficients of the cubic spline collocation. Con- 
sider the obstacle problem (1) with the following data: 

 0,2  , 0   and  

 
 

1 on 0,1

1 on 1,2
f

 


,

.
 

The true solution  u x  of this problem is given by  

 

   2

2

1
2 2 if 0,1 ,

2
1

2 1 if 1, 2
2

0 if

x x x

u x x x x

x

   

       

    

,

2, 2 .

 

As a stopping criteria for the generalized Newton’s it- 
erations, we have considered that the absolute value of 
the difference between the input coefficients and the 
output coefficients is less than . 910

Tables 1-4 show, for different values of the discretiza-
tion parameter h, the error between the cubic spline col-
location S

  and the true solution u. We note the con-
vergence of the solution S

  to the function u depends 
on the discretization parameter h and the penalty pa-
rameter  . Theorem 6 implies that for a fixed h, this 
convergence is guaranteed only if there exists 0h   
such that h  . Some experimental values of h  are 
given in Tables 1-4.  

Theorems 1 and 6 imply that we have the error esti-
mate between the exact solution and the discret penalty  

solution is given by 2u S kh 


   . The obtained  

results show the convergence of the discret penalty solu-
tion to the solution of the original obstacle problem as  

Table 1. Results for 
1

=
20

h . 

  e−2 e−3 5e−4 2e−4 = h

u S 
  4.7e−3 7.61e−4 7.12e−4 6.84e−4 

Number of 
iterations

5 7 9 10 

 

Table 2. Results for 
1

=
50

h . 

  e−2 e−3 e−6 2e−5 = h

u S 
  4.5e−3 4.94e−4 1.75e−4 1.59e−4 

Number of 
iterations

6 9 15 22 

 

Table 3. Results for 
1

=
100

h . 

  e−3 e−4 e−5 5e−6 = h

u S 
  4.87e−4 4.41e−5 4.12e−6 2.74e−6 

Number of 
iterations

9 16 31 43 

 

Table 4. Results for 
1

=
200

h . 

  e−3 e−4 e−5 2e−6 = h

u S 
  4.86e−4 4.92e−5 5.25e−6 8.26e−7 

Number of 
iterations

9 18 35 56 

 
the parameters h and   get smaller provided they sat-
isfy the relation (21). Moreover, the numerical error es-
timates behave like  which confirms what we 
were expecting.  

2kh 

7. Concluding Remarks 

In this paper, we have consider an approximation of a 
unilateral obstacle problem by a sequence of penalty 
problems, which are nonsmooth equation problems, pre-
sented in [2,7]. Then we have developed a numerical 
method for solving each nonsmooth equation, based on a 
cubic collocation spline method and the generalized 
Newton method. We have shown the convergence of the 
method provided that the penalty and discret parameters 
satisfy the relation (21). Moreover we have provided an 
error estimate of order  2O h  with respect to the norm 
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. The obtained numerical results show the conver-

gence of the approximate penalty solutions to the exact 
one and confirm the error estimates provided in this pa-
per.  
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