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ABSTRACT 

Recent interest in problems in higher space di- 
mensions is becoming increasingly important 
and attracted the attention of many investiga-
tors in variety of fields in physics. In this paper, 
the electrostatic energy of two geometries (a 
charged spherical shell and a non-conducting 
sphere) is calculated in higher space dimension, 
N. It is shown that as the space dimension in-
creases, up to N = 9, the electrostatic energy of 
the two geometries decreases and beyond N = 9 
it increases. Furthermore, we discuss a simple 
example which illustrates classical renormali-
zation in electrostatics in higher dimensions. 
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1. INTRODUCTION 

The space dimension N plays an important role in 
studying many physical problems. It has been used for 
the radial wave functions of the hydrogen like atoms in 
N dimensions [1,2]. Exactly solvable models have also 
been investigated [3,4]. In addition, a great deal of recent 
work in field theory [5], high energy physics [6], and in 
cosmology [7] has been conducted. Furthermore, prob-
lems of mathematical interest have been investigated in 
higher dimensions [8,9]. One of the fundamental quanti-
ties in physics is the electrostatic energy which is cur-
rently investigated by many workers in various areas 
[10-12]. Therefore, the present author is motivated to 
consider the effect of space dimension on the electro-
static energy of two simple, but illustrative, systems. A 
connected technique to electrostatic energy is the renor-
malization in classical field theory. Renormalization is 
needed to eliminate divergences which appear in the 
computation of Feyman graphs so that sensible physical 

results can be achieved [13-15]. Just recently, Corbò [16] 
considered renormalization technique in classical fields 
and Tort [17] discussed renormalization of electrostatic 
energy. So in the present paper, we will consider an ex-
ample of classical renormalization of electrostatic energy 
in higher space dimensions. The organization of the pre-
sent paper is as follows: In Section 2, we consider elec-
trostatic energy in a hyper spherical shell. In Section 3, 
we calculate the electrostatic energy of a non conducting 
hyper sphere. In Section 4, we present an example of 
renormalization of electrostatic energy in higher space 
dimensions. Section 5 is devoted for conclusions. 

2. ELECTROSTATIC ENERGY OF A 
HYPER SPHERICAL SHELL 

We consider a charged hyper spherical shell of radius R 
and charge Q in N-dimensional space. Our purpose is to 
calculate the electrostatic energy of the shell by two 
methods. In the first method, we calculate the work done 
to bring the charge Q infinitesimally from infinity to the 
surface of the shell, while in the second method, we 
evaluate the volume integral over the squared of the 
electric filed, E


. The two methods require the electric 

field and the electric potential in space. Gauss’s Law in 
N-dimensions is 
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The angular surface integral gives [18], 
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where ( )x  is the Gamma function. Since the charge is 
distributed on the surface, the above two equations yield 
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and 0E   for r R . The electric potential is given by 
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The first method yields the electrostatic energy, W as 
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Which can be written as 
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where   is the surface charge density and S is the sur-
face area of a unit shell as given in Eq.2. The second 
method enables us to write 
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Which is the same result given in Eq.5. It is interest-
ing to note that our result yields the well-known result 
[19] for the three-dimensional case (N = 3), namely 

R

Q
W

0

2

8
 . It is noticed that the electrostatic energy of 

the hyper shell depends on the space dimension N. It is 
illustrative to calculate the electrostatic energy ( shellW ), 
with R = 1, for different values of N. This is calculated in 
units of 0

2 8/ Q  and is shown in the second column of 
Table 1. Our calculated results clearly show that the 
electrostatic energy has a minimum at the space dimen-
sion N = 9. This can be explained as follows: In higher 
space dimensions, there are more orientations in space 
and thus more angles (N-1). This implies that it is rela-
tively easy to assemble electric charges on the hyper 
surface of the shell which explains the decrease in the 
electrostatic energy as the space dimension increases up 
to N = 9. However, beyond this value of N, the surface 
area of the shell becomes smaller and smaller so that the 
decrease in the surface area, as N increases, dominates 
over the increase in the angular orientation. In mathe-
matical terms, the surface area times (N-2) has a maxi-
mum at N = 9 and thus the electrostatic energy has a 
minimum at that value of N. It is tempting to investigate 
the behavior of the electrostatic energy for very large N. 
This can be checked by using Stirling’s formula [20] 
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and letting 2/)2(  Nn , one finds for very large N 
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In the infinite dimensional space, the above equation 
gives an infinite electrostatic energy in the limit as 

N . In this limiting case the surface area of the 
shell vanishes as can be seen from Eq.2 and the use of 
Stirling’s formula. Therefore, the shell behaves like a 
point charge in the infinite dimensional space and thus 
one expects the divergence of the electrostatic energy as 
an infinite self energy of a point particle. 

3. ELECTROSTATIC ENERGY OF A 
CHARGED NON-CONDUCTING HPER 
SPHERE 

Our main purpose here is to calculate the electrostatic 
energy of a uniformly charged non-conduction sphere in 
N-dimensional space. Following the second method of 
Section 2, we calculate the electric field inside and out-
side the sphere. The application of Gauss’s Law given in 
Eq.1 gives 
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where Q is the charge in the sphere. The electrostatic 
energy of the hyper sphere is thus 
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The integrals in the curly bracket yield 22
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and the integral over Ω is given by Eq.2, Therefore, the 
electrostatic energy is simplified to 
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which can be written as 
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where ))2/(/2( 2/ NNV N    is the volume of the unit 
sphere in the N-dimensional space [18]. Clearly, the above 
electrostatic energy depends on the space dimension N, 
and it yields the well-known result [19] for N = 3, namely 
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It is again constructive to calculate the electrostatic 
energy, in units of 0

2 4/ Q , with R = 1 for different 
values of N. This is shown in the last column of Table 1. 
As before, the electrostatic energy has a minimum at the 
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space dimension N = 9. But here, the volume of the hy-
per sphere time (N2−4) has a maximum at N = 9 and 
hence the electrostatic energy has a minimum at that 
value. As it was checked in the previous section, the 
electrostatic energy becomes infinite in the infinite di-
mensional space ( N ). In this limiting case the 
volume of the hyper sphere vanishes and thus the sphere 
behaves as a point charge with an infinite self energy. 

4. RENORMALIZATION OF ELECTRO- 
STATIC ENERGY 

Renormalization, as is widely believed, is required in 
quantum field theory [21-23]. The main task of renor-
malization is to handle and eliminate the divergences so 
that one can obtain sensible physical results. Recently, it 
has been reported that renormalization can be applied to 
classical fields: For example, Corbò [16] gave two ex-
amples for renormalization of electrostatic potential and 
Tort [17] presented an example for renormalization of 
electrostatic energy. Our purpose here is to generalize 
Tort's example to higher space dimension N. Beside its 
mathematical interest, we will show that the divergence 
(or so-called singularity) of the electrostatic energy per-
sists in the infinite dimensional space. Following Tort’s 
model for the classical atom, we consider a point electric 
charge of magnitude Ze, where Z is the atomic number 
and e is the electron charge, surrounded by a concentric 
thin hyper-spherical shell of radius R and electric charge 
equal to −Ze. Ionization (partial or total) of this atom 
amounts to the removal of part of or the entire negative 
charge from the shell. This can be achieved by letting 

)1(  ZeZe , where ]1,0[ . We will show be-
low that the renormalization of the electrostatic energy 
( U ) in N dimensions is given by 
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The electric field inside the shell is only due to the 
point charge, since there is no contribution comes from 
the shell. Thus, the application of Gauss’s Law, given in 
Eq.1, yields 

Rrr
r

NZe
E

NN



  0       ,ˆ

2

)2/(
12/

0


         (14) 

and 0E


 for Rr  . The initial electrostatic energy 
before ionization can be calculated as 
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Obviously, the function )/(1 1Nr  diverges at the origin 
and thus we have a singular point at 0r . As Tort 
suggested, we can avoid this problem by introducing a 
finite non-null radius   for the point charge and thus 
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Now, when the atom is ionized part of the charge 

)( Ze  of the shell will move to infinity and thus the 
enclosed charge within a hyper-spherical Gaussian sur-
face of radius Rr  . Will be .)1( ZeZeZeq    
It is clear that the electric field, for Rr  , remains the 
same as before ionization (see Eq.14) and for Rr   
Gauss’s Law immediately gives 
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Therefore the final electrostatic energy becomes 
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The first term is just initialU  and the integral in the sec-
ond term has the same form as that of Eq.7 and thus, one 
gets 
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Therefore, the change in the electrostatic energy is 
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which is exactly the same as the electrostatic energy of a 
hyper-spherical shell that we found in Section 2. It is no-
ticed that the variation of electrostatic energy is finite for 
all values of space dimension N, except for N  
where U  becomes infinite. Therefore, the renormali-
zation of the electrostatic energy works out for all space 
dimensions but failed in the infinite dimensional space. 
The persistent of the singularity in the infinite dimensional 
space is a result of the infinite electrostatic energy of the 
hyper-shell in that space, as we outlined in Section 2. 

5. CONCLUSIONS 

We have obtained the electrostatic energy of two sys-
tems (a charged spherical shell and a charged non- 
conducting sphere) in the N-dimensional space. Our 
calculated results show that the electrostatic energy 
decreases as the space dimension increases up to 

9N  and it increases without limit beyond that 
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Table 1. The electrostatic energy of the shell and the sphere as 
function of space dimension. 

N 2
0( / 8 )shellW Q   2

0( / 4 )sphereW Q   

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
30 
40 
50 

100 

1 
0.318 
0.159 
0.101 
0.076 
0.065 
0.060 
0.062 
0.067 
0.078 
0.097 
0.125 
0.169 
0.238 
0.349 
0.531 
0.835 
1.353 

6.8 × 103 

2.3 × 106 

3.0 × 1010 

5.4 × 1036 

0.6 
0.2 
0.11 
0.07 
0.06 
0.051 
0.049 
0.051 
0.057 
0.067 
0.08 
0.11 
0.15 
0.21 
0.31 
0.47 
0.75 
1.23 
640 

2.18 × 106 
2.9 × 1010 
5.3 × 1036 

 
value. This behavior is explained as follows: Each of the 
quantities )2( NS  and 2( 4)V N   has a maximum at 

9N  and thus the electrostatic energy of each system 
has a minimum at this value, as shown in Eqs.6 and 12. 
Our results also show that the electrostatic energy, for 
both systems, becomes infinite in the infinite dimen-
sional space. Furthermore, we considered classical re-
normalization of electrostatic energy for a simplified 
model of a classical atom in higher space dimension. It 
was shown that the variation in electrostatic energy (the 
final minus the initial energy) is exactly the same as that 
of the hyper-shell, and thus the singularity persists in the 
infinite dimensional space. 
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