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ABSTRACT 

A dual for a nonlinear programming problem in the presence of equality and inequality constraints which represent 
many realistic situation, is formulated which uses Fritz John optimality conditions instead of the Karush-Kuhn-Tucker 
optimality conditions and does not require a constraint qualification. Various duality results, namely, weak, strong, 
strict-converse and converse duality theorems are established under suitable generalized convexity. A generalized Fritz 
John type dual to the problem is also formulated and usual duality results are proved. In essence, the duality results do 
not require any regularity condition if the formulations of dual problems uses Fritz John optimality conditions. 
 
Keywords: Second-Order Invexity; Second-Order Pseudoinvexity; Second-Order Quasi-Invexity; Nonlinear  
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1. Introduction 

Consider the following mathematical programming prob- 
lems. 

(NP): Minimize  f x   
Subject to  

  0g x   

(NEP): Minimize  f x  
Subject to  

  0g x                   (1) 

  0h x                   (2) 

where : nf R R , : n mg R R  and  are 
differentiable functions. The best-known necessary op-
timality conditions for the mathematical programming 
problem (NP) and (NEP) are Fritz John necessary opti-
mality conditions and Karush-Kuhn-Tucker type opti-
mality conditions. The Fritz John type [1] optimality 
condition which predates the Karush-Kuhn-Tucker type 
optimality conditions by a few years are more general in 
a sense. In order for Karush-Kuhn-Tucker type optimal-
ity conditions to hold, a constraint qualification or regu-
larity condition on the constraint is required. On the other 
hand, no such constraint qualification is needed for Fritz 
John optimality conditions to hold. 

: nh R R k

Fritz John [2] established the following optimality 
conditions for (NP): 

Proposition 1. (Fritz John type necessary conditions). 

If x  is an optimal solution of (NP), then there exist 
r R  and a vector my R  such that  

    0Tr f x y g x     

  0Ty g x   

 , 0r y   

 , 0r y   

Using these optimality conditions, Weir and Mond [3] 
formulated the for Fritz John type dual  r F D  to (NP) 
and established usual duality theorems, this eliminating 
the requirement of a constraint qualification: 

 rF D : Maximize  f u   
Subject to  

    0Tr f u y g u     

  0Ty g u   

 , 0r y   

 , 0r y  . 

Originally, Fritz John derived his optimality condition 
for the case of inequality constraint alone. If equality 
constraint are present in a mathematical programming 
problem and they are converted into two inequality con-
straints, then the Fritz John optimality conditions become 
useless because every feasible point satisfying them. 
Later Mangasarian and Fromovitz [4] derived necessary 

Copyright © 2012 SciRes.                                                                                  AM 



I. HUSAIN, S. K. SHRIVASTAV 1024 

optimality condition for (NEP) without replacing an 
equality constraint by two inequalities and hence making 
it possible to handle equalities and inequalities together 
as many realistic problems contain both equality and 
inequality constraint. Mangasarian and Fromovitz [4] 
established the following Fritz John type optimality con-
dition given in the following propositions: 

Proposition 2. (Generalized Fritz John necessary op-
timality Conditions [4]): 

If x  is an optimal solution of (NEP), then there exist 
r R , my R  and kz R  such that  

      0T Tr f x y g x z h x             (3) 

  0Ty g x                   (4) 

 ,r y  0                   (5) 

 , , 0r y z                   (6) 

2. Sufficiency of Fritz John Optimality  
Conditions 

Before proceeding to the main results of our analysis we 
give the following definitions which are required for 
their validation. 

1) The function  is strictly pseudoconvex 
on  for all 

: nR 
,

R
nR x u  

       0
T

x u u x      u  

Equivalently  

        0
T

x u x u u        

2) For my R  and : ,n m TR R y 
T

 is said to be 
semi-strictly pseudoconvex if y   is strictly pseu-
doconvex for all  0, 0.y y 

Theorem 1. (Sufficient Optimality Conditions): 
Assume that  

1)  .f  is pseudoconvex, 
2)  .Ty g


 is semi strictly pseudoconvex and  

3) .Tz h  is quasiconvex, 
If there exist x , , r R my R  and  such 

that (3)-(8) are satisfied, then 

kz R
x  is an optimal solution 

of (NEP).  
Proof: Suppose x  is not optimal, i.e., and then there 

exists x x  Such that  

   f x f x  

Since  .f  is pseudoconvex, this implies  

    0
T

x x f x    

and 

    0
T

x x r f x               (7) 

with strict-inequality in the above if 0r   

Since x  is feasible for (NEP) we have 

   T Ty g x y g x  

Because of semi strict pseudoconvexity of  .Ty g , 
This implies 

    0
T Tx x y g x              (8) 

With strict inequality with , .  . 0iy   1, 2,3, ,i m 
Also    Tzh x z h x  
Because of quasi-convexity of  at  .Tz h x , 

    0
T Tx x z h x              (9) 

Combining (7), (8) and (9), we have  

         0
T T Tx x r f x y g x z h x     , 

Contradicting (3). Hence x  is an optimal solution of 
(NEP). 

3. Fritz John Type Duality 

We propose the following dual (FrED) to (NEP), using 
Fritz John optimality conditions stated in the preceding 
section instead of Karush-Kuhn-Tucker conditions [5,6] 
and established duality results, thus the requirement of a 
constraint qualification [4] is eliminated: 

Dual Problem: 
(FrED): Maximize  f u  

Subject to  

       0T Trf u y g x z h x           (10) 

  0Ty g u                 (11) 

  0Tz h u                 (12) 

 ,r y  0                 (13) 

 , , 0r y z                 (14) 

Theorem 2. (Weak Duality): Assume that  
 1A : x is feasible for (NEP) and  is feasi-

ble for 
 , , ,u r y z

 rF ED . 
 2A : For all feasible  , , , ,x u r y z  ., f  is pseu-

doconvex,  .Ty g  is semi-strictly pseudoconvex and 
 .Tz h  is quasiconvex. 

Then  

   inf sup rNEP F ED  

Proof: Suppose    f x f u  this, because of pseu-
doconvexity of  .f  yields   , Multi-
plying this, by  We have  

  0
T

x u f u  
0,r 

    0
T

x u r f u               (15) 

With strict inequality in (15) if  0r 
From the Constraints of  NEP  and  rF ED , we have  
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   T Ty g x y g u  

which by semi-strictly pseudoconvexity of  .Ty g  im-
plies  

    0
T Tx u y g u             (16) 

with strict inequality in (16) if 0, 1,2,3, ,i y i  


m





 
As earlier    T Ty h x y h u
This along with quasiconvexity of  implies  .Ty h

    0
T Tx u y h u             (17) 

Combining (15), (16), (17), we have  

        0
T T Tx u rf u y g u z h u      

Contradicting 

        0
T T Tx u rf u y g u z h u      

Hence    f x f u
inf NEP

 
This implies .   sup rF ED 
Theorem 3. (Strong Duality): 
If x  is an optimal solution of  then there 

exist , 
NED

r R my R  and kz R  such that  , , ,x r y z  
is feasible for  and the corresponding values of NED
 NEP  and  rF ED  are equal. If, also f is pseudoconvex, 

 is semi-strictly pseudoconvex and  .Ty g  .Tz h  is 
quasi-convex, then  , , ,x r y z  is an optimal solution of 

.  NED
Proof: Since x  is an optimal solution of , by 

Proposition 2. There exist
NEP

r R , my R  and kRz  
such that  

      0,T Trf x y g x z h x     

  0,Ty g x   

  0g x   

  0h x   

   , 0, , ,r y r y z  0  

This implies  , , ,x r y z  is feasible for  rF ED . Equal- 
ity of objective function of  NEP  and  rF ED  is abo-
vious optimality follows, in view of the hypothesis of the 
theorem1. 

Theorem 4. (Strict Converse Duality): Assume that  
1)  .f  is strictly pseudoconvex,  is semi- 

strictly pseudoconvex and as 
 .Ty g

 .Tz h  is quasiconvex and 
2) The problem  NEP  has an optimal solution x .  
If  , , ,u r y z  is an optimal solution of  rF ED , Then 

u x  i.e. u  is an optimal solution of  NEP . 
Proof: We assume that x u  and exhibit a contra-

diction, it follows from Proposition 2 that there exist 
, r R my R  and  such that kz R  , , ,x r y z  is op-

timal solution of  rF ED , since  , , ,u r y z   is also an 

optimal solution for  rF ED , It follows that  

   f x f u  

by strict pseudoconvexity of  .f  we have  

    0
T

x u f u                (18) 

Also from the constraints of  and NED  rF ED  we 
have    T Ty g x y g u . 

By the semi strictly convexity of , this implies  .Ty g

    0Tx u y g x                (19) 

with strict inequality in the above, if  0iy 
Also    T Tz h x z h u  which by quasi-convexity of 
 .zh  at u , implies  

    0
T Tx u z h u               (20) 

Combining (18), (19), and (20), we have  

         0T Tx u rf u y g u z h u      

which contradicts 

         0T Tx u rf u y g u z h u      

Hence . .u x i e u  is an optimal solution. 
Theorem 5. (Converse Duality): Let  , , ,x r y z  be 

an optimal solution of  rF ED . Assume that  
 1A :  .f  is pseudoconvex,  is semi strictly- 

pseudoconvex and 
 .Ty g

 .Tz h  is quasiconvex. 
 2A : Hessian matrix       2 T Trf g x z h xx y   

is positive or negative definite, and  
 3A : the set     ,T Ty g x z h x   is linearly inde-

pendent, and  
Then x  is an optimal solution of  NEP . 
Proof: By Preposition 2, there exist R  ,  nR 

R  , R  , R   and  such that  mR 

        
    

2

0

T T

T T

f x rf x y g x z h x

y g x z h x

 

 

    

    
  (21) 

  0T f x                  (22) 

    0g x g x                (23) 

    0h x h x               (24) 

   0Ty g x               (25) 

   0Tz h x               (26) 

0r                   (27) 

0T y                  (28) 

 , , , , 0                   (29) 

  , , , , , 0.                   (30) 
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Multiplying (23) by y ≥ 0 and using (25) and (28), we 
obtain  

  0T Ty g x                 (31) 

Multiplying (24) by  and z   0,h x   we have 

  0Tz h x                 (32) 

Multiplying equality constraint of  rF ED  by T  
and using (31) and (32) We have   0T rf x     

Multiplying (21) by   and using (31) and (32), we 
have  

        2 0T Tf x rf x y g x z h x         

Multiplying the above equation by r and using (33), 
we have  

         2 0
T T Tr rf x y g x z h x r      

This because of hypothesis (A2) implies rθ = 0. In view 
of (A3) the equality constraint of  rF ED  implies r ≠ 0, 
i.e., r > 0.consequently θ = 0.  

Multiplying (21) by r and using θ = 0, we have  

        0T Tr f x r y g x r z h x         

Using the equality constraint (10) in the above, we have 

      
  0

T T T

T

y g x z h x r y g x

r z h x

 



    

  
 

This reduces to 

        0T Tr y g x r z h x          

By the linear independence hypothesis (A3). this im-
plies 

  0r    and   0r    

Now if τ = 0, then from above, we have ϕ = 0, ψ = 0 
and from (22) and (23), We have ξ = 0, η = 0, conse-
quently we have  , , , , , 0t        contradicting to (30).  

Hence  > 0, ϕ > 0, and ψ > 0.  
Using 0   in (23) and (24), we have  

  0g x   ,   0g x    

This implies   0g x   and   0.h x   
Thus x  is feasible for  rF ED  and the objective 

functions of  NEP  and  rF ED  are equal in their for-
mulations. Under, the state generalized Convexity, Theo-
rem 1 implies that, x  is an optimal solution of  NEP . 

4. Generalized Fritz John Duality 

Let  1,2, ,M m   and   1, , ,L l  ,I M    
0,1, , .t    with , I I       and 

0

t

I M


 . and J L   with J J    ,    and 

0

t

L J


  . Let  0,1,2, ,K t   and  The fol-  .N K

lowing is the generalized Fritz John type dual to  NEP . 
  :rGF ED  Maximize  f u  

Subject to 

      0T h uTu y g ur f z     

  0,i iy g u   0,1,2,
i I

, t   

  0,j jz h u


  0,1,
J I

2, , t   

 , 0r y   

 , , 0.r y z   

Theorem 6: If  .f  is pseudoconvex,  . ,i
i I

y g

  

N   is semi-strictly pseudoconvex,  . ,i
i I

y g

   

\K N   and  . , 0,1,2,
j I




 , tj jz h


   is quasicon-

vex, 
Then    f sup rNEP GF EDin  
Proof: Let x  be feasible for  and  NE P

 , , ,u r y z  feasible for  rGF ED . Suppose    f x f u  
This by pseudoconvexity of  .f  yields 

   
   

0

0

T

T

x u f u

x u rf u

  

  
            (34) 

with strict inequality in (34) if  0.r 
From the constraint of   and   , we 

have  
NEP rGF ED

   ,i i i i
i I i I

y g x y g u
  

 N          (35) 

Which because of semistrictly pseudoconvexity of  
 i i

i I

y g x


0,1,2, , t  

 T
 implies  

  0,i i
i I

x u y g u


N   

0,iy i

       (36) 

with strict inequality in (36) if some , .I N    
Also  

    0,i i i i
i I i I

y g x y g u
  

  \K N    

And  

    0, ,j j j j
j I

z h x z g u t
 


 

  0,1,2,
j I
  

 . , \K 

 

Which by quasiconvex of  and  i i
i I

y g N



 . , 0,1, 2,j j
j I

z h





 , t   
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respectively imply 

    0, \
T

i i
i I

x u y g u K





 
    

 
 N  

and  

    0,
T

j j
j I

x u z h u





 
    

 
 N



 

combining (34), (35), (36) and above equation we have  

        0
T T Tx u r f u y g u z h u      

contradicting the equality constraint of . Hence  rGF ED
   f x f u

in
 

Implying    f sup .rNEP GF ED 
Theorem 7. (Strong Duality): 
If x  is an optimal solution of  and there ex-

ist 
NEP

r R , my R  and ,kz R  such that  , , ,r x y z  
is feasible for  and the corresponding value of 

 and  r  are equal. If, the hypotheses of 
Theorem 1 hold, then 

 rGF ED
GF ED


 NEP

 , , ,x r y z  is an optimal solution 
of .  EDrGF

Proof: By Proposition 2, there exist r R , my R  
and kz R  such that  

      0,T Trf x y g x z h x     

  0,Ty g x   

 , 0r y  ,  

 , , 0r y z   

Since   0i iy g x  ,  and 1, 2, ,i m    0,j jz h x   
feasibility of  , z, ,r x y  for  is obvious. 
Optimality follows, give the pseudoconvexity of 

 rGF ED
 .f   

and semi-strict pseudoconvexity of  . ,i i
i I

y g


,N   

quasiconvexity of  . , ,i i
i I

y g N





  and quasiconvex-

ity of  . , , 0,1, 2, , tj j
j I

z h N


 


    from Theorem 

1. 
Theorem 8: (Mangasarian [4] Type Strict Converse 

Duality): Assume that 
 1 :A   .f  is strictly pseudoconvex, 

  :2A   is semi-strictly pseudocon-

vex and  

 . ,i i
i I

y g N







 3 :A  and    . , \i i
i I

y g K N






, t

 . ,j j
j I

z h



0,1, 2,    are quasiconvex. 

 4 :A  x  is an optimal solution of .  NEP
If  , , ,r u y z   is an optimal solution of  rGF ED  

then x u  i.e. u  is an optimal solution of  NEP .  
Proof: Assume that x u  and exhibit a contradic-

tion. Since x  is an optimal solution of  , by 
Proposition 2, it implies that there exist , 

NEP
r R my R  

and  such that kz R  , , ,x r y z  is an optimal solution 
of  rGF ED . 

Since  , ,u r ,y z  is an optimal solution for  DrGF E , 
it follows that    f x f u  

This, in view of strict pseudoconvexity of  .f  im-
plies  

    0
T

x u f u                (37) 

From the constraint of   and , we 
have 

NEP  rGF ED

   , 0,1,2, , ti i i i
i I

y g x z g u
 


 


i I
      (38) 

and  

   , 0,1, 2, , tj j j j
j I

x z h u
 


 


j I

z h      (39) 

The inequality (38), in view of semi-strict pseudo con-
vexity of  . ,i iy g N 

i I
  implies  

    0,
T

i i
i I

x u y g u N





 
  
 
 

I N

       (40) 

with strict inequality in (40) if 0,iy i ,  
 


,

. 
By quasiconvexity of . ,i i

i I

\y g





K N  (38) im-

plies 

    0
T

i i
i I

x u y g u


 
  

 
            (41) 

The inequality (39), because of quasiconvexity of 

 . ,j j
j I

z h

  0,1, 2,3, , t    yields,  

    0,
T

j j
j I

0,1, ,u z h u





 
   

 
 tx    (42) 

Combining (37), (40), (41) and (42), we have  

         0u
T T Tx u r f u y g u z h      

which contradicts the feasibility of  z, , ,r u y  for  
 rGF ED . Hence .x u  

Theorem 9 (Converse Duality): Let  
 1 :C   , , ,r x y z  be an optimal solution of  rGF ED . 

 2 :C   .f  be pseudoconvex,  . ,i i
i I

y g N


   semi- 

strictly pseudoconvex,  . , \i i
i I

y g K N





  quasicon-

vex. 
 3 :C  The Hessian matrix  

      2 T Trf x y g x z h x    

is positive or negative definite, and  
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 4 :C  The set  

   , : 0,1, 2, ,i i i i
i I i I

y g x z h x t
 


 

           
     

    

is linearly independent. Then x  is feasible for  NEP
, ,nR R  

. 
Proof: By Proposition 2, there exist  

,R   R  , 0,1, 2, , t    ,R   and  
such that 

mR

        

   

2

0 0

0

T T

k k

i i j j
i I j j

f x rf x y g x z h x

y g x z h x
 

 
 

 

 
   

    

              
   



 

   

 


(43) 

  0T f x                  (44) 

  0, , 0,1,2, ,T
i i ig x g i I           t    (45) 

  0, , 0,1, 2, ,j jh x h j I t              (46) 

  0, 0,1,2, ,i i
i I

y g x t


 


 
  

 
        (47) 

  0, 0,1, 2, ,j j
j I

z h x t


 


 
  

 
        (48) 

0T r                  (49) 

0T y                  (50) 

 0 1 0 1, , , , , , , , , , , 0,t t                 (51) 

 0 1, , , , , , , 0,t                  (52) 

Multiplying (45) and (46) by i  and y jz  respec-
tively and using (47) and (48), we have 

  0T
i i

i I

y g x





 

 
             (53) 

  0T
j j

j I

z h x





 

 
             (54) 

Multiplying (44) by r, we have 

  0r f x                  (55) 

Multiplying (43) by   and using (53), (54) and (53), 
we have  

        2 2 2 0T T Tr r f x y g x z h x      

By positive or negative definite and by hypothesis 
 3C , we have 0.r   

, equality constraint of  rGF ED  

implies that  Hence 0.r  0.   using 0   we have  

   

   

0

0

r

r





0

x

h x
 

i i
i I

j I

r y

r z





 

 
j j

g



 

 

 
  

 

    
 

 

 



 

which in view of the hypothesis 4  gives C 0,r    
0r    , 0,1, 2, , t   . From (44) and (45), we 

have 0   and 0.   consequently we have  

  0,t t 0 1 1, , , , , ,     0, , , , ,   

Contradicting Fritz John Condition (51). Hence 0.   
since 0, 0, r0, 0,       The Equations (45) and 
(46), implies    0,g x h x 0.   

In view of  4C

Thus x  is feasible for  and optimality fol-
lows as earlier. 

NEP

5. Conclusion 

In this exposition, we have formulated a dual and gener-
alized dual by Fritz John optimality conditions instead of 
the Karush-Kuhn-Tucker optimality conditions. Conse-
quently no constraint qualification is required and hence 
such formulations enjoy computational advantage over 
those formulated by using Karush-Kuhn-Tucker. The 
problems of these results can be revisited in multiobjec-
tive and dynamic setting. 
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