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ABSTRACT 

We consider some non-homogeneous Poisson models to estimate the mean number of times that a given environmental 
threshold of interest is surpassed by a given pollutant. Seven different rate functions for the Poisson processes describ-
ing the models are taken into account. The rate functions considered are the Weibull, exponentiated-Weibull, and their 
generalisation the Beta-Weibull rate function. We also use the Musa-Okumoto, the Goel-Okumoto, a generalised Goel- 
Okumoto and the Weibull-geometric rate functions. Whenever thought justifiable, the model allowing the presence of 
change-points is also going to be considered. The different models are applied to the daily maximum ozone measure-
ments data provided by the monitoring network of the Metropolitan Area of Mexico City. The aim is to compare the 
adjustment of different rate functions to the data. Even though, some of the rate functions have been considered before, 
now we are applying them to the same data set. In previous works they were used in different data sets and therefore a 
comparison of the adequacy of those models were not possible. The measurements considered here were obtained after 
a series of environmental measures were implemented in Mexico City. Hence, the data present a different behaviour 
from that of earlier studies. 
 
Keywords: MCMC Algorithms; Non-Homogeneous Poisson Models; Change-Points; Ozone Air Pollution; Mexico 

City 

1. Introduction 

Inhabitants of large cities throughout the world may 
present health problems related to high levels of pol- 
lution. Among the pollutants affecting the health of those 
inhabitants we have ozone. When exposed to ozone 
concentration levels above 0.11 parts per million (0.11 
ppm), a very sensitive part of the population may present 
a deterioration in their health (see for instance [1-8]). 

In the case of Mexico City, even though the air quality 
has improved considerably in the past twenty years, ozone 
still presents high concentration levels. The Mexican en- 
vironmental standard for ozone is 0.11 ppm [9] and 
individuals should not be exposed to it, on average, for a 
period of one hour or more. That standard is frequently 
surpassed by ozone concentration in Mexico City. Even 
though the Mexican standard is 0.11 ppm, the threshold 
used to declare an emergency alert in Mexico City is 0.2 
ppm (see www.sma.df.gob.mx). This threshold is seldom 

surpassed. Throughout this work we are going to take 
0.17 ppm as our threshold. We do so, because that is an 
intermediate value between 0.11 ppm and 0.2 ppm. Also, 
we would like to know how emergency alert situations 
would be if 0.17 ppm, instead of 0.2 ppm, was the thre- 
shold considered to declare them in Mexico City. That is 
important since we could have an idea of how frequent 
emergency alerts would be declared if 0.17 ppm were 
considered by the environmental authorities as the thre- 
shold instead of 0.2 ppm. Using that information it is 
possible to plan the lowering of environmental threshold 
in such a way that little by little the Mexican environ- 
mental standard would be approached without causing too 
much disruption in the population’s activities. The theore- 
tical threshold is analysed and prediction on the number 
of environmental alerts that would be declared can be made. 

There are several works in the literature dealing with 
the problem of modelling the behaviour of pollutants in 
general and in particular ozone. Those works study the 
problem from different points of view. They also use a *Corresponding author. 
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great variety of methodologies to analyse the different 
aspects of the problem. Some of the many works study- 
ing ozone behaviour are [10-13] considering extreme value 
theory; [14-18] using time series analysis; [19,20] con- 
sidering Markov chain models; [21-23] using stochastic 
volatility models; and [24] with an analysis of the be- 
haviour the maximum measurements of ozone with an 
application to the data from Mexico City. [25,26] present 
studies that analyse the impact on air quality of the 
driving restriction imposed in Mexico City. 

In this work the interest resides in studying the prob- 
lem from the point of view of estimating the mean number 
of times that the concentration surpasses a given threshold. 
In order to study this problem, Poisson processes may be 
used. Among the works using that methodology we may 
quote [27,28] using homogeneous Poisson processes and 
[29-32] using non-homogeneous Poisson processes. 

The non-homogeneous approach is going to be fol- 
lowed here as well. We consider several rate functions 
for the Poisson process modelling the problem. One of 
the aims here is to compare the fit of different rate 
functions, considered in the literature, to the ozone data 
from Mexico City obtained after a series of environ- 
mental measures were taken to decrease air pollution 
levels. Even though some of the rate functions consi- 
dered here were taken into account in previous works, 
usually they were applied to different data sets. Hence, it 
was not possible to compare their performance when 
applied to the same set of measurements. That was so 
because depending on the dataset the rate function that 
best fitted the data would change. Therefore, using the 
data obtained after the series of environmental measures 
were implemented would give a more precise infor- 
mation on how the pollutant is behaving in more recent 
times and also on the impact that those measures might 
have had on the ozone behaviour. Hence, in here we are 
going to consider the many different rate functions and 
compare their performance when using the more recent 
ozone measurements. When the best Poisson model is 
selected for the data considered here, then we may per- 
form inference about the mean time between surpassings 
of the 0.17 ppm threshold and also about the probability 
of a certain number of exceedances in a time interval of 
interest. Another aim here is to present the code in R 
when some of the functions are used so the readers can 
use them in their own studies if the situation arises. 

This work is divided as follows. Section 2 presents the 
different non-homogeneous Poisson models considered 
here. In Section 3 we have the Bayesian formulation of 
the problem. An application of the results to ozone 
measurements from Mexico City is given in Section 4. 
Finally, in Section 5, a discussion of the results presented 
here is given. Some of the computer programmes used in 

the estimation of the parameters can be obtained from 
https://sites.google.com/site/jmbarrios/recursos/result-rep
orts-for-jep. 

2. The Poisson Models 

The mathematical description of the models considered 
here is given as follows. Assume that a given environ- 
mental threshold is surpassed by a pollutant’s concen- 
tration according to a non-homogeneous Poisson process 
with some rate function , . Hence, if   > 0t 0t 

 : 0tN N t   denotes the non-homogeneous Poisson 
process recording the number of times that the pollutant 
surpasses the threshold of interest, then t  indicates 
the number of times that exceedances occurred in the 
time interval 
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We consider several parametric forms for the rate 
function  t , . They are the Weibull (W), its 
generalisation, the exponentiated-Weibull (EW) (see for 
instance [33,34]) and their generalisation, the Beta- 
Weibull (BW) [35-37] rate function. We also consider 
the Musa-Okumoto (MO) [38], the Goel-Okumoto (GO) 
[39] and a generalised form of Goel-Okumoto (GGO) 
rate functions as well as the Weibull-geometric (WG) 
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with      , ,x x ,I a b B a b B a b , where  
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Remark. Note that in the case where = = 1 

= 1

, 
, , corresponds to the rate function given 
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information see [36], where an analysis of the behaviour 
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The parameters of the models that must be estimated 
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 and 

( )WG  when the Weibull, exponentiated-Wei- 
bull, Beta-Weibull, Musa-Okumoto, Goel-Okumoto, gener- 
alised Goel-Okumoto, and the Weibull-geometric models 
are used, respectively. 

= , , p θ

3. Bayesian Formulation of the Models 

Take  a real number and assume that during the 
time interval 

> 0T
 0,T  there are  days in which the 

concentration of a given pollutant surpasses a threshold 
of interest. Let 

> 0K

1 2, , , Kd d
, , Kd

d


 indicate those days and let 
 be the observed data. = ,D d d 1 2

The parameters of the models are estimated using a 

sample drawn from their respective posterior distribu- 
tions. The posterior distribution of a parameter  given 
the data , indicated by , may be written as 
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When the presence of change-points is allowed, then 
we have from [30,31,43,44], that the likelihood function 
takes the form,  
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where  ,j jφ θ τ , with  1 2= , , , J  τ   the set of 
possible change-points, and where jθ
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Remark. The likelihood function in the case of the 

Weibull, exponentiated-Weibull, Musa-Okumoto, Goel- 
Okumoto and generalised Goel-Okumoto rate functions 
may be found in [29,31,32,34]. Hence, in here we only 
present the expression for the likelihood function in the 
cases of the Beta-Weibull and Weibull-geometric rate 
functions. 

Consider the Beta-Weibull rate function. In this case, 
we have that,  
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In the case of the Weibull-Geometric rate function, the 
likelihood function has the following form,  
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The prior distributions as well as their hyperpara- 
meters, which will be considered known, are presented in 
Section 4 when we apply the results to the ozone data 
from Mexico City. 

Estimation of the parameters is going to be performed 
using a sample drawn form their respective complete 
marginal conditional posterior distribution using either 
the Gibbs sampling algorithm [45] internally imple- 
mented in the software WinBugs or a Gibbs sampling 
together with a Metropolis-Hastings algorithm [46,47] 
programmed in R (in the case of the model using the 
Beta-Weibull rate function). When using the software 
WinBugs, we only need to specify the likelihood func- 
tion and the prior distributions. However, when using the 
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Weibull rate function (model with no change-point) are 
given by  

 

    
 

 

   

1
( / ) /

=1
/

( / )

| , , ,

1

,

,

i

i

d di
K i

K

i
d

e

Te

P D

d e e

I

I P

    





   




 

  


 





 









 



  

 
 

 
      

1
/

( / )
=1

/

| , , , ,

1
,

, ) ,
i

di
K

Tei
d

e

P D

e
I P

I B

 





   

  
   







    
  

 
  
 


 

 

      
( / )

( / )
=1

( / )

| , , ,

,
, ,

dK i

Tei
die

P D

e
I P

I B

 




   

 

      
 

 

   

1

=1

( / )

| , , ,

1

,

, .

i i

i

d d
K i

K

i
d

e

Te

P D

d e e

I

I P

    





   




 

  


 







 
 

 
 
 
 



  

Remark. Note the  ( ) ,I a b  function does not have 
an expression in terms of elementary functions. However, 
it can be estimated very precisely. [48] proposes an 
algorithm to do such estimate which is now implemented 
in R. That was used in this work. 

Convergence of the algorithm is monitored using the 
analysis of the trace plots and in some cases the 
Gelman-Rubin test [49] is also used. In the case of the 
Beta-Weibull the Geweke test was considered (see [50]) 
in addition to visual inspection of the trace plots. 
Selection of the best model to fit the data set considered 
here is made by visual inspection of the plots of the 
accumulated observed and estimated means and also 
using the deviance information criterion (DIC) and the 
Bayes Discrimination Method (BDM). The deviance is 
defined by    = 2log |Dev L D c   θ θ , where  is 
the vector of parameters of the model,  is the ob- 
served data, 

θ
D

 |L D θ  is the likelihood function of the 
model and c  is a constant that is not needed when 
comparing the models. The DIC [51] is given by 

 ˆ 2= DDIC Dev nθ  ˆDev θ
θ̂

 

, where  is the deviance 
evaluated at the posterior mean  and  

 ˆev Dev θ θ=n E DD  is the effective number of 
parameters of the model. Smaller values of DIC indicate 
better models. In the case of the Bayes Discrimination 
Method, we have from [52] that the marginal likelihood 
function (MLF) of the whole data set  for Model l , 

 is given by  

 

= 1, 2, ,l M
D

   [ ] [ ] [ ]= | l l
lV L D P d l             (5) 

where [ ]l  is the vector of parameters for Model  and l
 [ ]lP   is the joint prior distribution for [ ]l . The 

Bayes Discrimination method prefers Model  to 
Model  if 

i
j < 1j iV V . Also, from [52] we have that 

 may be approximated by the expression  lV
     1/2

|L D Pθ θ 

θ

/2
2π

d  , where  is the dimension 
of the vector of parameters ,  is the estimated 
posterior mode of , 

d
θθ

 θ


P
θ

 is the joint prior distri- 
bution of  evaluated in θ ,  is minus the inverse 
Hessian matrix of 


  h L )D P  θ  = logθ | θ  evaluated 

at , and θ   is the determinant of . 

  
   






 
    
 


 Remark. We have decided to use both the DIC and 
BDM as well as graphical methods to choose the model 
that best fits the data because in some cases the DIC 
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selects the best model in accordance with the graphical 
fitting, but in some cases it does not. Hence, we have 
decided to use another discrimination methods in ad- 
dition to the DIC. Therefore, using both methods we are 
able to compare their performance. 

4. An Application to Mexico City Ozone  
Measurement 

In this section we apply the models, presented in earlier 
sections, to the ozone measurements from the monitoring 
network of Mexico City. The Metropolitan Area of 
Mexico City is divided into five sections, namely, NE 
(Northeast), NW (Northwest), CE (Centre), SE (South- 
east) and SW (Southwest) (see for instance [19,29] and 
www.sma.df.gob.mx). This division is the one that is 
currently used to declare environmental alerts in Mexico 
City. Hence, we are going to consider this splitting 
instead of taking another spatial approach. 

Measurements are obtained minute by minute and the 
averaged hourly result is reported at each station. The 
daily maximum measurement for a given region is the 
maximum over all the maximum averaged values re- 
corded hourly during a 24-hour period by each station 
placed in the region. The data used here correspond to 
the daily maximum ozone measurements taken from 01 
January 2000 until 31 December 2008, giving a total of 

 observations. The mean concentration levels 
for regions NE, NW, CE, SE and SW are, respectively, 
0.1026 ppm, 0.00923 ppm, 0.1087 ppm, 0.1085 ppm and 
0.1246 ppm with respective standard deviation given by 
0.0416, 0.0319, 0.0412, 0.0369 and 0.0456. We are going 
to analyse each region separately. Recall that the thre- 
shold considered here is 0.17 ppm. During the period of 
time , that threshold was surpassed in 197, 42, 202, 
125 and 440 days in regions NE, NW, CE, SE, and SW, 
respectively. 

= 3288T

0,T 

The prior distributions as well as their hyperpara- 
meters are given as follows. We first consider the situa- 
tion where no change-points are present. In the case of 
the Weibull rate function for all regions, the parameters 
  and   have uniform prior distributions defined on 
the intervals (0, 2) and (0, 100), respectively. When we 
consider the exponentiated-Weibull rate function we 
have the following. The parameter   has a Gamma (a, 
b) prior distribution with hyperparamters  and 

 for all regions. The parameter 
= 0.7a

= 0.1b   has a Gamma 
(1, c) prior distribution when considering regions NE, CE, 
SE and SW. In the case of regions NE, CE and SE the 
hyperparameter is  and is  for region 
SW. When we consider region NW, 

= 0.2c = 0.08c
  has a Gamma 

prior distribution with hyperparamters  and 
. The parameter 

= 0.25a
= 0.1b   is such that for regions NE, 

CE, SE and SW its prior distribution is a uniform 
distribution defined on the interval (0, 100). In the case 
of region NW its prior distribution is a Gamma (1, ) 
distribution with hyperparameter . When taking 
into account the Beta-Weibull rate function for all 
regions and all parameters we consider Gamma prior 
distributions. The hyperparameters are, for all regions, 

 in the case of the parameter 

c
= 50c

= 0.5a  ,  for the 
other parameters, and  for the parameters 

= 1a
= 1b  ,   

and   and  for the parameter = 10b  . When the 
Musa-Okumoto rate function is considered,   and   
will have Gamma (500,000, 10) and Gamma (200,000, 
10) prior distributions, respectively. When we consider 
the Goel-Okumoto rate function we have that   and 
  have prior distributions Gamma (1200, 1) and 
Gamma (0.1, 1), respectively, for all regions. In the case 
of the generalised Goel-Okumoto we assume, for all 
regions, uniform prior distributions defined on the in- 
tervals (500, 2000) and (0.5, 1.5) for the parameters   
and  , respectively. In the case of the parameter  , a 
Gamma prior distribution with hyperparameters  
and  is considered for all regions. When we take 
into account the Weibull-geometric rate function two 
steps were considered. In the first step, for all regions, 
uniform prior distributions defined on the intervals (0, 2), 
(0, 100) and (0, 1) for the parameters 

= 0.1a
= 1b

 ,   and , 
respectively, are considered. In the second step, based on 
the information provided by the first step, more in- 
formative prior distributions are taken. Hence, we have 
that for the parameters 

p

  and   for all regions we 
use Gamma prior distributions as shown in Table 1. 

In the case of the parameter  we take a Beta ( ) 
prior distribution whose hyperparameters are  
for all regions and , for regions NE, CE, SE and 
SW, and is  for region NW. (In here, Gamma 
( ) and Beta ( ) are the Gamma and Beta 
distributions with means 

p ,e f
= 1.03e

= 2

,e f

f
= 1.6f

,a b
a b  and  e e f  and 

variances 2a b  and    2
e f 1ef e f    , respec- 

tively). 
Remark. The prior distribution of the parameters as 

well as their hyperparameters were selected based on 
information provided by previous studies. 

In all cases, a sample of size 3234, taken every 30th 
generated value after a burn-in period of 3000 steps was 
used to perform the estimation of the parameters. The 
DIC and MLF values used in the selection of the model 
that best fits the data are given in Table 2. 

It is possible to see that the smallest value of the DIC 
is achieved, for all regions, when the Beta-Weibull rate 
function is considered. When considering the BDM, we 
have that the best model is the MO model for regions SE 
and CE, the BW model for region SW, and the WG with 
uniform prior distribution model for region NW. In the    
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Table 1. Prior distribution for the parameters α and σ when the Weibull-geometric rate function is taken into account. 

 NE, CE NW SE SW 

  Gamma (0.85, 1) Gamma (0.72, 1) Gamma (0.7, 1) Gamma (1, 1) 

  Gamma (3.5, 1) Gamma (2.56, 1) Gamma (0.8, 1) Gamma (0.85, 1) 

 
Table 2. DIC and marginal likelihood function (MLF) values for all regions and models without the presence of change- 
points. 

WG 
  W EW BW MO GO GGO 

Step 1 Step 2 

DIC 395400 395700 2779.21 396800 395500 395300 395350 395400 
NE 

MLF 2.82E−215 6.13E−415 6.27E−335 1.7E−212 8.46E−234 2.2E−201 1.54E−220 1.24E−219 

DIC 84410 84410 629.16 86410 84450 84410 84418.8 84420 
NW 

MLF 4.68E−79 1.48E−124 7.76E−77 8.58E−81 2.24E−84 9.65E−80 1.18E−74 2.65E−75 

DIC 405400 405800 2779.21 406700 405500 405500 405400 405400 
CE 

MLF 2.2E−227 1.67E−414 3.44E−292 1.83E−198 2.42E−253 5.45E−207 1.19E−221 5.72E−226 

DIC 251000 251100 1771.91 252600 251100 251100 250990 251000 
SE 

MLF 4.1E−163 2.51E−275 5.44E−214 2.67E−148 3.06E−177 9.96E−158 5.44E−160 7.82E−169 

DIC 882400 883900 6966.94 883300 882500 882500 882432 882400 
SW 

MLF 2.6E−338 3.5E−891 1.21E−133 8.58E−309 1.4E−316 1.8E−282 4.37E−338 7.01E−347 

 
case of region NE, the selected model is the GGO model. 

Besides the DIC and the BDM, a visual inspection of 
the fit of the observed and estimated accumulated means 
is also used. Hence, in Figure 1, we have the accumu- 
lated observed and estimated means when models W, 
EW, BW and WG with uniform prior distributions are 
considered. Plain solid line represents the accumulated 
observed mean and lines with ▲, ●, ■, and ♦, represent 
the estimated mean when using models W, EW, BW and 
WG, respectively. 

Observing Figure 1 we may notice the following. The 
worst fit is given by the BW and EW rate functions in all 
regions with the exception of region NW. In that case, 
we have that the best fit is given by the BW rate function. 
Nevertheless, the worst fit still is provided by the EW 
rate function. The best fit in the other regions are given 
by either the Weibull or the Weibull-geometric rate 
function. 

In Figure 2, we have the accumulated observed and 
estimated means when we consider the best model that 
fitted the data which is presented in Figure 1 (in this case 
we are taking the W rate function for regions NE, CE, SE 
and SW) and also models MO, GO and GGO. Again, 
plain solid line represents the accumulated observed 
mean and lines with ■, ♦, ● and ▲, represent the 
estimated means when the best fit from Figure 1, models 

MO, GGO and GO are considered, respectively. 
We may observe from Figure 2 that for regions NE, 

CE, SE and SW the fit improves when using the GGO 
rate function instead of taking either the W or WG rate 
function. Nevertheless, in the case of region NW the fit is 
improved when using the MO rate function. Looking at 
the plots for region SW we also have that the MO model 
gives a very good approximation for the accumulated 
observed mean. In the case of regions NE, CE and SE, 
the fit provided by the MO model is not as good as the 
one given by the GGO model, but is still better than the 
fit provided by the other rate functions. 

Remark. Even though the DIC and BDM criteria may 
select a given model, we may notice that it is worthwhile 
to use the graphical criterion as well. 

In Table 3, we have the estimated posterior mean, 
standard deviation (indicated by SD) and the 95% 
credible intervals for all parameters and regions NE, CE, 
SE and SW, when the GGO model is used. We present 
the results only for that model because it is the one 
providing the best graphical fit for the regions considered. 
Note that region NW is not included since in that case the 
best fit is provided by the MO model followed by the 
BW rate function (The estimated value of the parameters 
of those rate functions are given in Table 4). 

In Table 4, we give the estimated quantities of interest     
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Figure 1. Accumulated observed and estimated means for all models and all regions. Solid plain line represents the accumu- 
lated observed mean. Lines with ■, ●, ▲, and ♦ correspond to the accumulated estimated mean when models Beta-Weibull, 
exponentiated-Weibull, Weibull and Weibull-geometric, respectively. 
 
Table 3. Estimated mean, standard deviation (indicated by SD), and the 95% credible intervals for the parameters of the 
generalised Goel-Okumoto rate function without the presence of change-points and regions NE, CE, SE and SW. 

GGO 
  

Mean SD 95% Credible Interval 

  602.9 163.4 (501.6, 1135) 

  5.233E−3 1.558E−3 (2.393E−3, 8.398E−3) NE 

  5.537E−1 3.247E−2 (5.037E−1, 6.271E−1) 

  581 129.2 (501.3, 966.6) 

  4.458E−3 1.415E−3 (2.11E−3, 7.572E−3) CE 

  5.868E−1 3.972E−2 (5.143E−1, 6.702E−1) 

  874.2 375 (506.5, 1856) 

  2.183E−3 9.718E−4 (6.959E−4, 4.406E−3) SE 

  5.58E−1 3.776E−2 (5.037E−1, 6.43E−1) 

  508.4 8.009 (500.3, 530.1) 

  8.897E−4 3.209E−4 (4.477E−4, 1.689E−3) SW 

  1.04 5.099E−2 (9.365E−1, 1.13) 
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Figure 2. Accumulated observed and estimated means for all models and all regions. Solid plain line represents the accumu- 
lated observed mean. Lines with ■ correspond to the estimated Beta-Weibull accumulated function in the case of region NW 
and to the estimated Weibull accumulated mean in for the other regions, lines with ♦, ● and ▲, correspond to the accumu- 
lated estimated mean when the MO, GGO and GO rate functions are considered, respectively. 
 
Table 4. Estimated mean, standard deviation (indicated by SD) and the 95% credible intervals for the parameters of the 
Musa-Okumoto and Beta-Weibull rate functions without the presence of change-points and regions NE, NW and SW. 

MO BW 
  

Mean SD 95% Credible Interval Mean SD 95% Credible Interval 

  160.3 42.08 (93.88, 256.7) - - - 
NE 

  64.29 6.922 (52.02, 78.91) - - - 

  140.4 88.66 (33.72, 377.2) 4.97E−1 7.53E−2 (2.94E−1, 5.8E−1) 

  13.11 3.216 (8.066, 20.5) 7.57E−1 7.53E−1 (1.96E−2, 2.8) 

  - - - 2.43 2.54E−1 (1.9, 2.92) 
NW 

  - - - 6.36E−1 5.44E−1 (4.03E−2, 2) 

  256.3 42.82 (181.1, 347.4) - - - 
SW 

  167.6 12.65 (144.3, 193.5) - - - 

The symbol “-” is used to indicate that for that particular region the respective model was not selected as providing a good fit. 

 
when either the MO or the BW models are used and 
regions NE, NW and SW are considered. Note that 
besides region NW we also consider regions NE and SW. 
That is so because the MO model also gives a good fit 

for those regions in addition to the GGO model. 
As can be seen from Figures 1 and 2, in some cases 

the model with presence of change-points should be con- 
sidered as an option. Hence, for some of the models and 
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regions we also allow the presence of one or two change- 
points depending on the region and model. Following in 
that direction we consider the MO and GGO models with 
the presence of one change-point in the case of regions 
NE, CE, SE and SW. We also assume the presence of 
two change-points in the case of GGO model and data 
from region SE. The prior distributions taken in those 
cases are as follows. When the GGO model is considered, 
for all regions and cases (one and two change-points) we 
have that i  and i , , have uniform prior 
distributions defined on the intervals (500, 2000) and 
(0.1, 1), respectively. The parameter i

= 1,2,3i

  have a Gamma 
prior distribution with hyperparameters  and 

. When one change-point is considered, we have 
that the change-point 

= 0.1a
= 1b

  has an uniform prior dis- 
tribution defined on the interval (0, 100) and in the case 
of two change-points, then 1  and 2  have uniform 
prior distributions defined on the intervals (0, 500) and 
(1000, 1500), respectively. In the case of the MO model 
and one change-point, the change-point   has the same 
prior distribution as in the case of the GGO model. The 
parameters i  and i  have uniform prior distributions 
defined on the intervals (0, 500) and (1, 2500), respec- 
tively, . = 1,2i

Estimation of the parameters in the case of the GGO 
model with one-change point was performed using a 
sample of size 3234 obtained every 30th generated value 
after a burn-in period of 3000 iterations. When we con- 
sider the GGO model with two change-points, the in- 
ference was made using a sample of size 8333 taken 
every 30th generated value after a burn-in period of 
150,000 steps. 

Table 5 presents the value of the DIC and MLF for the 
regions and models where the presence of change-points 
is assumed. 

Looking at Table 5 we have that, according to the 
deviance information criterion, for regions NE, CE and 
SW either the MO or the GGO with a change-point 
model could be chosen. However, when considering 

BDM we have that in all cases the GGO model with a 
change-point should be selected. In the case of region SE, 
when using the DIC, we have that either the MO with a 
change-point or the GGO model with two change-points 
could be selected. Nevertheless, when using the BDM we 
have that the MO model with a change-point is the one 
that should be selected. 

When comparing the values given in Tables 2 and 5, 
we have that when using the DIC, for all regions, the 
selected model should be the Beta-Weibull model. When 
using the BDM we have that in the case of regions NE 
and CE the GGO model with a change-point should be 
used. However, when considering region SE, the MO 
model with a change-point is the one that should be 
selected. In the case of the remaining regions NW and 
SW, the selected result remains unchanged. 

Figure 3 presents the plots of the estimated and ob- 
served accumulated means when models MO and GGO 
are considered and the presence of change-points is 
allowed (one change-point in the case of regions NE, CE, 
SE and SW and also two change-points in the case of 
region SE and model GGO). Plain solid lines represents 
the observed accumulated means and lines with ■ and ● 
represent the estimated accumulated means when the 
GGO and the MO models with one change-point are used, 
respectively. In the case of region SE, the line with ▲ 
represents the estimated accumulated mean when the 
GGO model with two change-points is considered. 

Observing Figure 3, we may see that the GGO model 
with the presence of one change-point provides a very 
good fit in the case of regions NE and SW. Even though 
that model gives a good fit also in the case of region CE 
we have that the MO model with one change-point gives 
a better approximation. In the case of region SE both the 
MO model with one change-point and the GGO model 
with two change-points provide almost the same approxi- 
mation and both are better than the one given by the 
GGO model with only one change-point. 

Tables 6 and 7 present the estimated quantities of  
 
Table 5. DIC and marginal likelihood function (MLF) values for the regions and models where the presence of change-points 
is allowed. 

  NE CE SE SW 

DIC 395,300 405,300 250,900 882,300 
MO—one change point 

MLF 4.88E−157 1.66E−231 4.55E−72 2.6E−583 

DIC 395,300 405,300 854,000 882,300 
GGO—one change point 

MLF 8.76E−62 2.02E−36 4.26E−174 2.19E−291 

DIC - - 250,900 - 
GGO—two change points 

MLF - - 2.02E−245 - 

The symbol “-” is used to indicate that for that particular region the respective model was not selected as providing a good fit. 
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Figure 3. Accumulated observed and estimated means for all models with change-points and regions NE, CE, SE and SW. 
Solid plain line represents the accumulated observed mean. Lines with ■ correspond to the estimated GGO accumulated 
function with one change-point, those with ● correspond to the estimated MO accumulated function with one change-point 
and that with ▲, in the case of region SE, corresponds to the estimated GGO accumulated function with two change-points. 
 
interest when we consider the GGO and the MO models 
with one change-point and regions NE, CE and SW and 
when we consider the GGO model with two change 
points and the MO model with one change-point and 
region SE. 

Remark. The estimated parameters for all models 
considered here and for all regions can be found in 
https://sites.google.com/site/jmbarrios/recursos/result-rep
orts-for-jep. 

5. Discussion 

In this paper we have considered several non-homoge- 
neous Poisson models as possible models to explain the 
behaviour of the mean number of times that a given 
ozone threshold is surpassed in a time interval of interest 
by the daily maximum ozone concentration. The interest 
was to see which model fits better the ozone data from 
Mexico City obtained after a series of environmental 
measures were taken aiming to decrease the emission of 

pollutants, in particular, ozone precursors. 
It is possible to see that depending on the criterion 

used, the selected model varied. That can be seen when 
looking at Tables 2 and 5, and Figures 1-3. Hence, when 
the deviance information criterion is used, the selected 
model, for all regions, was the one considering the BW 
rate function for the Poisson model. Contrasting this 
selection with the plots in Figures 1-3, we have that only 
in region NW that model provides a good graphical fit. 
That fit is only improved by the use of the MO rate 
function (see Figure 2). When using the Bayes discri- 
mination method we may observe from Tables 2 and 5, 
that the model selected to best explain the ozone data 
varied according to region. Hence, we have that the GGO 
model with a change-point was the one selected when 
regions NE and CE were considered and the WG, MO 
with a change-point and BW models were the ones se- 
lected when we take into account regions NW, SE and SW, 
respectively. Note that the BW model was also the one 
selected for region SW when using the DIC, however, 
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Table 6. Estimated mean, standard deviation and the 95% 
credible intervals for the parameters of the Musa-Okumoto 
rate function with the presence of one change-spoint for 
region NE, CE, SE and SW. 

MO One Change-Point 
  

Mean SD 95% Credible Interval

1  401.5 71.2 (239.2, 496.5) 

2  173.8 134 (5.213, 464.8) 

1  125.8 17.43 (9.068, 157.9) 

2  45.37 7.161 (32.75, 60.57) 

NE 

  865.7 55.52 (651.8, 946.7) 

1  435.7 52.38 (305.8, 498.1) 

2  142.9 123.2 (3.839, 446.1) 

1  134.5 14.53 (104.9, 162.5) 

2  42.39 7.05 (29.69, 57.31) 

CE 

  944.7 69.4 (672.8, 998.1) 

1  403.2 84.41 (165.1, 497.1) 

2  183.2 138.6 (5.551, 474.4) 

1  79.6 19.4 (11.91, 108.8) 

2  29.67 6.602 (18.59, 44.68) 

SE 

  794.4 238.8 (36.56, 996.5) 

1  453.7 44.67 (336.9, 498.5) 

2  114.5 110.8 (2.463, 410.3) 

1  269 29.85 (188.5, 313.9) 

2  116 13.91 (92.62, 146.9) 

SW 

  921.4 185.8 (244.5, 998.6) 

 
the fit of the estimated mean to the observed mean is not 
appropriate (see Figure 1). Based on the graphical fit we 
have that the GGO model with one change-point was the 
one providing the best approximation for region SW (see 
Figure 3). However, the MO model with a change-point 
also provides a good fit for the data from that region as 
well. Note that the model also gives a reasonable fit 
when considering the data from the last four years when 
considering regions CE and NE (see Figure 3) and also 
during the first two years of the measurements obtained 
in region NE. We may also notice that the MO model 
with one change-point provides a very good fit when 
taking into account the data from the first two years and 
regions NE and CE. The fit is not as good for the later 
years in the same regions. It is possible to see that for 
region SE either the MO model with one change-point or 
the GGO model with two change-points provides a 

reasonable fit for the first six years, however, the fit 
becomes worse in the final years of the observational 
period. 

Remark. Note that the change-point for regions NE, 
CE and SW corresponds to a day in May, in June and in 
May 2001, respectively. In the same manner those for 
region SE correspond to a day in May in 2001 and 
another in July 2002. Hence, we may see that change- 
points start to occur as soon as the environmental meas- 
ures taken until the year 2000 start to have an effect on 
the ozone concentration levels. 

Even thought the BW rate function is a more complex 
function when compared to the others considered here, 
we have that the BW programmed in R was about six 
times faster than when using, the particular case of BW, 
the EW rate function and the WinBugs software. One 
drawback though, is that we had a poor mixing when 
considering sampling from the posterior distribution of 
the variable .  That shortcoming was corrected by con- 
sidering more iterations of the Metropolis-Hastings step 
for that variable before moving on to the next step in the 
Gibbs sampling part of the algorithm. In that case, we 
run ten steps of the Metropolis-Hastings algorithm for 
the variable   against one step for each of the re- 
maining parameters of the BW rate function. 

When comparing the graphical fit with the results from 
previous works we have the following. If we consider the 
analysis performed by [29] using the EW and W models 
and data from 01 January 1998 to 31 December 2004, we 
have that for all regions the selected model using the 
Bayes information and the deviance information criteria 
was the one considering the particular case of Weibull 
rate function. In terms of graphical adjustment we have 
that the Weibull rate function gives a much better fit 
when considering the 1998-2004 data for all regions. In 
[30], we have the use of the W, MO, GO and GGO rate 
functions applied to the overall maximum ozone mea- 
surements from 01 January 1998 to 31 December 2004. 
Even though the time interval in which the data was 
collected was the same as in [29], we have that the 
regional division of the Metropolitan Area was not taken 
into account. The model selection was performed using 
the deviance information criterion and the model chosen 
was the GGO. This model was also selected for regions 
NE and CE when using the Bayes discrimination method 
and the 2000-2008 data. However, when using the DIC, 
in all regions, the selected model was the BW. When 
observing Figure 2 and when comparing to the adjust- 
ment given by the GGO model when the data 1998-2004 
is used, we have an almost perfect fit in the latter. If we 
compare the values of the parameters estimated, we have 
that the value of the   when using the 1998-2004 data 
is almost the double of the value obtained when using the    
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Table 7. Estimated mean, standard deviation (indicated by SD), and the 95% credible intervals for the parameters of the 
generalised Goel-Okumoto rate function with the presence of either one or two change-points for regions NE, CE, SE and 
SW. 

GGO One Change-Point GGO Two Change-Points 
  

Mean SD 95% Credible Interval 
  

Mean SD 95% Credible Interval 

1  619.3 128.9 (503.5, 970.7) 1 955.7 37.75 (913.3, 997.9) 

2  618.9 125.9 (505.7, 965.9) 2 956 37.67 (913.6, 998) 

1  9.65E-4 5.73E-4 (2.63E−4, 2.38E−3) 1 955.9 37.7 (913.5, 998) 

2  5.34E−2 1.48E−2 (2.63E−2, 8.45E−2) 2 2.37E−4 1.02E−4 (1.3E−4, 5.38E−4) 

1  0.86 8.78E−2 (0.695, 1.04) 1 1.84E−3 6.73E−4 (6.23E−4, 3.29E−3) 

2  0.57 4.24E−2 (0.503, 0.67) 3 1.0E−2 1.42E−2 (1.1E−4, 3.83E−3) 

NE 

  513.4 104 (419.2, 800.6) 1  0.94 5.05E−2 (0.79, 0.99) 

1  612.3 49.84 (510.7, 711.6) 2 0.56 1.93E−2 (0.53, 0.61) 

2  612.5 50.02 (510.8, 712.2) 3 0.61 9.34E−2 (0.5, 0.73) 

1  5.35E−4 5.01E−4 (9.1E−5, 2.09E−3) 1  546.8 21.58 (522.5, 570.8) 

2  4.06E−2 1.87E−2 (1.31E−2, 7.42E−2) 

SE

2 913 75.45 (776, 997.8) 

1  0.98 0.12 (0.71, 1.21)      

2  0.624 7.45E−2 (0.52, 0.77)      

CE 

  527 42.79 (439.8, 612.3)      

1  508.1 4.84 (500.5, 517.7)      

2  508.1 4.85 (500.5, 517.8)      

1  7.33E−4 1.32E−4 (5.41E−4, 1.08E−3)      

2  9.39E−4 2.53E−4 (6.49E−4, 1.56E−3)      

1  1.04 2.34E−2 (0.98, 1.07)      

2  1.05 3.39E−2 (0.97, 1.09)      

SW 

  499.7 4.78 (492.2, 509.2)      

 
2000-2008 data for all regions with the exception of 
region SE. In the case of the other parameters, the ones 
estimated using the data 2000-2008 for region SW are 
the ones that have more similarity with the ones esti- 
mated using the 1998-2004 data (see [30]). That can be 
explained by the fact that region SW is, in almost all 
cases, the one that contributes to most of the days in 
which the threshold 0.17 ppm is surpassed and hence, in 
a way dictates the behaviour of the overall measure- 
ments. 

The W, MO and GGO model were also used in [32]. 
In there, the regional division of the Metropolitan Area 
was taken into account, but the data set was composed by 
the daily maximum measurements obtained from 01 
January 2003 to 31 December 2009. The selection of the 
model that best fit the data from each region was per- 

formed using the Bayes discrimination method and visual 
inspection of the graphical adjustment between the esti- 
mated and observed accumulated means. According to 
the Bayes discrimination criterion the best model to 
explain the behaviour of the data was the Weibull rate 
function (either with   having an uniform prior dis- 
tribution or having a Beta). This presents a very different 
result as the one when using the 2000-2008 data (see 
Tables 2 and 5). In terms of graphical adjustment we 
have that the behaviour of the data 2003-2009 is also 
different from the 2000-2008 data. In the former data set 
we have that the W model fits better the data from region 
NE, the GGO is the one chosen for region NW, and in 
the case of regions CE and SE, even though the GGO 
model fits adequately, we have that towards the end of 
the observational period the MO model could also be a 
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choice. In the case of region SW we have that any of the 
models provides a very good graphical adjustment. This 
behaviour is not repeated in the 2000-2008 data. We may 
observe from Figure 1 that the Weibull model does not 
provide a good adjustment. In both sets of data the MO 
model may also be used as an alternative to the GGO 
model, but in the case of the 2003-2009 data the fit of the 
MO function, when it occurs, is mainly in later years. In 
the case of the 2000-2008 data, the MO and GGO models 
needed the inclusion of change-points so the fit could be 
a good one. 

Remark. The selection of the prior distributions and 
their hyperparameters in the BW model was made using 
information obtained when the EW and W models were 
considered. Even though, convergence of the MCMC 
algorithm was achieved in the BW model with the prior 
distributions considered here, several prior distributions 
were tested. The common factors in all tested distribu- 
tions were that they had the same mean and belonged to 
the same parametric family. The only difference was that 
they had different variances. As a result of the tests, we 
have observed that as the variance increased the time 
needed to achieve convergence of the MCMC sampler 
also increased and in some cases it was not achieved at 
all during the time the algorithm was left to run. As an 
example, in the case of the region NW region we needed 
an additional 100,000 steps to have that the MCMC 
algorithm converged and in the case of regions NE, CE, 
SE, SW an additional 200,000 iterations were necessary. 
When we considered smaller variance we have obtained 
either a no satisfactory or a null acceptance rate for the 
Metropolis-Hastings part of the algorithm. 

Some of the rate functions considered here for the 
Poisson process are commonly used in reliability theory. 
Their use in the present work is justified because of the 
very nature of the problem studied here. Additionally, 
depending on the value of the parameters present in their 
formulation, we may account for the many different be- 
haviours that might be present in the data set considered. 

Other threshold values could also be used. When 
considering values smaller than 0.17 ppm we may lose 
the Poisson property and hence some types of depen- 
dence may be considered. As an example of that we have 
[53] where the threshold 0.11 ppm is used and [54] 
where the value 0.14 ppm is considered. 
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