
Journal of Environmental Protection, 2012, 3, 1124-1134 
http://dx.doi.org/10.4236/jep.2012.329131 Published Online September 2012 (http://www.SciRP.org/journal/jep) 

Air Pollution Steady-State Advection-Diffusion Equation: 
The General Three-Dimensional Solution 

Daniela Buske1, Marco Túllio Vilhena2, Tiziano Tirabassi3, Bardo Bodmann2 
 

1Department of Mathematics and Statistics (IFM/DME), Federal University of Pelotas (UFPel), Pelotas, Brazil; 2Graduate Program in 
Mechanical Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; 3Institute of Atmospheric 
Sciences and Climate (ISAC), National Research Council (CNR), Bologna, Italy. 
Email: t.tirabassi@isac.cnr.it 
 
Received June 15th, 2012; revised July 14th, 2012; accepted August 17th, 2012 

ABSTRACT 

Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This 
assumption, along with the equation of continuity, leads to the advection-diffusion equation. Many models simulating 
air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as- 
suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional 
solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for 
arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental 
data are shown. 
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1. Introduction 

The processes governing the transport and diffusion of 
pollutants are numerous, and of such complexity that it 
would be impossible to describe them without the use of 
mathematical models. Such models therefore constitute 
an indispensable technical instrument of air quality man- 
agement. 

The theoretical approach to the problem essentially 
assumes two basic forms. In the Eulerian approach, dif- 
fusion is considered, at a fixed point in space, propor- 
tional to the local gradient of the concentration of the 
diffused material and is based on the resolution, on a 
fixed spatial-temporal grid, of the equation of the mass 
conservation of the pollutant chemical species. Lagran- 
gian models are the second approach and they differ from 
Eulerian ones in adopting a system of reference that fol- 
lows atmospheric motions. Initially, the term Lagrangian 
was used only to refer to moving box models that fol- 
lowed the mean wind trajectory [1]. Currently, this class 
includes all models that decompose the pollutant cloud 
into discrete “elements”, such as segments, puffs or 
computer virtual particles [1]. In Lagrangian particle 
models pollutant dispersion is simulated through the mo- 
tion of computer virtual particles whose trajectories al- 
low the calculation of the concentration field of the 
emitted substance. The underlying hypothesis is that the  

combination of the trajectories of such particles simulates 
the paths of the air particles situated, at the initial mo- 
ment, in the same position. The motion of the particles 
can be reproduced both in a deterministic way and in a 
stochastic way. 

In this paper we limited ourselves to the Eulerian ap- 
proach, and in particular to the K model, where the flow 
of a given field is assumed to be proportional to the gra- 
dient of an appropriate mean variable [2]. K-theory has 
its own limits, but its simplicity has led to a widespread 
use as the mathematical basis for simulating pollution 
dispersion. Most of Eulerian models are based on the 
numerical solution of the equation of mass conservation 
of the pollutant chemical species. Such models are most 
suitable to confronting complex problems, for example, 
the dispersion of pollutants over complex terrain or the 
diffusion of non-inert pollutants.  

However, a progressive and continuous effort to obtain 
analytical solutions of the advection-diffusion equation 
(ADE) has been made in the last years. In fact analytical 
solutions of equations are of fundamental importance in 
understanding and describing physical phenomena. Ana- 
lytical solutions explicitly take into account all the pa- 
rameters of a problem, so that their influence can be re- 
liably investigated and it is easy to obtain the asymptotic 
behavior of the solution, which is usually very much 
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more tedious to generate through numerical calculations. 
Moreover, like the Gaussian solution, that was the first 
solution of ADE with the wind and the eddy diffusivity 
coefficients supposed constant in space, they may sug- 
gest the construction of operative analytic model. Gaus- 
sian models, so named because they are based on the 
Gaussian solution, are forced to represent real situations 
by means of empirical parameters, referred to as “sig- 
mas”. Gaussian models are fast, simple, do not require 
complex meteorological input, and describe the diffusive 
transport in an Eulerian framework, making easy use of 
the Eulerian nature of measurements. For these reasons 
they are still widely employed for regulatory applications 
by environmental agencies all over the world although 
their well known intrinsic limits. 

A significant number of works regarding ADE ana- 
lytical solution (mostly two-dimensional solutions) is 
available in the literature. References [3-16] are con- 
sidered relevant by the authors. However, the above 
solutions are valid for very specialized situations: only 
ground level sources or infinite height of the Atmos- 
pheric Boundary Layer (ABL) or specific wind and eddy 
diffusivities vertical profiles. Vilhena et al. [17] pre- 
sented an analytical solution, called ADMM (Advection 
Diffusion Multilayer Method) method, for a limited ABL 
and general wind and eddy diffusivities vertical profiles, 
but expressed by a stepwise function (see also [18-20]). 
Many of the above solutions were utilized in operative 
air pollution models [21]. 

Finally a general two-dimensional solution without 
any restriction in the spatial function of wind and eddy 
diffusion coefficients was presented in Wortmann et al. 
[22] and Moreira et al. [23,24]. The solving methodology 
was the Generalized Integral Laplace Transform Tech- 
nique (GILTT) that is an analytical series solution in- 
cluding the solution of an associate Sturm-Liouville 
problem, expansion of the pollutant concentration in a 
series in terms of the attained eigenfunction, replacement 
of this expansion in the ADE and, finally, taking mo- 
ments. This procedure leads to a set of differential ordi- 
nary equations that is solved analytically by Laplace 
transform technique. A complete review of the GILTT 
method is given in [25].  

In this paper we extend these last results and we pre- 
sent a three-dimensional solution for a limited height 
ABL and without any restriction in the spatial function of 
wind and eddy diffusion coefficients. Cauchy-Kowale- 
wski theorem [26] guarantees the existence and unique- 
ness of an analytical solution of the ADE, so we are pre- 
senting the general solution of three-dimensional ADE. 

2. The Three-Dimensional Solution 

The ADE for air pollution in the atmosphere is essen- 
tially a statement of conservation of the suspended mate- 

rial and in Cartesian geometry it can be written as [27]: 
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     (1) 

Here c  denotes the mean concentration of a passive 
contaminant (g/m3), , ,u v w  are the Cartesian compo- 
nents of the mean wind (m/s) in the directions x (0 < x < 
Lx), y (0 < y < Ly) and z (0 < z < h) and , ,x y zK K K  are the 
eddy diffusivities (m2/s). Equation (1) is subjected to the 
following boundary and source conditions: 

   0,0,0 , ,
0

x yL L h
c c   K K ,            (2) 

    0, , suc y z Q y z H   ,           (3) 

where  , ,x y zdiag K K KK  is the diagonal diffusion 
matrix, Q is the emission rate (g/s), h the height of the 
ABL (m), Hs the height of the source (m), Lx and Ly are the 
limits in the x and y-axis and far away from the source (m) 
and   represents the Dirac delta function. The source 
position is at x = 0, y = y0 and z = Hs. 

In order to solve problem (1), taking advantage of the 
well-known solution of the two-dimensional problem with 
advection in the x-direction by the GILTT method [25], 
we initially apply the integral transform technique in the y 
variable. To this end, we expand the pollutant concentra- 
tion as: 

     0
, , ,m mm
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where  mY y  are a set of orthogonal eigenfunctions, 
given by    cosm m yY y , and πm m Ly   (m = 0, 1, 
2, ···) are respectively the set of eigenvalues. 

To determine the unknown coefficient  ,mc x z  we 
manipulate Equation (1) applying the chain rule for the 
diffusion terms. After substitute Equation (4) in the re- 
sulting equation and taking moments, meaning applying  

the operator , we obtain the result:  
0

dyL

nY y y
   

       

     

     

   

0

0

0

2

0

0

, ,

, ,
d

, d

, d

, ( )d

y

y

y

y

m m
x z

m

L
m m

m n

L

m m n

L

m m y m n

L

m y m n

c x z c x z
K K

x x z z

c x z c x z
u w Y y Y y

x z

vc x z Y y Y y y

c x z K Y y Y y y

c x z K Y y Y y y







      
            

  
y





    

 

 


  














  (5) 

Copyright © 2012 SciRes.                                                                                  JEP 



Air Pollution Steady-State Advection-Diffusion Equation: The General Three-Dimensional Solution 1126 

Defining the integrals appearing in the above equation 
like: 
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the Equation (5) is rewrite as: 
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Without losing generality, we specialize the application 
for a pollutant dispersion problem in ABL, assuming that 
the speeds v  and w  takes the null value. We neglect 
the diffusion component Kx because we assume that the 
advection is dominant in the x-direction, i.e.,  

x

c c
u K

x x x

  
   

 
 . Further we also consider that Ky has  

only dependence on the z-direction. After these assump- 
tions, Equation (6) is rewritten in matrix fashion as a set of 
M + 1 two-dimensional diffusion equations: 

    2, ,
,m m

z m y m
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x z z

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The problem (6) is then solved by the GILTT method. 
Following the work of Moreira et al. [25] and taking ad- 
vantage of the well known solution for the stationary 
problem with advection in the x direction, we pose the 
solution of problem (6) in the form: 
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           (7) 

where  are a set of orthogonal eigenfunctions, 
given by 

 l z
  cosl lz z  , and πl l h   (l = 0, 1, 2, ···) 

are respectively the set of eigenvalues. 
Replacing Equation (7) in Equation (6) and taking 

moments, we get the first order matrix differential equa- 
tion: 
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                (8) 

for m = 0:M, where Pm(x) is the column vector whose 
components are ,m lc  for l = 0:L. The matrix F is defined 
as 1

1 2F B B . The entries of matrices B1 and B2 are, 
respectively, given by: 
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Similar procedure leads to the boundary condition of 
problem (9): 

        1
, 00 0m m l j sP c Q H Y y A   ,       (9) 

where A−1 is the inverse of matrix A having the entry  

   , 0
dl j l ja u z z  

h
z .  

Problem (9) is solved applying Laplace transform and 
diagonalization. Firstly, transforming x in s and P em P  
the equation becomes  

     0sP s P FP s 0   ,         (10) 

where the overbar represents the transformed potential.  
The matrix F is decomposed in eigenvectors and ei- 

genvalues as F = XDX−1 where X is the matrix of the ei- 
genvectors and D is the diagonal matrix of the eigenval- 
ues of F. Then, the Equation (10) became 

     1 0sI XDX P s P  ,          (11) 

where I is the matrix identity. After algebraic manipula-
tion we get 

    1
P s X sI D   ,            (12) 

where   1 0X P   is found from the equation  
 0PX  , and their values are calculated by LU fac- 

torization. The elements of the matrix (sI + D) have the 
form  is d  where di are the eigenvalues of the matrix 
F and the elements of (sI + D)−1 are 1/(s + di) whose in- 
verse Laplace transform is . Let be G(x) the diago- 
nal matrix whose elements are  the final solution is 
then given by  

id xe
id xe

   P x XG x  .                 (13) 

Then, using Equation (7),  

     ,0
,

L

m m ll
c x z c x z


  l


, we obtain the solution of  

the 2D problem, where   cosl lz z   and  ,m lc x  
comes from the solution of the transformed problem 
given by Equation (8). Once  ,mc x z  is known we are 
in a position to write the final three-dimensional solution 
of problem (1) which is given by Equation (4), 

     0
, , ,m mm

c x y z c x z Y y



  ,          (14) 

where    cosmY y y m . This solution is named as 3D- 
GILTT (three-dimensional GILTT solution). 

dz   

Since this problem is a special case of the Cauchy- 
Kowalewsky theorem, existence and uniqueness is guar- 
anteed. Convergence of the solution may be shown by a 
genuine mathematical convergence criterion. Note that 
the only numerical error comes from truncation, which is 
determined from the Sturm-Liouville problem. Recalling 
that the structure of the contaminant is essentially deter- 
mined by advection and diffusion, present in form of a 
velocity vector  , ,U u v w  and a diagonal diffusion 
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matrix  , , x y zdiag K K KK , which define a smooth- 
ness length scale by the maximum norm of the expres- 
sion K U  . Thus one may conclude that with 
decreasing length ( m  and m an increasing integer 
number) variations in the solution become spurious.  

Upon interpreting 1   as a sampling density, one 
may now employ the Cardinal Theorem of Interpolation 
Theory [28] in order to find the truncation  

 ,int 2πy zn mL  1 2  in Equation (4) that leaves  

the analytical solution almost exact, i.e. introduces only 
functions that vary significantly in length scales beyond 
the mentioned limit. Thus, the Cardinal Theorem of In- 
terpolation theory may be cast in form of a convergence 
criterion as follows. 

The square integrable function 2cdxd L     

  or y z   with spectrum  i  which is bounded by 
m  has an exact solution for a finite expansion. This 

statement expresses the Cardinal Theorem of Interpola- 
tion Theory for our problem (see Bodmann et al. [29]). 
Since the cut-off, i.e. the afore mentioned supreme de- 
fines some sort of a sampling density, its introduction is 
an approximation and is related to convergence of the 
approach and Parseval’s theorem may be used to esti- 
mate the error. In order to keep the solution error within 
a specified order of magnitude, the expansion in the do- 
main of interest has to contain n + 1 terms. For the 
bounded spectrum and according to the theorem the solu- 
tion is then exact. In our approximation, if m is properly 
chosen such that the cut-off part of the spectrum is negli- 
gible, then the found solution is almost exact. 

3. Model Application to Different  
Meteorological Scenarios and against  
Experimental Data 

In order to illustrate the behavior of the discussed solu- 
tion we report a simulation of contaminant dispersion in 
the ABL for different scenarios. Moreover, we evaluate 
the performance against experimental ground-level con- 
centration. To do this we first have to introduce a bound- 
ary layer parameterization. 

3.1. Atmospheric Boundary Layer  
Parameterization 

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. In air pollution diffusion modeling the choice of 
a turbulence parameterization represents a fundamental 
aspect for the contaminants dispersion modeling. From a 
physical point of view a turbulence parameterization is 
an approximation to nature in the sense that we are put- 
ting in mathematical models an approximated relation 
that in principle can be used as a surrogate for the natural 

true unknown term [30]. The reliability of each model 
strongly depends on the way as turbulent parameters are 
calculated and related to the current understanding of the 
ABL [31]. 

The literature reports many, greatly varied formulae, 
for the calculation of the vertical turbulent diffusion co- 
efficient [2]. As an example of application of our new 
solution we tested the following vertical and lateral dif- 
fusion parameterization suggested by Degrazia et al. [32], 
derived from Batchelor [33], for convective conditions: 
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.  

More, k is the von Karman constant (k = 0.4), *  is the 
convective velocity scale, L is the Monin-Obukhov 
length, v

w

  is the Eulerian standard deviation of the lon- 
gitudinal turbulent velocity, v  is the stability function, q

  is the non-dimensional molecular dissipation rate 
function,  m v

f  is the peak wavelength of the turbulent 
velocity spectra and   2 3

2πv v u c    with  
0.5 0.05u    and 4 3v  [34,35].  

Following Pleim and Chang [36] during convective 
conditions at 10h L    the following relation is used:  

* 1z K kw z z h             (17) 

During stable and neutral conditions at 10h L   : 

 2

* 1z hK ku z z h              (18) 

where  1 5h z L    in stable conditions and 1h   
in neutral conditions.  

Degrazia et al. [37] proposed for the stable boundary 
layer an algebraic formulation for the eddy diffusivities 
in the y-direction. It takes the form: 

   
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(19) 

where       ,m mv n
1 3.7f f z

v
    is the frequency 

of the spectral peak,   0.33mf 
,n v

 is the frequency of 
the spectral peak in the neutral stratification [38],  

  1 21.5
1L z h

     ( 1 1.5  ; 2 1   [39]) is the  
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local Monin-Obukhov length,    1/2 1/3

,
2.7v v m n v

a c f ,  

where , *  is the friction velocity and  0.4vc  u

*X xu uz   represents the non-dimensional distance.  
The wind speed profile can be described by a power 

law expressed as follows [40]: 

1 1

n

zu z

u z

 
  
 

                (20) 

where zu  and 1u  are the mean wind speeds horizontal 
to heights z and z1 and n is an exponent that is related to 
the intensity of turbulence [41]. 

Thus, in this study we introduce the eddy diffusivities 
and the wind profile described above in the 3D-GILTT 
model (Equation (14)) to calculate the ground-level con- 
centration of emissions released from an elevated con- 
tinuous source point in an unstable/neutral ABL. For the 
application to different meteorological scenarios the eddy 
diffusivities (17)-(19) are used, while in the comparisons 
against experimental data eddy diffusivities (15) and (16) 
are used. 

3.2. Application to Different Meteorological  
Scenarios 

Given the complexity of the solution, it is useful to show 
the behavior of the solution in different scenarios. It is 
possible to see a graphical representation in Figure 1 of 
the ground level concentrations predicted by the three 
dimensional solution for different source heights in con- 
vective condition. 

Also to show the influence of the atmospheric turbu- 
lence we present in Figure 2 the non-dimensional con- 
centration in function of the non-dimensional distance 
from the source (Hs = 0.1 h) for five different meteoro- 
logical scenarios (exponent of power wind profile α and 
inverse of Monin-Obukhov length (1/L) values for dif- 
ferent meteorological scenarios are showed in Table 1). 

In Figure 3, the influence of the source height is 
showed. In fact, the non-dimensional vertical concentra- 
tions at three distances, and four different source heights 
is presented in convective condition. 

3.3. Application against Experimental Data 

In order to show the performance of the present solution 
of the ADE and the performance of the proposed ABL 
parameterizations we have applied the model using the 
Copenhagen and Kinkaid experimental datasets. The first 
experiment is carried out in the northern part of Copen- 
hagen, described by Gryning and Lyck [42]. It consisted 
of tracer released without buoyancy from a tower at a 
height of 115 m, and collection of tracer sampling units 
at the ground-level positions at the maximum of three 
crosswind arcs. The sampling units were positioned at  

 

Figure 1. Ground level concentrations predicted by the 
three dimensional solution for different source heights in 
convective conditions (1/L = −0.01 m−1). 
 

 

Figure 2. Non-dimensional concentration (C* = cuh2/Q) in 
function of the non-dimensional distance (X* = xu*/uh) from 
the source (Hs = 0.1 h) for 5 different meteorological sce- 
narios. 
 
Table 1. Exponent of power wind profile (α) and inverse of 
Monin-Obukhov length (1/L) values for different meteoro- 
logical scenarios. 

Scenario alpha 1/L (m−1) 

Unstable 0.07 −0.10 

Unstable 0.1 −0.02 

Neutral 0.15 0 

Stable 0.35 0.01 

Stable 0.55 0.03 
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Figure 3. Non-dimensional concentration (C* = cuh2/Q) versus non-dimensional height (Z* = z/h) in convective conditions (1/L 
= −0.01 m−1) for three different distances from the source (X* = xw*/uh) and four source height (Hs = 0.05 h; 0.1 h; 0.25 h; 0.5 
h). 
 
two to six kilometers from the point of release. The site 
was mainly residential with a roughness length of the 0.6 
m.  

The Kinkaid experiment was conducted at Illinois, 
USA, during convective conditions (for −h/L > 10) and is 
described in the work of Hanna and Paine [43]. The 
Kinkaid field campaign concerns an elevated release in a 
flat farmland with some lakes. During the experiment, 
SF6 was released from 187 tall stacks and recorded on a 
network consisting of roughly 200 samplers positioned in 
arcs from 0.5 to 50 km downwind of the source. The data 
set includes the meteorological parameters as friction 
velocity, Monin-Obukhov length and height of boundary 
layer. The measured concentration level is frequently 
irregular with high and low concentrations occurring 
intermittently along same arc, moreover there are fre- 
quent gaps in the monitoring arcs. For the above reasons 
a variable has been assigned as a quality factor in order 

to indicate the degree of readability of data [44]. The 
quality indicator (from 0 to 3) has been assigned. Here, 
only the data with quality factor 3 were considered. 

Figures 4 and 5 show the comparison of 3D-GILLT 
predicted concentrations against observed data in the 
Copenhagen and Kinkaid experiments. We can observe 
that the obtained concentrations reproduce acceptably the 
observed data. 

In the further we use standard statistical indices in or- 
der to compare the quality of the new approach against 
other models. While the present approach (3D-GILTT) is 
based on a genuine three dimensional description an ear- 
lier analytical approach called GILTTG uses a Gaussian 
assumption for the horizontal transverse direction [25]. 
In the GILTTG the crosswind integrated concentration 
cy(x, z, t) (i.e., two-dimensional) is obtained analytically 
using the GILTT method. To calculate the three-dimen- 
sional concentration c(x, y, z, t) lateral diffusion ( y )  
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Figure 4. Observed and predicted scatter diagram of 
ground-level centerline concentrations using the 3D-GILTT 
approach for the Copenhagen experiment. Lines indicate a 
factor of two. 
 

 

Figure 5. Observed and predicted scatter diagram of 
ground-level centerline concentrations using the 3D-GILTT 
approach for the Kinkaid experiment. Lines indicate a 
factor of two. 
 
needs to be included, that is, it is assumed that the plume 
has a Gaussian concentration distribution in the lateral. 
So, to calculate the concentration the following expres- 
sion is assumed:  

   
 22

, , , , ,
2π

yy

y

y

e
c x y z t c x z t







  

Note that we present the two analytical model ap- 
proaches, since the earlier one was found to be accept- 
able in comparison to other approaches found in the lit- 
erature and both give a solution in closed form. For the 
Copenhagen data set, our results are also compared with 
the one obtained with the GIADMT method [18]. Basi- 
cally the GIADMT method consists on the solution of the 
GITT (Generalized Integral Transform Technique) trans- 
formed problem by the ADMM method. The ADMM 
approach solves the two-dimensional ADE with variable 
wind profile and eddy diffusivity coefficient [19]. The 
main idea here relies on the discretisation of the ABL in 
a multilayer domain, assuming in each layer that the 
eddy diffusivity and wind profile take averaged values. 
The resulting ADE in each layer is then solved by 
Laplace transform. 

Tables 2 and 3 present some performances evaluations 
of the model results using the statistical evaluation pro- 
cedure described by Hanna [45] and defined in the fol- 
lowing way: 

 2
NMSE o p pC C C C  o , 

 FA2 data for which 0.5 2p oC C   , 

COR ( )( )o o p p oC C C C p    , 

 FB 0.5o p o pC C C C   , 

   FS 0.5o p o p      , 

where NMSE is the normalized mean square error, COR 
the correlation coefficient, FA2 is the fraction of data (%, 
normalized to 1), FB the fractional bias, FS the fractional 
standard deviations. Subscripts o and p refer to observed 
and predicted quantities, respectively, and the overbar 
indicates an averaged value. The statistical index FB says 
if the predicted quantities underestimate or overestimate 
the observed ones. The statistical index NMSE represents 
the model values dispersion in respect to data dispersion. 
 
Table 2. Statistical comparison between models using the 
Copenhagen dataset. 

Model NMSE COR FA2 FB FS 

GILTTG 0.33 0.80 0.87 0.28 0.09 

GIADMT 0.15 0.87 0.96 0.01 −0.09

3D-GILTT 0.07 0.93 0.96 0.02 0.03 

 
Table 3. Statistical comparison between models using the 
Kinkaid dataset. 

Model NMSE COR FA2 FB FS 

GILTTG 0.37 0.68 0.77 0.08 −0.15 

3D-GILTT 0.37 0.67 0.71 0.09 −0.09 
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The best results are expected to have values near to zero 
for the indices NMSE, FB and FS, and near to 1 in the 
indices COR and FA2. The statistical indices point out 
that a reasonable agreement is obtained between experi-
mental data and the 3D-GILTT model for both cases. 

In order to validate the two models (GILTTG and 
3D-GILTT) we fit the predicted versus observed values 
by a linear regression (see Figures 6 and 7) for both ex- 
periments, where, the closer they intersect to the origin 
and the closer the slope is to unity the better is the ap- 
proach. In order to perform a model validation we intro- 

duced an index    22
1 ok a b C   with  

 

 

Figure 6. Linear regression for the GILTTG (balls) and 
3D-GILTT (stars) using the Copenhagen dataset. The bi-
sector was added as an eye guide. 
 

 

Figure 7. Linear regression for the GILTTG (balls) and 
3D-GILTT (stars) using the Kinkaid dataset. The bisector 
was added as an eye guide. 

1

1 n

o oiC
i

C
n 

  , which if identical zero indicates a perfect  

match between the model and the experimental findings. 
Here a is the slope, b the intersection, oi  of the ex- 
perimental data and 

C

oC  its arithmetic mean. Since the 
experiment is of stochastic character whereas the sto- 
chastic properties are hidden in the model parameters, 
considerable fluctuations are present. Nevertheless, by 
comparison one observes in Table 4 that the present ap- 
proach yields the better description of the data for the 
Copenhagen experiment. 

4. Conclusions 

In the present work we developed a novel analytical de- 
scription of air pollution dispersion in ABL. We solved 
the steady-state three-dimensional ADE for general ver- 
tical profiles of wind and eddy diffusivity. The closed 
form solution is obtained using an approach set-up by 
spectral theory together with an integral transform, which 
in the present case is the Laplace transform. This solution 
allows simulating dispersion of pollutant substances in a 
computationally efficient fashion. The advantage of an 
analytical procedure over the nowadays usual numerical 
schemes that take advantage of existing computing 
power is evident from the fact that once an analytical 
solution to a mathematical model is found one can claim 
that the problem has been solved, without the necessity 
for benchmarking. We derived a closed form solution 
applicable for numerical simulations in principle to any 
desired precision, since existence and uniqueness are 
guaranteed by the Cauchy-Kowalewski theorem. The 
quality of the solution is controlled by a genuine mathe- 
matical convergence criterion. For the Laplace inversion 
only bi-Lipschitz functions are acceptable, which defines 
then a unique relation between the original function and 
its Laplace-transform. This makes the transform proce- 
dure manifest exact and the only numerical error comes 
from truncation in the space of orthogonal functions, 
which may be estimated by a theorem in close analogy to 
 
Table 4. Comparison of the linear regressions of GILTTG 
and 3D-GILTT using the Copenhagen and Kinkaid data-
sets. 

Model Regression R2 k 

Copenhagen experiment 

GILTTG 0.77 0.004p oC C   0.8 0.23

3D-GILTT 0.91 0.34p oC C   0.93 0.1 

Kinkaid experiment 

GILTTG 0.79 7.32p oC C   0.68 0.25

3D-GILTT 0.73 10.09p oC C   0.67 0.32
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the Cardinal theorem of interpolation theory together 
with Parseval’s theorem. Once convergence is under con- 
trol and has no longer heuristic character, a pathway 
opened for a genuine model validation, differently to 
numerical approaches where in general it is not straight 
forward to disentangle model errors from numerical 
ones. 

The performance of the solution together with a para- 
meterization of the ABL was validated against the data 
from the Copenhagen and the Kinkaid experiments. By 
comparison the present approach was found to yield an 
acceptable solution for the three dimensional ADE and 
moreover predicted tracer concentrations closer to ob- 
served values compared to other approaches from the 
literature. Although K-closure is known to have its limi- 
tations, the comparison of measurements and theoretical 
predictions showed agreement on a satisfactory level and 
thus supported the usage of such an approach for mi- 
cro-scale dispersion phenomena.  

We outline that an analytical solution can be useful in 
evaluating the performances of numerical models that 
solve numerically the ADE by comparing their results, 
not only against experimental data but with the analytic 
solution itself in order to check numerical errors without 
model uncertainties. Finally, the program of providing 
analytical solutions for close to realistic physical disper- 
sion problems, leads us to future problems with different 
closure hypothesis considering full space-time depend- 
ence in the resulting dynamical equation, which we will 
approach by a further extension of the proposed method- 
ology. 
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