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ABSTRACT 

Cohort epidemiological studies consistently agree that small particulates increase mortality, but they do not agree about 
the magnitude of this effect. As cohort studies have included observations from more places, they have found smaller 
effects. This study relies on a sophisticated air pollution model to predict pollution concentrations across all counties in 
the contiguous United States. We test whether examining all counties in the US affects the magnitude of the pollution 
mortality effect. We find significant but smaller effects. The results suggest that continued epidemiological research 
using a broader base of locations is needed. 
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1. Introduction 

The link between air pollution concentrations and human 
mortality is difficult to measure because it is not possible 
to conduct direct experimentation. Instead, the epidemi-
ological literature has relied on three general types of 
studies: cross-sectional studies, intertemporal acute stud-
ies, and chronic panel studies. The cross sectional studies 
tend to rely on aggregated data usually at the county 
level [1-4]. The general advantage of these studies is that 
they include a large population and many sites but the 
disadvantage is that they do not carefully control for in-
dividual characteristics of people. The acute studies have 
examined pollution episodes in numerous cities and re-
lated them back to increased daily mortality [5-8]. The 
advantage of these studies is that the people remain the 
same and only the pollution changes over time. However, 
the disadvantage of this approach is that other factors 
may also change over time such as weather and that the 
acute effect of pollution may be only a component of 
chronic damages. Finally, the prospective panel studies 
look at selected individuals over time in selected places 
[9-14]. The panel studies do an excellent job controlling 
for the characteristics of people but they are expensive 
and so they rely on limited sites. It is always possible that 
undesired spatial variables (such as poor housing condi-
tions or population density) are correlated with pollution 
concentrations across these few sites. Currently, only 
three cohort studies have been conducted to study par-

ticulate matter, PM2.5 [9,10,13]. The data from these 
studies (especially the first two) has received extensive 
secondary analysis [15-19]. 

A weakness of all the chronic studies of pollution- 
mortality effects is the limited available measurements of 
ambient pollution concentrations. There are not only 
relatively few measurements, but the measurements are 
also in non-randomly assigned locations. Pollution moni- 
toring stations are located for enforcement purposes, not 
scientific inquiry. The stations tend to be clustered in 
highly populated areas near sources of pollution. Few 
stations are located in rural areas or in areas with less 
pollution. The stations thus provide less than the desired 
amount of variation in pollution concentrations and may 
not be representative of actual exposures. Some studies 
have tried to adjust for the absence of pollution stations 
by using statistical extrapolations. The extrapolations, 
however, have been relatively simplistic using only dis-
tance, humidity, and wind patterns. These extrapolations 
introduce errors in measurement in the pollution variable 
thus possibly biasing the pollution coefficients in the 
mortality regressions towards zero.  

This study tries to overcome the limitations associated 
with available concentration data by relying on modern 
air quality modeling. Beginning with the US Environ-
mental Protection Agency’s spatially detailed emission 
inventory, we use the Community Multi-scale Air Qual-
ity (CMAQ) model to predict concentrations in each 
county in the contiguous United States. We then conduct 
a cross-sectional analysis of human mortality in order to *Corresponding author. 
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explore whether modeled pollution data could improve 
upon results that rely exclusively on observed pollution 
measurements. The modeled data allows us to compare 
the impacts across all counties in the United States, not 
just the urban areas studied in the cohort studies. In this 
study, we focus on the impact of PM2.5 on chronic mor-
tality among adults 30 years and older. We analyze the 
effect on non-accidental mortality as well as cause-spe- 
cific categories such as cardiopulmonary illnesses, car-
diovascular disease, respiratory causes, lung cancer, non- 
lung cancers, and all other remaining causes of non-ac- 
cidental fatalities. The age specification and categories of 
mortality were created for direct comparability with the 
existing panel studies. We specifically focus on compa-
rability with the study by Dockery et al. (1993), referred 
to as the Six Cities or Harvard study and the study by 
Pope et al. (1995) known as the American Cancer Study 
(ACS). Both studies have been extensively reanalyzed by 
Health Effect Institute (HEI) [16]. The HEI replicates the 
major findings of both studies and, therefore, it will be 
used here for comparison with our results. 

2. Empirical Methodology 

Our study relies on cross-sectional analysis. The unit of 
observation is a county, and the variables are all county 
averages. The advantage of using this approach is that we 
effectively conduct the study on about 100 million peo-
ple across a broader range of pollution concentrations 
than were possible in the cohort studies. This much lar-
ger sample of sites can also do a better job of controlling 
for spatial characteristics that may correlate with pollu-
tion in a metropolitan area. The disadvantage of the cross 
sectional approach using county data is that one cannot 
control for personal characteristics. We assume that the 
impact of (PM2.5) is homogenous across all individuals, 
and the exposure is homogenous within each county. We 
assume a simple model of mortality: 

 2.5 PM , , , , , , ,i i j j j j jy f x m c z m s r j j        (1) 

 2.5exp PMRR   where risk of death for an individual 
i is a function of PM2.5, income m, marital status x, edu-
cation c, available medical care z, and non-environmental 
characteristics of the place of living, s, such as the crime 
rate. Following the literature, we specify a log-linear 
specification, where mortality, yj, is the average annual 
mortality in county j and β is a vector of estimated coef-
ficients: 

1 2.5 2ln PMj j j n jy x jz              (2) 

We estimate the coefficients using a weighted least 
squares multiple regression where W is a diagonal matrix 
whose elements are the square root of population size in 
each county:  

 –1
X W X X Y   



             (3) 

For consistency with the epidemiological literature, we 
report our results as the relative risk or risk ratio (RR):  

 2.5exp PMRR             (4) 

We compute the 95% confidence interval of RR to re-
veal the accuracy of the measure. 

3. Data Sources 

Our mortality data has been provided by the National 
Center for Health Statistics (NCHS). We combined the 
Compressed Mortality files from 1989 to 2000 for adults 
30 years and older in order to create a long term county 
level mortality rate. We create mortality rates by com-
bining the mortality counts with corresponding age spe-
cific county level data on population size. We consider 
mortality rates associated with only non-accidental 
causes of death. We also calculate individual mortality 
rates for cardiopulmonary causes, cardiovascular, respi-
ratory, lung cancer, other types of cancers, and other 
causes that include the remaining non-accidental mor- 
tality.  

The mortality rates are combined with socio-economic 
data by county provided by the Census Bureau for the 
corresponding years. We consider likely mortality deter-
minants: socio-economic variables (per capita family 
income, proportion of married people, education), county 
characteristics (population density, urban vs. rural, pro-
portion of population in nursing homes) and available 
health care services approximated by the number of MDs 
per capita and proportion of hospital beds per capita. 
Additionally, we include detailed climate information on 
long term average seasonal temperatures and precipita-
tion. 

The pollution concentration data was created by the 
Community Multi-scale Air Quality (CMAQ) modeling 
system. The analysis starts with the USEPA’s 1996 
Emission Inventory which listed all major polluters by 
exact location and then all small polluters by county. The 
inventory has the estimated tonnage of emissions for 
each source of pollution and each type of pollutant that 
might contribute to PM2.5 concentrations. The CMAQ 
model is designed to capture atmospheric chemistry and 
dispersion. Using weather data from 1996, we predicted 
the PM2.5 concentrations in every county in the lower 48 
states. We chose the year of 1996 because the data were 
available and it was a relatively representative year 
without unusual meteorological, economic or pollution 
episodes.  

4. Results 

We first present two models of adult mortality from 
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non-accidental causes. The general model includes all 
theoretically appropriate mortality covariates, while the 
parsimonious one is limited to statistically significant 
variables only. Both, the general and the parsimonious 
models presented in Table 1 confirm that non-accidental 
mortality is positively correlated with annual average 
concentration of fine particles. As expected, mortality is 
also negatively correlated with income, education and 
marital status. Accordingly, our results confirm earlier 
findings that married people with bachelor’s or more 
advanced degrees and higher income are on average ex-
pected to live longer. The general model also reveals that 
population density and crime rate are not significantly 
affecting the probability of non-accidental deaths and 
that urban counties with higher crime rates are not asso-
ciated with higher mortality. Consequently, the variables 
of population density and crime rate are omitted in the 
parsimonious model. The access to medical care ap-
proximated by the number of hospital beds and physi-
cians per capita is positively correlated with non-acci- 
dental mortality. These results point to the unavoidable 
weakness of all cross-sectional studies, which is the in-
ability to account for population mobility. The cross sec-
tional data that relies on aggregated information from 
death certificates assign individuals to counties where the 
death certificate was issued. Individuals in need of 
medical care may travel to counties where hospitals are 
located thereby being assigned to a pollution concentra-
tion from a county where they died not where they lived. 

Our models show also that non-accidental mortality is 
higher in counties with a larger proportion of population 
in nursing homes. The mortality rate in both models is 
not age specific and includes all individuals 30 years or 
older. Age is highly and positively correlated with non- 
accidental mortality. The mortality rate increases with 
age and is higher in counties with larger elderly popula-
tions1. 

Table 1 also contains regressions of non-accidental 
mortality in two important subsamples of counties. The 
first subsample includes the counties that compose the 
ACS sample of urban sites. The second subsample is all 
the sites that are not included in the ACS sample. We 
wish to test in these regressions whether the regression 
coefficients are stable across all of these samples or 
whether they are affected by the sample drawn.  

Table 2 looks at the risk ratios for each of the regres-
sions in Table 1.  

We standardize all RR in Table 2 to a 10 μg/m3 
change in fine particles and compare them against the 
results from the Reanalysis of the ACS and Six Cities 
studies that are presented in the same standardized risk 

ratio form. There are several differences to keep in mind 
in making this comparison: the number of people in-
volved, the number of sites measured, the accuracy of the 
pollution measurement, and the control of individual 
characteristics. The Harvard study followed 8111 adults 
in six cities with very careful pollution measurements 
and individual characteristics [11]. The American Cancer 
Study (ACS) followed a much larger cohort of 552,138 
adults in 200 cities with less careful pollution measure-
ments and individual characteristics [14]. This cross sec-
tional study followed about 100 million people in 3111 
counties with modeled ambient concentrations and no 
individual characteristics.  

In the Appendix, we build separate models for specific 
causes of death. We test the same set of covariates in 
each of these cause-of-death regressions. We observe the 
same patterns as in Table 1 amongst the control variables 
in each of these regressions. We consequently focus our 
discussion on the results of the PM2.5 coefficients. 

Table 3 presents the risk ratios (RR) and their confi-
dence intervals for each cause-of-death regressions shown 
in the Appendix. 

The results in Table 3 confirm the findings of both 
cohort studies that fine particulate matter significantly 
increases the risk of mortality from all non-accidental, as 
well as cardiopulmonary and cardiovascular causes. The 
estimates from all three studies show also that the impact 
on the non-accidental mortality risk is the lowest, fol-
lowed by higher impact on cardiopulmonary and the 
highest on cardiovascular mortality. The respiratory 
mortality, all non-lung cancers and all other non-acci- 
dental causes of mortality are not significantly affected 
by PM2.5. The only discrepancy between our study and 
the ACS & Six City results is the effect on lung cancer. 
We find it to be significantly affected by pollution. The 
effect on lung cancer has been a controversial one. It is 
significant in some data sets and not in others. In fact, 
Pope and colleagues find a significant impact of fine par-
ticles on lung cancer in their later research [18]. They 
estimate that 10 μg/m3 increase in PM2.5 leads to about an 
8% increase in the risk of fatal lung cancer. They also 
find that it is very close to the increased risk for all 
non-accidental mortality, which they estimate to be 7%. 
Our results also show the same risk ratios for lung cancer 
and all cause mortality, but the magnitude of the RR is 
lower (in both cases 4%). In fact, all of our significant 
risk ratios are consistently lower than both the ACS and 
the Six Cities studies. We estimate half of the effect pre-
dicted by the ACS data and less than one third of the Six 
Cities predictions. For example, our data shows that a 10 
μg/m3 increase in fine particles increase the mortality risk 
from all non-accidental causes by 4 percent, while the 
ACS data shows 7 percent and the Six Cities study esti-
mates a 15 percent increase. The same is true for the  

1Our age specific models reveal that the proportion of population in 
nursing homes is indeed correlated with non-accidental mortality only 
for the 65 and older part of the sample.   
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Table 1. Weighted least squares regression of the mortality rate on all countiesa. 

Covariates General Model Parsimonious Model 

Intercept −4.851 (−67.7) −4.854 (−68.2) 

Annual concentration of PM2.5 0.0032 (5.3) 0.0035 (5.4) 

Average family income −0.000001 (−2.00) −0.000001 (−2.00) 

Percentage with higher education. −1.92 (−32.1) −1.92 (−32.5) 

Percentage of population in nursing homes 29.08 (33.2) 29.13 (33.7) 

Percentage of married people −0.34 (−4.5) −0.35 (−4.9) 

Number of hospital beds per capita 0.0002 (14.7) 0.0002 (17.4) 

Number of MDs per capita 0.0004 (14.4) 0.0004 (14.4) 

Crime rate −3.6E−7 (−0.21)  

Population per square mile −2.2E−6 (−1.27)  

January average temperature 0.008 (6.8) 0.008 (6.8) 

January average precipitation − 0.0005 (−0.15) −0.004 (−0.14) 

April average temperature −0.028 (−13.2) −0.028 (−13.2) 

April average precipitation 0.005 (1.1) 0.005 (1.1) 

July average temperature 0.006 (4.7) 0.006 (4.7) 

July average precipitation 0.021 (9.4) 0.021 (9.5) 

October average temperature 0.014 (5.7) 0.014 (5.7) 

October average precipitation 0.024 (7.1) 0.024 (7.1) 

Adj. R2 0.69 0.69 

aDependent variable is the log of the non-accidental mortality rate of adults over 30 years of age. T-statistics are in parentheses. Counties are weighted by 
population. 

 
Table 2. Comparison of risk ratios for mortality and fine particles exposurea. 

Causes of death Our results HEI-ACSb HEI-Six Cities 

All 1.04 (1.03 - 1.05) 1.07 (1.04 - 1.10) 1.15 (1.06 - 1.24) 

Cardio-pulmonary 1.05 (1.04 - 1.07) 1.11 (1.09 - 1.14) 1.18 (1.05 - 1.31) 

Cardio-vascular 1.06 (1.05 - 1.07) 1.13 (1.08 - 1.18) 1.20 (1.07 - 1.35) 

Respiratory 0.98 (0.96 - 1.00) 1.00 (0.91 - 1.12) 0.96 (0.70 - 1.32) 

Lung cancer 1.04 (1.02 - 1.05) 1.01 (0.91 - 1.11) 1.16 (0.87 - 1.55) 

Other cancers 1.05 (1.00 - 1.11) 1.02 (0.84 - 1.24)  

Other causes 0.99 (0.97 - 1.00) 1.00 (0.93 - 1.08) 1.08 (0.88 - 1.32) 

aThe risk ratios (RR) presented here are standardized for ΔPM2.5 = 10 μg/m3; bThe ACS results are based on a median rather than a mean PM2.5. However, the 
reanalysis of the study conducted by the Health Effect Institute report that the ACS data leads to practically the same results when a mean is used instead of the 
median (Krewski et al. 2000). 

 
cardio-pulmonary mortality, where we compare our RR 
of 5% against 10% and 18% from the ACS and Six Cities 
respectively; as well as the 6% of cardio-vascular risk 
against 13% and 20% from the ACS and Six Cities re-
spectively. 

This consistent discrepancy is most likely result of the 
differences in sample sizes and stratifications used in all 
three studies. The Six Cities sample is the smallest (8111 
observations) and collected from, as indicated by Six 
Cities. Their estimates are clearly the highest, and should  
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Table 3. Comparison of our risk ratios for mortality and 
fine particles exposure for the ACS and the non-ACS coun-
ties. 

Causes of Death ACS Sites Non-ACS Sites 

All 1.04 (1.01 - 1.07) 1.03 (1.01 - 1.05) 

Cardio-Pulmonary 1.06 (1.02 - 1.09) 1.05 (1.02 - 1.07) 

Cardio-Vascular 1.07 (1.04 - 1.11) 1.05 (1.03 - 1.08) 

 
be interpreted as the impact observed in urban “hot- 
spots.” The ACS sample is much larger (295,223 obser-
vations) and is collected from a larger area of 50 cities2. 
The cities are mostly located in the Eastern part of the 
US which tends to have a higher pollution concentration. 
Our data set is the most comprehensive and includes all 
3111 US counties, both rural and urban. Therefore, our 
low estimates may suggest that the results from the co-
hort studies may overestimate the fine particle impact, 
and should be treated as an estimate of urban effect only. 
To pursue this hypothesis further, we divide our sample 
into two: one containing only counties that were ana-
lyzed in the ACS study and the other containing all other 
counties. Table 3 presents the comparison of results from 
the two sub-samples against the ACS results.  

Our significant estimates from the ACS counties result 
in consistently higher risk ratios than our results from the 
non-ACS counties, confirming that studies that focus on 
urban counties only may overestimate the nation-wide 
impact of particular matter on mortality. We find that the 
impact of fine particles on all non-accidental mortality in 
all non-ACS counties is 3%, as opposed to 4% in the 
ACS ones. Both cardiopulmonary and cardiovascular 
mortality is increased in the non-ACS counties by 5% 
only in contrast to 6% and 7% in the ACS counties. The 
risk ratios from our ACS sample are still much lower 
then the risk ratios from the ACS study. One explanation 
of this discrepancy may be the non-linearity of the fine 
particle dose-response function even at relatively low 
concentration levels. Both cohort studies are based on 
older data with historically higher emissions. Addition-
ally, both studies focus on high-concentration urban ar-
eas. The mean/median concentration in the original ACS 
study is 18.2 μg/m3 with the standard deviation of 4.4 
μg/m3, as opposed to the CMAQ mean for 1996 of 10.8 
μg/m3 with the standard deviation of 4.9 μg/m3. Even 
when focusing on the ACS counties only, CMAQ data 
produces a mean of only 14.9 μg/m3 with a standard de-
viation of 5.4 μg/m3. Therefore, using the two cohort 
results for estimating current nationwide mortality con-
sequences may lead to serious overestimates of the actual 

impact of fine particles. The potential miscalculations are 
of non-trivial consequences when we consider that the 
ACS study doubles and the Six Cities study triples the 
risk we estimate. 

5. Summary and Conclusion 

This study applies modeled pollution data to estimate 
mortality risk associated with fine particulate matter. We 
estimate the impact of PM2.5 in all 3111 counties of the 
continental US on mortality rates for all non-accidental 
causes, cardiopulmonary, cardiovascular, and respiratory 
causes, lung cancer, other types of cancers, and other 
causes that include the remaining non-accidental mor- 
tality. We contrast our findings with the results of the 
reanalysis of two most prominent cohort studies by 
Dockery et al. (1993) and Pope et al. (1995). We confirm 
that fine particles significantly affect all non-accidental 
mortality, as well as cardiopulmonary, and cardiovascu-
lar mortality. We show, however, that the magnitude of 
the impact is much smaller than predicted by the cohort 
studies. These studies relied on much smaller data sets 
limited to urban locations, which led to overestimation of 
the mortality effect. Consequently, the damages from 
fine particles calculated using the cohort studies’ results 
have had serious upward bias. We estimate the size of the 
bias to be between 50% and 75% of the actual impact. 
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Appendix 

TableA1. Regression of adult (30+) mortality rate in all continental countiesa. 

Covariates 
Cardio-  

pulmonary 
Cardio- 
vascular 

Respiratory 
Lung 

Cancer 
Other 

Cancers 
Other 

Causes 

Intercept 
−5.523 
(0.078) 

−5.668 
(0.082) 

−7.304 
(0.095) 

−8.606 
(0.096) 

−6.651 
(0.710) 

−5.874 
(0.081) 

Annual concentration of PM2.5 
0.005 

(0.0006) 
0.006 

(0.0006) 
−0.001 

(0.0009) 
0.003 

(0.0009) 
0.002 

(0.0008) 
−0.001 

(0.0007) 

Average family income   
−3.1E−6 
(6.5E−7) 

−9.9E−7 
(6.7E−7) 

8.6E−7 
(5.0E−7) 

−5.874 
(0.081) 

Percentage with higher education 
−2.201 
(0.049) 

−2.362 
(0.051) 

−1.626 
(0.078) 

−2.117 
(0.079) 

−1.563 
(0.059) 

−1.422 
(0.066) 

Percentage of population in nursing homes 
31.44 

(0.972) 
32.091 
(1.012) 

37.42 
(1.134) 

19.333 
(1.172) 

24.53 
(0.863) 

22.411 
(0.973) 

Percentage of married people 
0.439 

(0.074) 
0.288 

(0.078) 
1.131 

(0.096) 
1.751 

(0.099) 
0.567 

(0.070) 
−0.458 
(0.081) 

Number of hospital beds per capita 
0.0002 

(1.6E−5) 
0.0003 

(1.7E−5) 
0.0002 

(1.9E−5) 
0.0002 

(2.0E−5) 
0.0002 

(0.00001) 
0.0002 

(1.6E−5) 

Number of MDs per capita 
0.0003 

(3.1E−5) 
0.0003 

(3.2E−5) 
0.0005 

(3.6E−5) 
0.0005 

(3.7E−5) 
0.0004 

(0.00003) 
0.0005 

(3.1E−5) 

Crime rate 
−3.3E−5 
(1.3E−6) 

−7.1E−6 
(1.4E−6) 

−1.1E−6 
(1.5E−6) 

1.2E−5 
(1.5E−6) 

 
1.4E−5 

(1.3E−6) 

January average temperature 
0.009 

(0.001) 
0.009 

(0.001) 
0.011 

(0.001) 
0.003 

(0.002) 
0.007 

(0.001) 
0.011 

(0.001) 

January average precipitation 
0.011 

(0.003) 
−0.017 
(0.004) 

0.015 
(0.004) 

0.027 
(0.004) 

0.0008 
(0.003) 

0.015 
(0.004) 

April average temperature 
−0.0378 
(0.002) 

−0.036 
(0.002) 

−0.037 
(0.003) 

−0.0263 
(0.002) 

−0.034 
(0.002) 

−0.009 
(0.002) 

April average precipitation 
0.029 

(0.005) 
0.038 

(0.005) 
0.004 

(0.006) 
0.004 

(0.006) 
−0.008 
(0.005) 

0.004 
(0.006) 

July average temperature 
0.003 

(0.001) 
0.001 

(0.001) 
0.008 

(0.002) 
0.006 

(0.002) 
0.005 

(0.001) 
0.008 

(0.002) 

July average precipitation 
0.011 

(0.002) 
−0.017 
(0.003) 

0.0002 
(0.003) 

0.027 
(0.001) 

0.029 
(0.002) 

0.0002 
(0.003) 

October average temperature 
0.028 

(0.002) 
0.028 

(0.001) 
0.017 

(0.003) 
0.024 

(0.003) 
0.021 

(0.002) 
0.017 

(0.003) 

October average precipitation 
0.013 

(0.004) 
0.018 

(0.003) 
−0.021 
(0.004) 

0.019 
(0.004) 

0.033 
(0.003) 

−0.021 
(0.004) 

Adj. R2 0.71 0.70 0.61 0.61 0.63 0.61 

aDependent variable is the log of the non-accidental mortality rate of adults over 30 years of age. Standard errors are in parentheses. Counties are weighted by 
population. 
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