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ABSTRACT 

The paper addresses range image segmentation, particularly of data recorded by range cameras, such as the Microsoft 
Kinect and the Mesa Swissranger SR4000. These devices record range images at video frame rates and allow for acqui-
sition of 3-dimensional measurement sequences that can be used for 3D reconstruction of indoor environments from 
moving platforms. The role of segmentation is twofold. First the necessary image co-registration can be based on cor-
responding segments, instead of corresponding point features (which is common practice currently). Secondly, the seg-
ments can be used during subsequent object modelling. By realisising that planar regions in disparity images can be 
modelled as linear functions of the image coordinates, having integer values for both domain and range, the paper in-
troduces a lookup table based implementation of local Hough transform, allowing to obtain good segmentation results at 
high speeds. 
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1. Introduction 

Segmentation of 3-dimensional point clouds is gaining 
popularity as new range sensors, such as the Microsoft 
Kinect game controller (Figure 1), which turn out to be 
suitable as 3D data acquisition devices, are available at 
prices in the €100 range. Another example of a 3D input 
device is the Mesa Swissranger SR4000, which is essen- 
tially a single CCD/CMOS chip plus a number of infra- 
red LEDS. It could become affordable for many applica- 
tions when mass produced. 

An often-mentioned application for such consumer- 
price 3D sensors is SLAM (Simultaneous Localization 
and Mapping) for indoor use. The goal is to have a de- 
vice move around in an indoor environment, either being 
controlled by an operator or mounted on a mobile robot, 
and to create a 3D model of the environment, while 
keeping track of the position of the device with respect to 
the model being created. For the work flow this means: 
 

 

Figure 1. The Kinect device with (from left to right) laser 
projector, RGB camera, and NIR camera. 

 A sequence of 3D recordings is acquired from a 
moving platform; 

 Orientation and co-registration is done automatically; 
 The recordings (or derived features/objects) are com-

bined into a single model. 
Recently a number of promising results made with Ki- 

nect appeared on Internet and to some lesser extend in 
scientific literature. Very attractive results are reported 
by [1-3]. Open source implementations of SLAM algo-
rithms are downloadable from [2,4,5]. The approaches 
for co-registration are usually based on automatically 
finding correspondences between various recordings in 
the intensity or RGB images (Figure 2), which are re-
corded by range cameras simultanously with the 3D data 
(Figure 3). The corresponding 3D coordinates are then 
used as initial estimate for a 3D transformation, e.g. us- 
ing ICP-based methods [1,6]. The model output of the 
above-mentioned algorithms consists mostly of point-
clouds, in which results of many subsequent recordings 
are combined, or of a mesh which is created over the 
resulting pointcloud. 

In the current paper we address segmentation of range 
camera recordings. The task of segmentation is to iden-
tify planar surfaces: in the envisaged result a recording is 
subdivided into uniquely labeled segments, each corre-
sponding to a single planar surface in the scene. The goal 
of segmentation in our current perception is twofold:  
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Figure 2. Kinect RGB image (green channel). 
 

 

Figure 3. Kinect depth image. 
 
First, we want to use the segmentation results for co-re- 
gistration of the different images in the sequence. Instead 
of relying on corresponding points in different images (as 
first extracted from the RGB or intensity images and then 
combined with the range data), we want to use corre-
sponding segments (i.e. planar surfaces). This will be 
elaborated in the remainder of the paper. Secondly, we 
want to use the segments during reconstruction of the 3D 
model. Ultimately, we are aiming at a model consisting 
of identified objects, rather than only of points. This will 
require not only segmentation, but also computation of 
surface boundaries and intersections etc.; however, this is 
a subject for further research. 

The data used in the remainder of the paper have been 
acquired using a Microsoft Kinect. This device simulta- 
neously records RGB and Range image sequences at 
video rate. The term range image implies a raster data 
structure (consisting of 480 × 640 pixels in this case), 
where each pixel value represents a measure of “range”, 
i.e. the distance between the camera and the observed 

therefore, range image segmentation rather than point 
cloud segmentation. This is a big advantage for real-time 
applications, because the problem is only 2.5D: to every 
(row, column) belongs only one range. Moreover, seg- 
mentation is about grouping of adjacent points belonging 
to the same planar surfaces, and in an image the adja- 
cency relation (the fact that pixels are neighbors) is 
known beforehand, whereas in a point cloud the nearest 
neighbors of each point must be searched for explicitely. 

As a limitation of the proposed method may be men- 

object point in the scene (see also Section 2). Our goal is, 

tio

2. Plane Segmentation 

ge image segmentation ac- 

ned that it only segments according to planar surfaces. 
A generalization to other types of parameterized surfaces 
is not foreseen. We consider this acceptable, especially 
as the Kinect is intended to be used indoors, where planar 
surfaces (walls, ceiling, floor, various type of furniture) 
are usually abundant. If curved and other non-flat sur- 
faces are present, they will lead to very small (or even 
single-pixel) segments, which will be ignored during co- 
registration and will not influence the results. 

The goal of the paper is ran
cording to planar surfaces. Conceptually, after translating 
each range image pixel (at image positition (x, y) and 
having range value r) into an (X, Y, Z) point in object 
space (see for example Figure 4), a plane is defined by 
the plane equation = + +Z aX bY c . Plane segmention 
on the basis of a rang ore, consists of esti- 
mating plane parameters a, b and c for each pixel on the 
basis of a neighborhood around the pixel, followed by a 
grouping of adjacent pixels with the same (of similar) 
parameter values into segments. 

In [7] we studied various me

e image, theref

thods of obtaining a, b 
an  d c estimates in a rasterized aerial LIDAR data set. We 
 

 

Figure 4. Point cloud generated by combining transformed
range image with green channel of RGB image. 
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considered gradient and least squares approaches, and for 
both we introduced an improved, adaptive, variants, 
which resemble Nagao filtering: after identification of 5 
subwindows at the center and the corners of the window 
under consideration, the plane parameters are taken from 
the “most planar” subwindow. Also we introduced a lo- 
cal Hough transform, which gave the best results—but at 
excessively high processing costs. In the current paper 
we briefly re-introduce local Hough transform for range 
camera data and present two optimizations in order to 
allow for real-time (video frame rate) performance. 

2.1. Identifying Planes from Disparity 

Kinect range image pixels represent disparity of a dot 
pattern, which is projected by a near-infrared (NIR) laser 
projector and recorded by a NIR camera (Figure 1). Be- 
cause of the distance between projector and camera (of 
approximately 7.5 cm), the projected point pattern ap- 
pears slightly shifted to the right in the camera images. 
Assuming that projector and camera are pointing parallel, 
the shift (called displacement) is always 7.5 cm in the 
object space. This translates into a number of pixels in 
image space. This number is called the disparity d and it 
depends on the depth Z to the object where the pattern is 
reflected (it also depends on the focal length f of the NIR 
camera expressed in pixels): 

0.075
=

f
Z

d
 

The working principle of the Kinect is based on the 
ability to measure this disparity in all elements of a 480 × 
64

0 
pi

0 grid simultaneously, following a patented method. 
The NIR camera resolution is in fact higher than the 

resulting range image: 1024 × 1280 instead of 480 × 64
xels. Moreover, disparities are estimated “sub-pixel” 

and the (integer) values in the disparity image represent 
disparity with 1/8 pixel precision. Finally, instead of 
having/wdisparity = 0 at distance = infinity (as would be 
intuitive), an offset C is applied from which the observed 
disparity is subtracted in order to have the resulting Ki- 
nect values k increase with depth [8]. The relation is 
given by: 

 
0.075

= = 0.6
1
8

f f
Z

C kC k 
 

The values k are the pixel values in a raw Kinect depth 
image. The rel tion between these values and depth after 
ca

Y, Z) coordinates  

a
librating for C is shown in Figure 5. 
The afore-mentioned transformation from image space 

(x, y) and depth Z to object space (X, 

uses               =
x

X Z

 

Figure 5. Depth vs. disparity. 
 

and                =
y

Y Z
f

. 

Since in a planar surface Z = aX + bY + c we get  

=
x y

Z aZ bZ c
f f
   

1 = =
0.6

x y c x y C k
a b a b c

f f Z f f f


     

which can be re-arranged into  

with 

: =k a x b y c   

= 0.6
a

a
c

= 0.6
b

b , 
c

  and 

This is a quite remarkable, however known, property 
rity [9]: inear fun (X, Y) in object space, 

i.e. a plane, is represented by a linear function k(x, y) in 
ra

=c cC k  . 

of dispa A l ction Z

nge image space. Planar surface segmentation can 
therefore be implemented as finding areas of adjacent 
pixels with the same (or similar) values for a , b , and 
c , based on the values and image coordinates of a dis-
parity image. All of these are directly available from the 
device without any further computation. This s t  basis 

r the first optimization. 

2.2. Local Hough Transform 

Hough transforms are a w

 i he
fo

ell-known class of image trans- 
e of idenfying param- 

s (be it a line, circle, 
forms [10], which have the purpos
eterized objects of a certain clas
plane, cylinder, sphere etc.). The principle is to construct 
for each pixel in the image that is a potential candidate 
for belonging to some object (of the class of interest), all 
possible combinations of parameter values such that an 
object with those parameters would indeed contain that f
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pixel. An accumulator keeps track of the frequency in 
which the various combinations occur over the entire 
image and thereby builds up evidence for the existence of 
objects. Note that parameter values are assumed to be 
taken from a discrete sets, having a certain (limited) pre- 
cision. 

For example, having reconstructed a point (X0, Y0, Z0) 
from a range image, all planes satifying Z0 =aX0 + bY0 + 
c would contain that point. This leads to combinations of 
pa

ts to memory and processing capacity. In [7] 
w

raph we silently assumed to have (X, Y, 
le, whereas in reality they would 

 disparity image coordinates (x, 

 of plane parameters a, b, and c using Lo-
bles for each pixel, generating a, 
(Figures 6-8); 

rameters (a, b, c) that can be found by choosing all 
possible (discrete) combinations of a and b, computing c 
= Z0 – aX0 – bY0 for each of them, and update the accu- 
mulator accordingly. When repeating this procedure for n 
points of which m ≤ n are in one plane, one would see the 
particular combination of (a, b, c) for that plane occuring 
m times. 

Unfortunately, the practicality of a 3D Hough trans- 
form (with 3 parameters) is disputable because of high 
requiremen

e proposed a simplification that is more practicle, al- 
though still expensive. In this so-called local Hough 
transform we try to identify planar patches based on 
neighborhoods around each pixel (X0, Y0, Z0) in a range 
image, with the additional requirement that the pixel it-
self is part of the plane. We now reconstruct a plane Z – 
Z0 = a(X – X0) + b(Y – Y0) locally by inspecting the other 
pixels (X, Y, Z) in the neighborhood, constructing (a, b) 
combinations, storing these in a 2D accumulator and 
looking for the combination that occurs most often. This 
frequency of occurrence should equal the size of the win- 
dow (minus one) if all points are coplanar, or be smaller 
if they are not. We hereby obtain an estimate for the a 
and b parameters (Figures 6 and 7) of the most likely 
plane containing the pixel, along with an indication of 
the likelihood of the plane. Note that the remaining plane 
parameter c at that pixel can be estimated as c = Z0 – aX0 
– bY0 (Figure 8). 

2.3. Lookup Tables 

In the above parag
Z) for each pixel availab
have to be computed from
y) and values k. This is where we recall that planes in (X, 
Y, Z) are also planes in (x, y, k)—these values are directly 
available from the device. Moreover, x, y and k are inte-
ger numbers. If we take, for example, a window size of 7 
× 7 pixels, (x – x0) and (y – y0) can only take values –3, 
–2, –1, 0, 1, 2, 3. Similarly, the range for (z – z0) might 
reasonably be limited to [–9..9]. Each of these 7 × 7 × 19 
possibilities gives rise to a (discrete) number of (a’, b’) 
combinations, which can all be pre-computed and stored 
as a lookup table. This is the second optimization to local 
Hough transform base plane segmentation, as proposed 
in this paper. 

3. Implementation 

Range image segmentation is done in two steps: 
 Estimation

cal Hough Lookup ta
b and c image layers 

 

 

Figure 6. Estimated plane parameter a. 
 

 

Figure 7. Estimated plane parameter b. 
 

 

Figure 8. Estimated plane parameter c. 
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 Region merging: grouping of adjacent pixels with 
similar a, b, and c values into segments. 

The implementation is descibed in the following two 
subsections. 

3.1. Local Hough Lookup Tables 

After a number of preliminary tests we have chosen to 
use for the local Hough transform parameter values as 
already mentioned in the description of the previous pa-
ragraph: a 7 × 7 window size and a range between –9 and 
9 for the differences between the disparities of the central 
pixel and the surrounding pixels in the window. Fur-
thermore, we have chosen ranges between –3 and +3 fo  
the possible a and b values with a stepsize of 0.3. There
fore, a an  with in-

r (with index 
va

10 .. 10] range. These additional entries are 
not considered when determining the most frequent 

e is, therefore, a 7 

r
-

d b can take 21 different values each,
dices between –10 and 10. In order to avoid testing of the 
ranges, additional entries in the accumulato

lues –11 and +11) are allocated to store any results that 
exceed the [–

combination. The complete lookup tabl
× 7 × 19 × 23 × 2 array. It should be regarded as a col-
lection of 7 × 7 × 19 elements, each element being a 23 × 
2 array. When processing a pixel within each 7 × 7 win- 
dow the position (r, c) within the window (with respect 
to the central pixel) and its disparity d (relative to the 
central pixel) determine which of the 7 × 7 × 19 elements 
is selected. The selected element contains a set of 23 (a, 
b) combinations that are appropriate for that particular (r, 
c, d) combination. 

LUT Initialisation 
Before segmenting a Kinect range image sequence the 
lookup tables are set up, which means that for any valid 
combination of r, c and d the corresponding element is 
filled with 23(a, b) values that satisfy d = ar + bc. If 

>r c  this is accomplished by having b run from –9 to 
9 in steps of 1, and compute  =a bc d r ; otherwise a 
runs from –9 to 9 and b is computed as  =b ar d c . 
In both cases the results are rounded to the nearest inte- 
ger before being stored in the lookup table. 

LUT Usage 
A pixel at row offset r (–3 ≤ r ≤ 3) and column offset c 
(–3 ≤ c ≤ 3) with respect to the central pixel, whose dis- 
parity differs by d (–9 ≤ d ≤ 9) from the one at the central 

ment [r + 3, c + 3, d + 9] from this 

 how the accu
own in Figure 9

in the accumu

tracting (11, 
11) (the index of the central position) and multiplying 

size 0.3, the plane parameters a and b are 

pixel, selects the ele
lookup table. This yields a 23 × 2 array of (a, b) combi- 
nations that are supported by this (r, c, d). Each of the 23 
pairs is an index pointing to a position at which the 2d 
accumulator array is incremented by one. This process is 
repeated 48 times: for each window element except the 
central one. Four examples of mulator looks 
after these 48 iterations are sh . Subse- 

quently it is determined at wich position - 
lator array the maximum value occurs. This gives a (row, 
column) position in the array, and after sub

with the step
known. 

3.2. Region Merging 

After extracting the a, b and c features for each pixel in 
the first step, the second step of segmentation is a process 
that groups adjacent pixels with similar feature values 
into segments. Various segmentation algorithms are des- 
cibed in recent and not-so-recent literature, such as re- 
gion growing and clustering followed by connected com- 
ponent labeling. We are obtaining good results with a 
quadtree based region-merging algorithm [11]. The al- 
gorithm starts with treating each quadtree leaf as a can- 
didate segment, followed by a recursive merging of ad- 
jacent leafs into subs-segments and sub-segments into 
segments. The process is controlled by two criteria: two 
adjacent segments are merged if and only if: 
 

 

Figure 9. Examples of numerical disparity image fragments 
(left) and result accumulator arrays (right). 
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1) The mean values within the two segments do not 
differ more than a threshold T; 

2) The variance in the resulting (merged) segment is 
less than T2. 

As a result of this process segments with arbitrary 
shapes and sizes (in 2D) can be created, as long as the 
two above criteria continue to be satisfied. Note that in 
3d the segments are expected to consist of co-planar pix-
els, however. 

4. Results 

Resulting a, b and c images are shown in Figures 6-8. 
These are input for region merging. The output is show 
in Figure 10. 

Speed 

An important consideration for the lookup table imple-
mentation of local Hough transform was the expected in- 
crease in speed, compared to the original version of [self 
reference]. Although the increase is remarkable indeed, it 
still does not fully comply with the real-time requirement 
that was set out in the beginning, as far as full-resolution 
(480 × 640) images are concerned. For images of those 
sizes, the entire process takes around 1.5 s, which is more 
or less equally divided over the feature extraction and the 
region merging phase. 

The following remarks apply: 
1) Kinect range images are acquired at a resolution of 

480 × 640 pixels. However, the images show quite some 
autocorrelation, in addition to noise (see Figures 6-8). 
When sub-sampling the images to (say) a quarter of the 
resolution (120 × 160) not much information is lost, 
whereas noise is significantly reduced and segmentation 
is improved in terms of surface reconstruction accuracy; 

2) Whereas the feature extraction phase was quite 
carefully optimized in the course of this study, the region 
merging phase was not optimized yet. It consist of a large 
 

 

Figure 10. Segmentation result controlled. 

number of steps, carried out by different executables 
passing image files between one and another as follows: 

a) Exporting the a, b and c images into raster files; 
b) Converting from raster to quadtree; 
c) Overlaying a, b and c quadtrees into a combined 

on

 
m

hich might be sufficient for the envisaged application. 
If the maximum acquisition frequency of 30 fps should 
be reached, a faster computer is necessary—currenty a 
low-end laptop with an Intel dual core M450 processor at 
2.40 GHz is used. 

5. Application 

Currently we are investigating how segmentation results 
can be used as a basis for performing co-registration of 
subsequent images in the sequence. The idea is to find 
corresponding segments, which is currently based on the 
expectation that at least a small overlap exists between 
corresponding segments, while the segment numbering is 
not necessarily the same in both images. In a cross table 
of all occuring segment combinations resulting from a
overlay cted on 

 
th  an 
op ing segments is 
ob

 shows three segmentation results of subse- 
qu e with 6 planes, and two 
ov y. In 
Fi m the  
 

e; 
d) The actual segmentation; 
e) Selecting significant (large enough) segments; 
f) Converting from raster to quadtree files; 
g) Filling small holes; 
h) Importing the result for further processing (co-re- 

gistration). 
Futher optimisations, primarily by keeping the data in
emory, can therefore be easily implemented. 
3) The combined result of the above is expected to 

yield a more than 15-fold increase in frame rate (>10 fps), 
w

n 
operation the valid combinations are sele

the basis of a and b values, such that these result in uni-
form (small) rotations over the entire image. After that

e second image is translated and rotated such that
timal fit of planes through correspond
tained. 
Figure 11
ent images of a simple scen
erlays of images 1 and 2, and 2 and 3 respectivel
gure 12 a point cloud is shown that results fro

 

Figure 11. Above: segmentations of three subsequent im-
ages; below: overlays. 
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Figure 12. Point cloud after co-registration of three subse-
quent images. 
 
three co-registered range images. 

6. Conclusions 

The paper presents an implementation for a local Hough 
transform of range images using lookup tables. 
causes a very big increase in execution speed that almost 
reaches range camera accuisition speeds (in the order of 
30 fps) if a 4-fold decrease of resolution is accepted. 

We also have shown first results of range image 
registration using the segmentation result, which does no

es can be identified. In case of
fewer planes, a combination with point correspondences 
can still be a solution, but this has to be further investi-
gated. 

We believe those developments are important st
towards fully automatic real-time 3D modelling of in
envirmonments using consumer-price range cameras. 
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