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ABSTRACT

In this paper we give sufficient conditions so that for every nonoscillatory u (t) solution of

(r(t)l//(u)u’) +Q(t,u)=P(t,u,u’), we have lIi_)rro1Qinf|u(t)|:0. Our results contain the some known results in the

literature as particular cases.
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1. Introduction

This paper is concerned with the problem of asymptotic
behavior of the second order nonlinear perturbed differ-
ential equation

(r(t)y (u)u) +Q(tu)=P(tu,u’) (1)
where
reC(1,R"),y €C(R,R"),R=(-0,%),1 =[t;,).
Throughout the paper according to the results we shall

impose the following conditions:
(H) Let feC'(R,R) and there exists a constant

k >0 such that f(x)zk and f(x)x>0 for
v (x)
x#0,

(Hz) QeC(I1xR,R) and there exists a continuous

Q(tx)
f(x)

(Hs) PeC(I1xRxR,R) and there exists a continuous

P(t,x,y)

f(x)

x=0,y=0
(Hs) PeC(I1xRxR,R) and there exists a continuous
P(t,x, y)< p(t)y

fx) (%)

function q(t) such that

q(t) for x=0,

function p(t) such that <p(t) for

for

function p(t) such that

x=0,y=0

(He) I(%}ds«n and | [%]dsm for every

=&
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>0,

We shall also restrict our attention only to the solution
of the differential Equation (1.1) which exist on some ray
of the form [t,, ).

The oscillatory behavior of the solution of second or-
der ordinary differential equations including the exis-
tence of oscillatory and nonoscillatory solutions has been
the subject of intensive investigation. This problem has
received the attention of many others. See for example,
[1-5]. Since the publication of Hammet’s paper in [6] in
1971, the asymptotic behavior of the solution of the or-
dinary and functional differential equations has been
widely discussed in the literature [2,4,7-9].

In this paper we give sufficient conditions so that for
every nonoscillatory u(t) solution of (1), we have

tIiminf|u(t)| =0. Our results contain the results in [10]

as particular cases.

2. Main Results

In this section we prove our main results.

Theorem 2.1. Let conditions (Hy), (Hy), (Hs) and (Hs)
hold. If there exists a differentiable function p:1 - R"
such that

p'(t)=0, 2
———<w® (3)

and

Iimt;[j‘[A(r)]erdS=oo (4)
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A(t) = p(t)[q(t)‘ p(t)_$[%(tt))] ] '

Then for every nonoscillatory solution u of Equation
(1), we have liminf u(t)=0.

Proof. Let u(t) be a nonoscillatory solution of (1).
We may assume that u(t)=0 for t>t, >t,. Define

R e

Differentiating (5) and making use of (1) and from
hypothesis (H;), (H) and (Hy), it follows that

()

()= 2 (e}~ pl0)alt) - (1)

By using the inequality

DX—EXZS%DZE‘l,Dzo,E>O,X >0 )

we get

e 1 )Y
w<t>_—p(t)[q(t)— o) 4er 0] 240 ] ®
Integrating this inequality, from t, to t, we get
o N <)

s)ds, t>t, >t

©)
Dividing (9) by p(t)r(t) and hence integrating from
t, to t we obtain

Ty
u(ty) f(sl) 1 10)
ol e Tl e
Using (4) we get
liminf T Lds = (11)
i F(s)

If liminfu(t)>0, then there exists a positive con-

t—w
stant ¢ such that u(t)>c for all t>t and conse-
quently, by (Hs)

"0y (s) . <°°W(S) o
U(tl)md _!md
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which contradicts (11). Thus we must have
!Lrginf u(t)=0. The proof for the case !Ln;inf u(t)<o0
for t>t, issimilar and hence is omitted.

We note that when p(t)=1, (H;) condition can be
weakened. Indeed from the proof of Theorem 2.1, the
following result can obtain easily.

Theorem 2.2. Let conditions (H,), (Hy), (Hs) and (Hs)
hold. Suppose that

0 f/
I£<oo, w(x)>0 and ﬂ20 for x#0,
r(t) v (x)

and

. £l
limsup | —| |(q(z)—p(7))dz |ds=0
gr(s)[£< (e)-p(2)) j
Then for every solution u(t) of Equation (1), we
have tIiminfu(t)zo.

By taking (H,) instead of (H3) we obtain the following
result which can be applied for example to the damped
equation

(r(t)w (u)u) +b(t)u+q(t) f (u)=0,t >t >t,.

Theorem 2.3. Let conditions (H,), (Hy), (Hs) and (Hs)
hold. Suppose that

w(x)=c>0. (12)

If there exists a differentiable function p:1 - R"
such that (3) holds and,

limsup (IB drjds:oo (13)
t—w p S r‘

B<t)=p<t){q<t)—rj?[":((t‘))|+|§((‘t))q ]
then for every solution u(t) of Equation (1), we have
!meinfu(t):o.

Proof. Let u(t) be a nonoscillatory solution of
Equation (1). We may assume that u(t)=0 for
t>t, >t,. Differentiating (5) and making use of (1) and
from hypothesis (H;), (H»), (H,) and (12), as in the proof
of Theorem 2.1, we can obtain easily that

s (L ] o

Integrating this inequality from t, to t we get

o PO <) foeye

(15)

APM



A. TIRYAKI

Dividing (15) by p(t)r(t), and hence integrating
from t to t we obtain
x(t) u
iminf [ Yoy = oo
gy F(u)
The rest of of the proof is similar to that of Theorem
2.1 and hence is omitted.

Remark 2.1. Grace and Lalli, consider the following
equation

(2w (x()x (V) + PO (1) +a(V) T (x(1)) =0

in [10] and give a similar result. But if we compare
Theorem 2.3 with Theorem 2 in [10], we observe that
they have a condition such as p'(t) p(t)<0 for t>t,
which impose some restriction on o and p. In our
result we remove this condition, so Theorem 2.3 is
weaker then Theorem 2 in [10].

Remark 2.2. To give similar results for the equation

(r®w @) +Q(tu) = P(tuw)

where reC(I,R"), yeC(RR"), R=(-0),
| =[t,,0) and o is a positive real number, still re-
mains as an open problem and will be interesting.

3. Example
Consider the differential equation of the form
(e‘“uzu’), +(eGt +6,(t, u))u5 =6, (t,u,u’)u’,t>t,

where 6, and 6, are continuous function such that
6,(t,u)>0 and 6 (t,u,u’)<1. All conditions of Theo-
rem 2.1 are satisfied. Then every nonoscillatory solutions
u of (16) we have !Lnginf|u(t)| =0. In particular

’
(e"ulu’) +(e” +e? )u® =e'u®, t>0

has a solution u(t)=e" and Iiminf|u(t)|:0.

t—>o
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