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ABSTRACT 

A systematic rigorous analysis of both massless fermion fields in the mass spectra of superstring theory is carried out. 
Our interest is in dynamical aspects of these fields. An explicit novel expression for the propagator of the massless 
Rarita-Schwinger field (the gravitino), in the mass spectrum involving massless fermions in superstring theory in 10 
dimensions, is derived. The analysis is carried in the presence of a non-constrained external source so that the full ex- 
pression of the propagator emerges. The number of associated degrees of freedom is also obtained. We work in a Cou- 
lomb-like gauge. The massless Dirac field (the dilatino), the other massless fermion field in the mass spectra of super- 
string theory in 10 dimensions, is first investigated to this end. 
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1. Introduction 

This work is involved with a systematic rigorous analysis 
of all the massless fermion fields in superstring theory. 
The two massless fermion fields arising in the mass 
spectrum in superstring theory are the Dirac (the dilatino) 
and the Rarita-Schwinger (the gravitino) fields in 10 di- 
mensions (cf. [1,2]). What is remarkable about string 
theory is that the fundamental fields that are required to 
describe the dynamics of elementary particles arise natu- 
rally in the mass spectra of oscillating springs and are not, 
a priori, assumed to exist or put in by hand in the under- 
lying theories. At present only the massless fields string 
modes are really physically relevant because of the enor- 
mous masses of the massive fields string-excitation modes. 
In this paper, we are interested in both massless fermionic 
field excitations in superstring theory. We are interested, 
particularly, in dynamical aspects of the gravitino field 
which is the main challenge here. To this end, we are 
concerned about the underlying constraints, the explicit 
expressions of its propagator, its inherit degrees of free-
dom. We work in the celebrated Coulomb gauge. For a 
systematic analysis of all the massless bosonic fields in 
superstring theory see [3] (also [4]). The fermionic mass- 
less fields, however, require some special techniques 
spelled out here. The Rarita-Schwinger field is necessar-
ily coupled to a non-constrained external source so that 
the full expression of the propagator is obtained leading 
to a novel expression for it. The Dirac field is also nec-

essarily considered first as a preparation for the investi-
gation of the intricacies of the Rarita-Schwinger field 
from the dynamical aspects mentioned above. The Greek 
indices , , ,   

, , ,i j k 
 go over 0, 1, ···, 9, while the Latin 

ones, go over 1, 2, ···, 9. Summation over re-
peated indices is understood. 

2. The Dirac Field in Ten Dimensions 

To carry out the analysis involving the massless Rarita- 
Schwinger field in ten dimensions, it is necessary first to 
review briefly and introduce, in the process, the following 
8 gamma matrices: 
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which are anti-commuting in pairs, and, in turn, intro- 
duce the product 
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 9 , 0, 1, ,i i     8.

3

             (3) 

9  has the structure 

9 .i I I I                    (4) 

All of the 16 by 16 matrices  are pure 
imaginary and satisfy the conditions: 

1 2 9, , ,  

 , 2 , , 1,i j ij i j     ,9,          (5) 

1 2 9 .I                    (6) 

A simple way to derive the Dirac equation in ten di-
mensions, is to multiply the equation: 

 0 2 2
1 0p m   p  by  0 2p  p 2m

1

 to obtain 

 22 0 2
1 ,p m  p              (7) 

where p is 9 dimensional. Equation (7) may be re-written 
as 

 20 2
1 .p m 1      p p           (8) 

Simply call the combination  0
1. ip  p  to be 

2m , i.e., define 

 0
1 .ip m 2   p             (9) 

Upon multiplying the latter by  and using (7), 
(8), and (9) again, lead simply to   

  p

0
2 2 .ip m 1      p            (10) 

The two Equations (9) and (10), may be now readily 
combined into the elegant form 
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Thus we have an explicit representation of all the 
gamma matrices in 10 dimensions. They are all pure 
imaginary, and satisfy 

 , 2                   (14) 

where 

 1,1, ,1 .diag                (15) 

Using, in the process, Equation (13), one may define 
the chirality matrix by 

  160 1 9
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0
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I
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I
   
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   2

32 , , 0.I                (17) 

For 0m   the two equations in (9), (10) decouple. 
From the expression of   in (16), we may select a spi-
nor with a definite chirality, say one with positive chiral-
ity 

,                    (18) 

referred to as a Weyl spinor of positive chirality. From 
the structure of   in (12), this amounts in selecting 1  
which, from (9), satisfies the equation   0m 

0
1 ,ip 1   p               (19) 

where 1  has 16 components, and this equation pro-
jects out further half of the components, leaving 8 inde-
pendent components. 

3. The Rarita-Schwinger Field in Ten  
Dimensions 

The Lagrangian density for the Rarita-Schwinger field 
for 0m   is given by (cf. [5,6]) 
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The Lagrangian density is, up to a total derivative, in-
variant under a gauge transformation  .a a

     a

We work in a Coulomb-like gauge 

0,i
i a                   (21) 

summing over i from 1 to 9. Now we add external 
sources to the Lagrangian density in (20) obtaining 
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     (22) 

Due to the constraint in (21), the field components 
may not be varied independently. We may, however, 
express the field in terms of fields ,i

a aU   that may be 
varied independently as follows: 

 2
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8
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where 
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satisfying 
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and  is a projection operator, with πij , , , , 1, ,9,i j k l s    
and a summation over repeated indices is understood. 

With i
a  given in (23), we may now vary the fields 

0, ,j
a aU   , which, as seen below, not only lead to the 

field equations but to additional (derived) constraints. 
To the above end, we note, in particular, that we may 

write 
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Using the above expression and by varying the La-
grangian density with respect to 0 , ,j

a aU ,   lead after 
some labor, to the equations 
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From these equations, we note that only i  may 
propagate. Also if constraints are, a priori, imposed on 
K  , the right-hand sides of these equations are changed 
and the equations would not provide the full expression 
of the propagator. 

We see from Equation (29), that the Coulomb-like 
condition in (21) is automatically satisfied. In the ab-
sence of the external sources, the above other two equa-
tions give also the constraints , and 0i i   0 0.   

That is, for a given spinor index, the number of states 
is reduced from a factor of 10 to 7. This is rigorously 
established by explicitly evaluating the contraction of  
in (24): 

πij
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Hence from (19), for a given chirality, the number of 
total independent components would be  7 8 56. 

Since no constraints were imposed on the external 
sources , ,K K   we may vary each of their compo-
nents independently, otherwise the full expression of the 

propagator does not follow from the right-hand sides of 
(28), (29). Upon taking the vacuum expectation values 

0 0  of (28), (29), and setting 

    0 0 0 0a ax i K x
      ,  

and integrating with respect to the sources, we obtain 

        0 0 exp d d a ab bi x x K x x x K x
          , 

(31) 

where the propagator  ab x x
    is given by  
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(37) 

as the novel expressions of the components of the propa-
gator. 

4. Conclusion 

A systematic rigorous analysis of both massless fermion 
fields in superstring theory in 10 dimensions was devel-
oped, emphasizing dynamical aspects, the constraints and 
the inherit non-trivial number of independent degrees of 
freedom, and a novel expression for the propagator of the 
Rarita-Schwinger was derived. For the treatment of all 
the massless bosonic fields of superstring theory see [3,4]. 
The investigations of the dynamical aspects of all these 
fields in superstring theory, are expected to be useful in 
finding connections between string theory and field the-
ory for computations and for the generation of non-trivial 
effective actions. These points will be taken up in subse-
quent reports. 
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