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ABSTRACT 

Hamieh and Abbas [1] propose using a 3-dimensional real algebra in a solution of the Dirac equation. We show that this 
algebra, denoted by , belongs to a large class of quadratic Jordan algebras with subalgebras isomorphic to the com- 
plex numbers and that the spinor matrices associated with the solution of the Dirac equation generate a six-dimensional 
real noncommutative Jordan algebra. 
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Non-associative algebras have long been used in the 
mathematical description of physical phenomena; first 
appearing as the “r number algebra” in the seminal paper 
by Jordan, Wigner and von Neumann [2] of 1934. The r 
number algebra became known as a Jordan algebra from 
a 1946 paper by Albert [3]. The interested reader is re- 
ferred to the books on non-associative algebras in phys- 
ics Lõhmas, Paal and Sorgsepp [4], Okubo [5]. A con- 
cise history of non-associative algebra is to be found in 
Tomber [6]; the standard introduction to non-associa- 
tive algebra is the book by Schafer [7]. 

Hamieh and Abbas [1] present a “description of an al- 
gebra which can be used in a possible extension of local 
complex quantum field theories”. We further expand their 
description and show that these algebras are Type D Jor- 
dan algebras (see Jacobson [8]). 

We construct a large family of quadratic Jordan alge- 
bras that contains the three-dimensional real algebra, the 
so called G  algebra, the generalized complex num- 
bers, of Hamieh and Abbas [1], and show that the spinor 
matrices that arises from using the  in a formulation 
of the Dirac equation generate a six-dimensional non- 
commutative quadratic Jordan algebra. 

1. Introduction 

Let  be an algebra over a field F not of characteristic 
two. The associator is a trilinear mapping 

y z xy z x yz 

A

x  

of  into  that measures the lack of asso-

ciativity in . 

 A A A A

One scheme of classifying nonassociative algebras in- 
volves placing conditions on the associator of certain sets 
of elements. Some of the better known algebras are: 

1) Alternative algebras. In this variety of algebras, all 
elements x and y satisfy 

   , , , , 0x x y x y y   

for all elements x and y. The octonion division ring is an 
alternative algebra. An interesting variation is psuedo- 
octonion algebra (Okubo [5,9]). 

2) Jordan algebras. These are commutative algebras in 
which all x and y satisfy 

 2, , 0.x y x 

B

 

A Type D Jordan algebra is the Jordan algebra of the 
symmetric bilinear form q on a vector space . Albert 
[3] has shown that any algebra of Type D has a basis 
 1 2, , , , ne b b b  

, for all1 ,i i ieb b e b i n

 with multiplication given by 

   

for 1 , .i j ij ib b e i j n

 

   

0i

 

The algebra will be semisimple if  
1 i n

 for all 
 . 

3) Noncommutative Jordan algebras. A generalization 
of the alternative and Jordan algebras that requires all x 
and y satisfy a generalization of the commutative law 

 , , 0,x y x   

that is, the algebras are flexible, and 

 2, , 0.x y x   
*This paper is in final form and no version of it will be submitted for 
publication elsewhere. 
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The book by Zhevlakov, Slin’ko, Shestakov and Shir- 
shov [10] provides a detailed analysis of the alternative 
and Jordan rings.  

The above algebras are all power associative since 
each element a generates an associative subalgebra; 
equivalently,  for positive integers . 
In any power associative algebra  with unit element 
we can introduce the series 

m n n ma a a  ,  m n
A

0 !

i
x

i

x
e

i







xA
A

A

 

for  ignoring the question of convergence. 
An algebra  over a field F is called quadratic if, for 

every x in  

   2 0x q x e  

   ,t x q x A

  q x

2x t  

where  are in F and e is the identity of . 
The quantities  and  are called the trace and 
norm of the element x, respectively. The trace is a linear 
functional on  see Schafer [7]. The norm 

t x

A  q x
A

.y

 q x  ,q x y

A

 de- 
fines a symmetric bilinear form  on  via  ,q x

 q x
y

q q x y q x  , y  

Say  is nondegenerate if  is. Any 
quadratic algebra is power associative and any flexible, 
quadratic algebra is a noncommutative Jordan algebra. 

A quadratic algebra  is flexible if and only if the 
trace is associative; that is,      z t x yx

, ,
t xy  for all 

x y z  in . If  is flexible then the mapping A A

 2x x t x e x   is an involution in  (see Braun 
and Koecher [11], p. 216). 

A

Lemma 1. The Hamiltonian division ring is a quad- 
ratic algebra.  

Proof. Let x a bI cJ dK 

2 2 2b c  

G
 , ,e I J

   be an element of the 
Hamitonian division ring. Direct computation shows that 

2 2x ax a  2 0d  .         

Example 1. The octonion division ring is a quadratic 
algebras.  

Example 2. Domokos and Kövesi-Domokos [12] pro- 
pose a quadratic algebra, the “algebra of color” as a 
candidate for the algebra obeyed by a quantized field 
describing quarks and leptons (see also Wene [13,14], 
and Schafer [15]).  

2. Construction of the Algebras 

The elements of the algebra  are the elements of the 
real vector space with basis . The addition is the 
vector space addition and multiplication is defined by 

, 0IJ JI  2 2I J  e e

, ,n 2n 

i jb b

,  is the identity and the 
distributive laws. We note that the algebra is commuta- 
tive and has divisors of zero. 

An immediate generalization of this algebra has a ba- 
sis ,  over the field   of real 

numbers and multiplication defined by ij

 , , 1i i e b

 
e

G
2n 

G

 
where  is the identity. For want of a better name 
called these the Abbas algebras. As noted above, these 
algebras are Type D Jordan algebras. Note that the  
algebra is the construction for ; the results for the 
Abbas algebras apply to the . Each Abbas algebra 
contains a copy of the complex numbers. 

Lemma 2. The Abbas algebras are quadratic algebras. 
Proof. Let H denote a Abbas algebra. Then if x H , 

0
i

ix e b  
1, 2, , .i n

, Einstein summation convention where 


 2
0 0

i i i
i

 Then 

x x b b b    

2
0 0 02 2 2 i

i

 

x b      

 2 2
0 02 i ix x

 

Adding both sides gives 

        

   2q x t xand we see that 0  and  0 i i .    
A commutative quadratic algebra will be a Jordan al- 

gebra.                                         
Since the algebra is commutative the trace is associa- 

tive; the norm is symmetric. 
Lemma 3. The norm of a Abbas algebra is nondegen- 

erate. 
Proof. Let H denote a Abbas algebra. Then if x H , 

0
i

ix e b   0
i

id b is arbitrary and     is fixed, 
then 

       

   

   

2 2

0 0
1

2 2
0 0

,
n

i i
i

i i i i

q d x q d x q d q x

   

     


   

   

   

  

  0 0, 2 2 i iq d x     

G

q ae bI cJ

 

         

3. Special  Algebras 

Hamieh and Abbas [1] pass to a representation of the 
point    G of the algebra  in spherical 
coordinates,      cos , sin cosa r b r     and  

   sin sinc r  
G SG

. The subalgebras, called special 
 algebras and denoted by  are the subalgebras 

spanned by all elements in which the “azimutal phase 
angle   is constant”. Each of these subalgebras is 
(isomorphic to) the complex numbers. 

Lemma 4. The algebra  is isomorphic to an 
algebra of two by two matrices 

G

a bI cJ

bI J a

 
   

under the usual matrix operation of addition and multi- 
plication.  
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a bI cJ

J a

 
 
 


SG

   n cos

Proof. The straight forward verification that the map- 

ping  is an isomor- 

phism is left to the reader.                        

( )ae bI cJ
bI

   


Copyright © 2012 SciRes.    

Lemma 5. Each of the algebras  is isomorphic 
to the complex numbers.  

Proof. We note that if sib r  
 

 then  

 
sin

c b
cos




 
   

 
0 if . If  cos  

π

2
  or 

3π

2

q a cJ 
e bI bsJU  

, then 

 and the subalgebra  is (isomorphic to) 

the complex numbers. Otherwise,  or 

SG
q a

 q ae b I s   J  for some . Let s
21

I sJ
X

s





, 

then 

 2

2

2 11

I sJ
2

2

1
.

s
X e e

s

 
 

s

 
  

 
 

The multiplication, using the basis  ,e X  will be 
given by  

       .ad bc X 


ae bX ce dX ac bd e     

                                         

4. The Spinor Matrices 

The classical reference on spinors and wave equations is 
the book by Corson [16]. 

The associator spinor matrices are 

0

0t

J

J

 
  
 

C , 
0

0x

J

J

 
  
 

C

0

0y

,  

I

I

 
  
 

C ,  
1 0

0 1z

 
   

1, ,

C

I J Gwhere  
2

. Denoting the 2 by 2 identity matrix 
by I , these matrices satisfy 

 2
2 2and , 2

for , , , .

tC I C C C C C C I

x y z

      

 

    



, , , , , , ,
a bI cJ

a b c d e f I J GC
eI fJ d

 

The spinor matrices generate a 6-dimensional real 
algebra with elements 

          


G
6SP

 6SP
a bI cJ

x
eI fJ d

 
   

 

that contains the matrix representation of the  alge- 
bra. Denote this algebra by . 

Lemma 6. The algebra  is a quadratic algebra.  

Proof. If  is an element of 

 6SP

   
  

2
2

2

a be cf a d bI cJ
x

a d fI cJ d be cf

    
       

, then 

 

    
  

2

2

1
2

2

a ad a d bI cJ
a d x

a d eI fJ ad d

                
 

Adding the left and right sides gives 

 2 01
2

02

ad be cf
x a d x

ad cb cf

               

 6SP

 

              

Lemma 7. The algebra  is flexible. 
Proof. Because of the trilinearlty of the associator, we 

can write the elements x and y of the associator  , ,x y x
0 bI cJ

x
eI fJ d

 
   

0 yI zJ
y

sI tJ v

 
   

d d d

bs ct bvI cvJ
xy

  

as  and . 

Then 
 

sI tJ v ey fz

   
     

 

    
    d d d d

ebv fcv bs ct bI cJ d bvI cvJ

y fz eI fJ b s c t d v ey fz

       
xy x

v e

           

 

  

 d d

d

ey fz xb y I cx z J
yx

v bs ct

     
     

 
evI fvJ

    
      

d

d d d d d

bev cfv v bs ct bI cJ

fz eI fJ evI fvJ d v bs ct e y f z

      
        

x yx                     
ey 

 
 Theorem 1. The algebra 6SP  is a quadratic non- 

commutative Jordan algebra.  

5. The Dirac Equation 

We proceed as in Hamieh and Abbas [1]. The Dirac 

equation over the complex numbers is often written as  

  0i m
      

utilizing the Einstein summation convention for    
x, , ,y z t . A more general form is, setting  
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  m   

  0,C m   

,C H C
      

 

, , ,

 

where x y z t  . 

Upon substituting the matrices for C  and simplify-
ing we get 

1

2

0.z

m

  
   

z

x y t z

m

J I J

  
       

 

In dimensions x and t, the solution is given by 

   

1
, J px ct

E p
em


 

 
  
 

x t N   

p and 2 2E p m  

G

 are respect the momentum and 

energy. N is a normalization factor. 

6. Conclusion 

We have shown that the  algebra belongs to a large 
class of Jordan algebras and have examined a few of the 
algebraic properties of these algebras and, like the Jordan 
algebra and the algebra of color, there is a very rich 
mathematical structure to further explore. 
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