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ABSTRACT 

Analyzing gene network structure is an important way to discover and understand some unknown relevant functions 
and regulatory mechanisms of organism at the molecular level. In this work, mutual information networks and Boolean 
logic networks are constructed using the methods of reverse modeling based on gene expression profiles in lung tissues 
with and without cancer. The comparison of these network structures shows that average degree, the proportion of 
non-isolated nodes, average betweenness and average coreness can distinguish the networks corresponding to the lung 
tissues with and without cancer. According to the difference of degree, betweenness and coreness of each gene in these 
networks, nine structural key genes are obtained. Seven of them which are related to lung cancer are supported by lit- 
eratures. The remaining two genes AKT1 and RBL may have important roles in the formation, development and metas- 
tasis of lung cancer. Furthermore, the contrast of these logic networks suggests that the distributions of logic types are 
obviously different. The structural differences can help us to understand the mechanism of formation and development 
of lung cancer. 
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1. Introduction 

Lung cancer is one of the most common and lethal ma- 
lignancy carcinomas, and its formation, development and 
metastasis is an extremely complex polygene regulatory 
process [1]. Studies have shown that formation of lung 
cancer involves activation of oncogenes, inactivation of 
cancer suppressor genes and mutation of apoptosis-re- 
lated genes resulting in cell proliferation and abnormal 
death. Therefore, finding the genes critical to the forma- 
tion and development of a disease from potentially dis- 
ease-related genes is of significance to the diagnosis and 
cure of the disease and drug design. This is an important 
component in the research of bioinformatics [2]. Now, 
many researchers recognized genes closely related to 
lung cancer classification, early diagnosis, prognosis and 
treatment using microarray technology. Battacharjee et al. 
[3] analyzed gene expression of tissues with and without 
cancer using Affymetrix U195A oligonucleotide mi-
croarray, and divided pulmonary adenocarcinoma into 
four subtypes. Hayes et al. [4] determined three pulmo- 
nary adenocarcinoma subtypes with clinical significance 
using DNA microarray. Borczuk et al. [5] built class pre- 
diction models for lung cancer histology and for cancer 
outcome and found that gene expression profiles of bi- 
opsy specimens of lung cancers can identify unique tu- 
moral signatures that provide information about tissue 

morphology and prognosis. In order to identify a gene 
signature predictive of recurrence in primary lung ade-
nocarcinoma, Larsen et al. [6] analyzed gene expression 
profiles in a training set of 48 node-negative tumors 
(stage I-II) and compared tumors from cases who re- 
mained disease-free for a minimum of 36 months with 
those from cases whose disease recurred within 18 months 
of complete resection, and obtained a 54-gene signature 
that predicts the risk of recurrent disease independently 
of tumor stage. Also, Chen et al. [7] identified sixteen 
genes correlated with survival among patients with non- 
small-cell lung cancer (NSCLC) by analyzing microarray 
data and risk scores and found five-gene (DUSP6, MMD, 
STAT1, ERBB3, and LCK) signature is closely associ-
ated with relapse-free and overall survival among pa-
tients with NSCLC. Tsai et al. [8] studied overexpression 
or knockdown of gene HLJ1 in human lung adenocarci-
noma CL1-5 cells and discovered that HLJ1 expression 
inhibits lung cancer cell proliferation, anchorage-inde- 
pendent growth, tumorigenesis, cell motility, and inva- 
sion, and slowed cell cycle progression. 

In post-genomic era, biologists paid more attention to 
functions and dynamic laws of whole genome, further 
understood the essence of life from an integrative and 
systemic perspective [9]. In recent years, scientists have 
developed many models of gene regulatory network. For 
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instance, Boolean network, Bayesian network, linear model 
and differential equation model [10-13]. Jang et al. [14] 
applied decision tree method to construct gene network 
for disease tissues. They focused mainly on the relation-
ships between coactions of genes and pathogenesis of a 
complex disease and explored a new way to study genetic 
complexity of disease from the view of relationship and 
pathway. Bowers et al. [15] proposed a computational 
approach-logic analysis of phylogenetic profiles (LAPP) 
to identify detailed triplet relationships among proteins 
on the basis of genomic data. It can help biomedical re- 
searchers to understand potential logical relationships and 
discover novel biological mechanism. Now, this method 
has been studied in both theories and applications [16- 
21]. 

In this work, according to the viewpoint that the struc-
tures of matters can determine their functions, we can 
catch disease-risk genes through analyzing the differen-
tial structure of gene network in lung tissues with and 
without cancer. Different from other methods [10-13], we 
can find the structural difference of gene networks be- 
tween normal and lung cancer easily. First, mutual in- 
formation networks of carcinoma-related genes are con- 
structed using their expression profiles under the contexts 
of normal and two types of lung cancer (adenocarcinoma 
and small cell lung cancer, abbreviated as AC and SCLC 
respectively). From the analysis of several structural pa-
rameters for these networks, it shows that average degree, 
the proportion of non-isolated nodes, average between- 
ness and average coreness can distinguish significantly 
the networks corresponding to normal and diseased tis- 
sues. Computing the degree, betweenness and coreness of 
each gene in the three gene networks, we find nine struc- 
tural key genes. Seven of them which are related to lung 
cancer are supported by literatures. The validity of this 
approach is about 78%, while the experimental methods 
only can determine one or two disease-risk genes. Fur- 
thermore, we predict the remaining two genes AKT1 and 
REL may have important roles in the formation, devel- 
opment and metastasis of lung cancer. Second, gene logic 
networks of normal and two types of lung cancer are 
constructed. Comparing the distributions of 2-order logic 
types in these networks, we find that logic types in gene 
logic network of normal tissues include logic types 1, 3, 
5, 8, while logic types 5, 8 and logic type 8 do not appear 
in that of AC and SCLC respectively. Also, logic types 2, 
6 and 2, 4, 6 emerge in that of AC and SCLC respec- 
ttively. The difference of the distribution of 2-order logic 
types in the above gene logic networks of normal and 
two types of lung cancer may be a reason or result of the 
formation and development of lung cancer. It provides 
some enlightenment roles to study the intrinsic mecha- 
nism of lung cancer. 

2. Reverse Network Modeling Structural 
Parameters of Network 

Now, there are two ways to build a network model for a 
biological system, forward and reverse network modelings. 
The former is based on studies of individual components 
of the system and, hence, is appropriate to a system for 
which there exist lots of experiment data in literature. 
However, reverse network modeling is based on the 
analysis of high-throughput data (from DNA chips and 
some other recently developed techniques) to mine regu- 
latory mechanisms among the components of the system. 
Recently, reverse network modeling has been broadly 
applied to the studies of various biological systems 
[10-14,22-24]. In 2006, Werhli et al. [22] compared the 
accuracy of reconstructing gene regulatory networks with 
three different modeling and inference paradigms Rele-
vance networks, graphical Gaussian models and Bayesian 
networks through constructing Raf signal transduction 
network, and found that Bayesian networks and graphical 
Gaussian models outperform Relevance networks. Using 
the method of reverse network modeling, Perkins et al. 
[23] investigated gene regulatory network of drosophila 
and explained the activation of genes. Wang et al. [24] 
constructed gene logical network for Arabidopsis subject 
to external stimuli and further analyzed dynamical be-
haviors of the logical networks. 

2.1. Mutual Information 

A gene expression profile is a vector whose components 
are its expressions in many different experiments. For 
convenience, we denote the gene expression profiles by 
their corresponding genes. We describe the relationships 
between genes with mutual information. For example, the 
mutual information of genes A and B means that of their 
expression profiles and is quantified as follows:  

      ; , I A B H A H B H A B          (1) 

where 

    2log  
x X

H X p x p x


   

is the Shannon entropy of vector X, H(A,B) is the joint 
entropy of genes A and B. Larger values of I(A;B) imply 
closer interrelation between genes’ expression profiles. In 
case of I(A;B) = 0, genes’ expression profiles are inde-
pendent. 

2.2. LAPP Method 

Bowers et al. [15-17] utilized uncertainty coefficient (ab- 
breviated as U) to measure the logical relationships and 
identify logic types of 1-, 2-order among genes A, B, C. 
The relationships between/among two and three genes 
are called 1-, 2-order one, respectively. In this work, we 
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identify logical relationships among genes by LAPP 
method based on 0 - 1 expression profile data of carci- 
noma-related genes. 

LAPP method can determine logical relationships of 1-, 
2-order by calculating the uncertainty coefficient of 
proper functions of every order among genes. The 1-order 
proper relationship between genes A and B is determined 
in the following formula: 

          
 

1 1
1

,
|

H B H f A H B f A
U B f A

H B

 
  (2) 

where H refers to the entropy of the individual or joint 
distributions. U Y X   denotes the uncertainty coeffi-
cient of the influence of X on Y. The size of U value de- 
notes the statistical possibility of the uncertainty logic of 
1-order of X to Y. 1f  is one of 1-order proper functions of 
A to B. The 1-order proper functions are divided into two 
types (Table 1). The first is B = A, namely, the presence 
of A leads to the one of B (equivalent with ); 
the second is , namely, the presence of A leads 
to the absence of B (equivalent with ). 

B A  

A
B  A

B 
Similarly, the uncertainty coefficient of 2-order proper 

function is calculated in the following expression: 

       
    

2 2

2

| , ,

, ,

U C f A B H C H f A B

H C f A B H C

 


   (3) 

where f2 is one of 2-order proper functions. There are ten 
2-order proper functions and eight logic types (Table 1). 

Let ui denote thresholds of i-order uncertainty coeffi-
cients (i = 1, 2) and d' a small number and a difference 
threshold. When the difference of the uncertainty coeffi-
cients  and   1|U B f A   1|U A f B  is greater than 
a given value d’, namely: only if 

     1 1| |U B f A U A f B d    

and 
 
Table 1. List of 1-, 2-order proper functions and logic types. 
Obviously, 1-order proper functions and logic types are the 
same. 

order 
Proper function and its 

serial number 
Logic type and its 

serial number 

1. B A  1.  B A
1-order 

2. B A   2. B A   

1.  BAC  1.  BAC 

2.  ( )C A B   2.  ( )C A B  

3.  BAC  3. BAC   
4. )  ( BAC  4. )  ( BAC 

5.  BAC 

6. BAC   
5.  (5-1) BAC 

BAC   (5-2) 
7.  BAC 

8. BAC   
6.  (6-1) BAC 

BAC   (6-2) 
9.  ( )C A B   7. )  ( BAC 

2-order 

10.  ( )C A B   8.  ( )C A B  

  1 1| ,U B f A u  

the relationship between genes A and B is A→B. We set 
threshold u2 to judge the existence of 2-order logical re- 
lationships in the following formula: 

  
  
  

2 2

1 1

1 1

2 1

| ,

|

|

U C f A B u

U C f A u

U C f B u

u u

 

 







           (4) 

According to the above description, we can determine 
all the logical relationships and logic types among the 
investigated genes. We regard all of the logical relation-
ships as a gene network with 1-, 2-order logics, where 
each node in the network represents a gene. 

2.3. Structural Parameters of Network 

Now, let us briefly introduce some structural parameters 
of network that are used to describe network structures in 
this work (see [25,26] for detailed explanations). Set 

 ,G V E  be a complex network with node-set 
 ,1, 2,V   N  and edge-set E. 

1) Average degree (K) 
The degree of a node is the number of nodes adjacent 

to it. The average degree is the average value of degrees 
of all nodes, denoted by K. 

2) Average path length (L)  
The distance between nodes i and j in V is defined as 

the smallest number of edges that connect nodes i to j, 
denoted by dij. The average path length L of the network 
is defined as 

  0.5 1ij
i j

L d N N


   

3) Average clustering coefficient (C) 
The clustering coefficient of node i, denoted by Ci, is 

equal to the proportion of the edges among its adjacent 
nodes in the possible edges. The average clustering coef-
ficient is the average value of clustering coefficients of 
all the nodes. 

4) Modularity (Q) 
In a complex network, the concept of community is a 

good tool to describe network structures and provides 
better understanding of network functions. Newman [26] 
proposed modularity to measure the probability of a net-
work having communities. Suppose that network G con- 
tains l communities G1, G2, ··· Gl. Define symmetric ma- 
trix  ijM m

l l
 , where hij represents the ratio of the 

number of edges between two communities Gi, Gj to the 
total number of edges of the network. The modularity is 
defined as:  

 2
i ii

i i

Q Q m a   i   
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where ai is the sum of all elements in the ith row of M, 
representing the ratio of the number of edges adjacent to 
community Gi to that of all edges. 

5) Proportion of non-isolated nodes (R) 
Proportion of non-isolated nodes, denoted by R, is the 

ratio of the number of the nodes with degree not 0 to that 
of all nodes.  

6) Average betweenness (B) 

 ,
n inj

i j

B d  ijd  

is the betweenness of the node n, where dij presents the 
number of the shortest paths between the node i and j, 
and dinj presents that of paths which pass the node n. The 
betweenness of a node reflects its influence in the network. 
The average value of the betweennesses of all nodes in 
the network is average betweenness of the network. 

7) Average coreness (H) 
k-core of a graph is the subgraph after getting rid of the 

nodes whose degrees are smaller than or equal to k re-
peatedly. If a node exists in a k -core, but is removed in 
(k + 1)-core, the coreness of the node is k. The average 
value of the corenesses of all nodes is average coreness 
of the network. 

3. Material and Numerical Experiments 

3.1. Data Sources and Processing 

1) Data sources 
The gene expression data we work on are all from 

GPL96 and GPL570 in NCBI. The sample data set for 
normal tissue, AC and SCLC includes 73, 68 and 39 
samples respectively. These data are from GSE2771, 
GSE12667 and GSE15240 respectively. For description 
convenience, we refer to the networks corresponding to 
these three data sets as normal network, adenocarcinoma 
network (abbreviated as AC network) and small cell lung 
cancer network (abbreviated as SCLC network). Almost 
all of these data sets include p-values and P-M-A (P, A 
and M stand for presence, absence and margin respect- 
tively) except for some samples. We process these three 
data sets (corresponding to normal tissue, AC and SCLC)) 
by MAS 5.0 of Expression Console, and obtain values, 
p-values and P-M-A for each sample of each gene. Then 
we represent P with 1, A and M with 0 in these three 
processed data sets. Our work is based on these three 
databases (corresponding to normal, AC and SCLC 
group)1. 

2) Selection of carcinoma-related genes 
It is out of our scope to construct and analyze the net-

works for all genes in the databases (each of the three 
databases contains expressions of more than 20,000 

genes). Our main focus is on carcinoma-related genes 

[27]. From the databases we choose 301 genes that are 
known to be linked with cancers. These genes correspond 
to 801 probes. In the cases where several probes corre-
spond to one gene, the highest expression value is chosen 
to form the gene’s expression profile. We obtain 283 
genes in normal group and 286 genes in AC and SCLC 
group. Choosing the intersection of these genes, and us-
ing Bonferroni test to compare the difference of genes’ 
expression profiles between normal and lung cancer 
groups respectively, we choose the significant level 
0.0001 and obtain 91 genes which both have significant 
difference between normal and two types of lung cancer. 
We focus on mutual information and logical networks of 
these genes in each database2. 

3) Data processing 
To calculate mutual information between arbitrary two 

genes, we discretize the p-values in each database as fol-
lows: a) Select the ranges [Min, Max] for p-values in the 
intervals [0,0.05] and (0.05,1] and divide them into 10 
portions respectively such that each portion contains al- 
most the same number of p-values. Order the portions in 
the number order and denote them by 1st, 2nd, ··· 20th 
interval, respectively; b) Replace the p-values in an in- 
terval by its labeling value. Obviously, the granularity of 
our discretization is finer than that of 0 - 1 discretization 
and hence our discretization loses less information con-
tained in the 0 - 1 discretization. Therefore, it is reasonable 
to believe that the mutual information networks based on 
our finer discretization better reflect the nature of the 
gene regulatory system. 

3.2. Establishment of Mutual Information Gene 
Network 

Based on above discretized data, we can calculate mutual 
information values of any two genes by formula (1) and 
hence obtain a complete network of all genes in each 
database. Note that the ranges for mutual information 
values for our three databases are different. For the pur-
pose of comparing the networks, we normalize the mu-
tual information values for each database as 

   min max minx x     

where x and x' represent the original and normalized mu-
tual information values. max and min are the maximum 
and minimum values of the mutual information values 
before normalization respectively.  

In order to highlight the structural characteristics of the 
networks so that valuable biological conclusions can be 
drawn, it is necessary to choose a threshold value to carry 
out coarse graining on normalized mutual information. 
We build three gene networks (with normalized mutual 

information values as edge weights), corresponding to 

2http://cise.sdkd.net.cn/institute/isbbc/data/AGNLC/working_database.rar1http://cise.sdkd.net.cn/institute/isbbc/data/AGNLC/raw_database.rar
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the cases of normal, AC and SCLC group. For each net-
work, we compute seven structural parameters: average 
degree K, average path length L, average clustering coef- 
ficient C, modularity Q, proportion of non-isolated nodes 
R, average betweenness B and average coreness H. These 
structural parameters are plotted versus threshold values 
T in Figure 1. From Figure 1, we can see that these 
structural parameters K, R, B and H can distinguish nor- 
mal network from AC and SCLC networks in a broad 
range of the threshold variation. It shows that the differ-
ence between normal and lung cancer which do not de- 
pendent on the choosing of threshold. 

tural parameters versus thresholds in randomized net- 
works (Figure 2) and compute the degrees of differen- 
tiation of those structural parameters (Table 2). Com-
pared with these results in real data, these structural pa- 
rameters can distinguish normal and lung cancer in their 
structures. According to the view that system’s structure 
decides its function, it shows that the functions of gene 
networks have significant difference in normal and lung 
cancer. 

We search genes which have largest contribution to 
these differences through calculating the difference of the 
degree, betweenness and coreness of each gene in the 
three gene networks. We get the top ten genes whose 
degrees, betweennesses or corenesses are largest (Table 
3), which are called structural key genes. We get the in-
tersection of these genes and find that there are seven 
genes contributing to the difference of structures of gene 
networks of AC and normal, also there are seven genes 
between SCLC and normal tissues. Genes FN1 and REL 
are special between AC and normal tissues, and genes 
TOP2A and RBL1 between SCLC and normal tissues. 

We define the degree of differentiation of each struc- 
tural parameter as the proportion of the distinguishing 
interval of threshold in [0,1], denote the degree of differ- 
entiation that the values of structural parameters of nor- 
mal tissues are greater or smaller than that of lung cancer 
by G differentiation or S differentiation respectively. The 
results are show in Table 2. In order to show the specific 
of these networks, we randomize the genes’ expression 
profiles keeping the equal number of p-values in [0, 0.05] 
and (0.05, 1]. We obtain the changes of those struc- 
 

 

Figure 1. Plots of seven structural parameters versus threshold values T in real networks. 
 

Table 2. Comparison the degree of differentiation of real data with that of randomized data. 

 K L C Q R B H 

83% 39% 27% 30% 81% 81% 71% 
Real data 

G differentiation
S differentiation 0 26% 5% 21% 0 0 0 

Randomized data 12% 17% 13% 12% 0 14% 18% 
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Figure 2. Plots of seven structural parameters versus threshold values T in randomized networks. 
 
Table 3. The top ten genes of the difference of degree, betweenness and coreness between normal and lung cancer networks 
respectively. The negative value presents that the degree or betweenness or coreness of the gene in gene network of disease 
stage is smaller than that of normal tissues. The differences of degree, betweenness and coreness are abbreviated as DD, BD 
and CD respectively. 

Genes 
(AC and 
normal) 

DD 
Genes 

(SCLC and 
normal) 

DD 
Genes 

(AC and 
normal) 

BD 
Genes 

(SCLC and 
normal) 

BD 
Genes 

(AC and  
normal) 

CD 
Genes 

(SCLC and 
 normal) 

CD 

FN1 –52 PIK3CA –54 PIK3CA –930 PIK3CA –955 FN1 –41 PIK3CA –41

MSH2 –50 MSH2 –50 FN1 –399 EMP1 354 MSH2 –40 MAPK9 –41

PIK3CA –49 NRAS –49 MAPK9 –256 NRAS –320 REL –40 RBL1 –41

NRAS –48 TOP2A –49 FGF2 234 TOP2A –263 NRAS –39 TOP2A –41

REL –47 RBL1 –47 RBL1 –216 RBL1 –244 AKT1 –38 MSH2 –40

AKT1 –46 MAPK9 –46 MSH2 –211 MAPK9 –211 PIK3CA –37 NRAS –40

MAPK9 –45 AKT1 –46 AKT1 –180 AKT1 –185 PTCH1 –36 AKT1 –40

CXCL2 –43 CHEK1 –45 NRAS –150 CHEK1 –179 EMP1 –36 MAFG –40

ECT2 –42 SUPT4H1 –44 TOP2A –145 SUPT4H1 –160 KDR –35 PTCH1 –40

AXL –42 PTCH1 –43 REL –128 PTCH1 131 MAPK9 –35 REL –39

 
3.3. Construction of Gene Logical Networks 

Looking for the regulatory relationships among genes 
can help us to understand the regulatory pathways related 
to diseases and discover the regulatory mechanisms of 
organism at the molecular level. Next, we will construct 
and analyze gene logical networks for normal, AC and 
SCLC respectively. 

Based on three databases corresponding to normal, AC 
and SCLC group with 0-1 expression data in Section 3.1, 
we can calculate i-order uncertainty coefficients of any I 
+ 1 (i = 1, 2) genes by formulas (2) - (4). It is considered 
that there is at most one 1-order logical relationship be-

tween any two genes A and B. We set a relative difference: 

     
     

1 1

1 1

| |

| |

U A f B U B f A
d

A f B U B f A




2  
 

The 1-order proper function f1 between genes A and B 
is B→A (or A→B) only if d > 0.15 and   1|U A f B  
(or   1|U B f A ) > u1. Hence we obtain a complete 
logical network of all genes with 1-, 2-order logics in 
each database. 

In order to eliminate the difference of 2-order logic 
types owing to choosing thresholds, we compare the dis- 
tribution of 2-order logic types in the three networks at 
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different threshold pairs (Figure 3). It shows that the 
distribution of 2-order logic types nearly doesn’t change 
as the threshold pairs. In normal gene logic networks, 
there are logic types 1, 3, 5, 8, while in that of AC, logic 
types 5, 8 do not appear and logic types 2, 4, 6 emerge, 
also in that of SCLC, logic types 8 does not appear and 
logic 2, 6 emerge. The difference of 2-order logic types 
between normal tissues and lung cancer may be a reason 
or result of the formation of lung cancer. 

4. Conclusions and Discussions 

Based on the gene expression data of carcinoma-related 
genes expressed in normal tissues and diseased tissues  
 

 
Normal 

 
AC 

 
SCLC 

Figure 3. The distribution of 2-order logic types in logic 
networks at different thresholds. The darker the color is the 
higher proportion of the number of a logic type has. 

with AC and SCLC, we construct the corresponding mutual 
information networks. From the comparison of the struc- 
tural parameters of mutual information networks, we find 
nine structural key genes: PIK3CA, FN1, MAPK9, 
MSH2, NRAS, TOP2A, RBL1, AKT1 and REL, where 
genes FN1, REL and RBL1, TOP2A are special genes in 
comparing the gene network of normal with those of AC 
and SCLC respectively. In the constructed gene networks, 
these genes are related to each other with higher mutual 
information values in that of normal (greater than 0.7) 
than in those of AC and SCLC (smaller than 0.05). We 
consider that these genes may play important roles in 
maintaining the normal functions of genome. Through 
analyzing Gene Ontology of each genes, we find that five 
genes of them PIK3CA, MAPK9, MSH2, AKT1 and 
TOP2A are involved in the regulation of cell apoptosis. 
For example, gene FN1 is related to cell adhesion and 
gene RBL1 is a key regulator in the regulation of cell 
cycle. Therefore, we predict that the disorder of cell 
apoptosis, cell adhesion and cell cycle might play impor-
tant roles in the formation of lung cancer.  

Researches show that gene FN1 encodes fibronectin 
which is involved in cell adhesion and migration proc-
esses including embryogenesis, wound healing, blood 
coagulation, host defense, and metastasis. Anastellin 
binds fibronectin and induces fibril formation. This fi-
bronectin polymer, named superfibronectin, exhibits en-
hanced adhesive properties. Both anastellin and superfi-
bronectin inhibit tumor growth, angiogenesis and metas-
tasis. Anastellin activates p38 MAPK and inhibits lyso- 
phospholipid signaling. Nashino et al. [28] found that the 
disappearanceof FN reflects the aggressiveness of the 
tumor and presumably plays an important role in the 
prognosis of AC of the lung. So gene FN1 is an AC- 
suppressor gene. The protein encoded by gene RBL1 is 
similar in sequence and possibly function to the product 
of the retinoblastoma 1 (RB1) gene. RB1 gene product is 
a tumor suppressor protein that appears to be involved in 
cell cycle regulation, as it is phosphorylated in the S to M 
phase transition and is dephosphorylated in G1 phase of 
the cell cycle. Both the RB1 protein and the product of 
this gene can form a complex with adenovirus E1A pro-
tein and SV40 large T-antigen, with the SV40 large 
T-antigen binding only to the unphosphorylated form of 
each protein. Due to the sequence and biochemical simi-
larities with the RB1 protein, it is thought that the protein 
encoded by gene RBL1 may also be a tumor suppressor. 
Baldi et al. [29] found an inverse correlation between the 
histological grading of the tumors, the development of 
metastasis, and the level of expression of Rb2/p130 
which is structurally and functionally similar to the 
product of gene RBL1. So gene RBL1 may be a tumor 
suppressor gene of lung cancer. Gene TOP2A encodes a 
DNA topoisomerase which functions as the target for 
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several anticancer agents and a variety of mutations in 
this gene have been associated with the development of 
drug resistance. Jensen et al. [30] studied the resistant to 
the inhibitory action of F 11782 in SCLC patients and 
found that TOP2A is a target of F 11782 in vivo, and that 
F 11782 may act as a novel topoisomerase II poison. It 
shows the function of gene TOP2A in SCLC. Gene PIK 
3CA encodes the p110alpha catalytic subunit, Samuels et 
al. [31] found that PIK3CA was frequently mutated in 
cancers of the colon, breast, brain and lung. The majority 
of mutations clustered near two positions within the 
PI3K helical or catalytic domains and at least one hotspot 
mutation appeared to increase kinase activity. The pro-
tein encoded by gene MAPK9 is a member of MAP 
kinase family. MAP kinases act as an integration point 
for multiple biochemical signals, and are involved in a 
wide variety of cellular processes such as proliferation, 
differentiation, transcription regulation and development. 
This gene and MAPK8 are also known as c-Jun Ntermi-
nal kinases. This kinase blocks the ubiquitination of tu-
mor suppressor p53, and thus it increases the stability of 
p53 in nonstressed cells. Nitta et al. [32] investigated the 
role of the JNK2α (the alias of MAPK9) isoform in 
NSCLC formation by examining its expression in pri-
mary tumors and by modulating its expression in cul-
tured cell lines and found Cell lines deficient in JNK2α 
had decreased cellular growth and anchorage-independent 
growth, and the tumors were four-fold smaller in mass. 
Gene MSH2 is a DNA mismatch repair gene, Xinarianos 
et al. [33] found a relationship between p53 and MSH2, 
there is evidence for p53 being a transcriptional activator 
of MSH2, and suggested a hypothesis that MSH2 acts as 
a DNA-damage signaller triggering p53 overexpression. 
Sasaki et al. [34] found NRAS mutation in 1 of 195 pa- 
tients, although the rate is small, we consider that the 
mutation of NRAS may be a reason of the formation of 
lung cancer. The relationships between MSH2, NRAS 
and SCLC are not clear, but owing to they have impor- 
tant roles in structures of gene networks between normal 
and SCLC, we predict these two genes are related to the 
formation and development of SCLC. Besides, the re- 
maining two genes AKT1 and REL are open. We predict 
that they may have significant roles in the formation of 
lung cancer based on the view that system’s structure 
decides its function. 

Through constructing gene logic networks corre-
sponding to normal, AC and SCLC, we find the signifi-
cant difference of the distribution of 2-order logic types. 
Relative to normal gene logic network, logic types 5, 8 
do not appear in that of AC, and logic type 8 does not 
appear in that of SCLC. Also, logic types 2, 6 and 2, 4, 6 
emerge in that of AC and SCLC respectively. The dif-
ference of the distribution of 2-order logic types in the 
above gene logic networks of normal and two types of 

lung cancer may be a reason or result of the formation of 
lung cancer. It provides some enlightenment roles to 
study the intrinsic mechanism of lung cancer. 

Finally, we have applied this approach to the gene de-
tection of other cancers, such as breast cancer and brain 
tumor, and Arabidopsis thaliana response to the special 
external stimulus. Through analyzing the results, we find 
most of genes can be supported by literatures. It further 
approves the validity of our approach. 
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