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ABSTRACT 

A linear stability analysis is applied to a system consisting of a linear magneto-fluid layer overlying a porous layer af- 
fected by rotation and salt concentration on both layers. The flow in the fluid layer is governed by Navier-Stokes’s 
equations and while governed by Darcy-Brinkman’s law in the porous medium. Numerical solutions are obtained using 
Legendre polynomials. These solutions are studied through two modes of instability: stationary instability and oversta- 
bility when the heat and the salt concentration are effected from above and below. 
 
Keywords: Navier-Stokes Equation; Darcy-Brinkman Law; Legendre Polynomials; Salt Concentration; Vertical Linear 

Magnetic Field 

1. Motivations and Goals 

Thermal instability theory has attracted considerable in- 
terest and has been recognized as a problem of funda- 
mental importance in many fields of fluid dynamics. The 
earliest experiments to demonstrate the onset of thermal 
instability in fluids are those of Bernard’s [1,2]. Benard 
worked with very thin layers of an incompressible vis- 
cous fluid standing on a levelled metallic plate main- 
tained at a constant temperature. The upper surface 
which was usually free and, being in contact with the air, 
was at a lower temperature. In his experiments, Benard 
deduced that a certain critical adverse temperature gra- 
dient must be exceeded before instability can set in. The 
instability of a layer of fluid heated from below and sub- 
jected to Coriolis forces has been studied by Chand- 
rasekhar [3,4] for a stationary and overstability case. He 
showed that the presence of these forces usually has the 
effect of inhibiting the onset of thermal convection. Nield 
[5] considered the onset of salt-finger convection in a 
porous layer. Taunton et al. [6] considered the thermoha- 
line instability and salt-finger in a porous medium and 
solved the boundary value problem. Sun [7] was the first 
to consider such a problem, and he used a shooting 
method to solve the linear stability equations. Sun [7] 
and Nield [8] used Darcy’s law in formulating the equa- 
tions of porous layer. In Darcy’s law of motion in porous  

mediums, the Darcy resistance term took the place of the 
Navier-stokes viscosity term, while in the modified 
Darcy’s law (Brinkman model), suggested by Brinkman 
[9], the Navier- stokes viscosity term still exists. Chen & 
Chen [10] considered the multi-layer problem when the 
above layer is heated and salted from above, and the so- 
lution of the problem is obtained using a shooting me- 
thod. Lindsay & Ogden [11] worked in the implementa- 
tion of spectral methods resistant to the generation of 
spurious eigenvalues. Lamb [12] used expansion of Che- 
byshev polynomials to investigate an eigenvalue problem 
arising from a model discussing a finitely conducting 
inner core of the earth on magnetically driven instability. 
Bukhari [13] studied the effects of surface-tension in a 
layer of conducting fluid with an imposed magnetic field 
and obtained results when the free surface is deformable 
and non-deformable. He solved that by using Chebyshev 
spectral method, and thus obtained some different results 
from that of Chen & Chen [10]. Straughan [14] studied 
the thermal convection in fluid layer overlying a porous 
layer and considered the problem of lower layer heated 
from below and surface tension driven on the free top 
boundary of upper layer. In [15], he also dealt with the 
same problem considering the ratio depth of the relative 
layer and investigated the effect of the variation of rele- 
vant fluid and porous material properties. Allehiany [16] 
studied Benard convection in a horizontal porous layer  *Corresponding author. 
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permeated by a conducting fluid in the presence of mag- 
netic field and coriolis forces. In this work, we studied 
the effects of rotation and salt concentration on thermal 
convection in a linear magneto-fluid overlying a porous 
layer. The numerical solution was presented in different 
boundary conditions solved by using Legendre polyno- 
mials. 

2. The Governing Equations 

We consider a fluid layer overlying a porous layer so that 
the top of the porous layer touches the bottom of the fluid 
layer. The plane interface between the two layers is 

3  the upper boundary of the fluid layer is 30,x  fx d  
and the lower boundary of the porous medium layer is 

3 mx d   where the subscripts f and m denote the fluid 
layer and porous medium layer respectively. We suppose 
that the upper layer is filled with an incompressible 
thermally and electrically conducting viscous fluid con- 
sisting of melted salt which flows in it and governed by 
Navier-Stokes equations. However, the lower layer is 
occupied by a porous medium permeated by the fluid 
flowing in it and governed by Darcy-Brinkman’s law. 
Both layers subjected to a constant vertical linear mag- 
netic field and affected by a rotation around 3x  with a 
constant angular velocity . Gravity g acts in the nega- 
tive direction of 


3x  (see Figure 1). 

Convection is driven by the temperature depending on 
the fluid density and salting, and damped by viscosity. 
The Oberbeck-Boussineq approximation is used as the 
density of fluid is constant everywhere except in the 
body force term where the density is linearly propor- 
tional to temperature and salt concentration, i.e. 

   0 01f T T S S        0 .         (1) 

where T denotes the Kelvin temperature of the fluid, S is 
the salt concentration, 0  is the density of fluid at 0  
and 0 , 

T
S   (constant) is the thermal coefficient of vo- 

lume expansion of the fluid and   (constant) is the sal- 
ting coefficient of volume expansion of the fluid. Let  
be the solenoidal velocity of the fluid. 

V

 

Porous layer 
(contain salt) 

 0,0,B B  

fdx 3  

03 x  

Fluid layer 

(contain salt) 

3x

1x

2x

g

 0,0,    

3 mx d   
 

Figure 1. Schematic diagram of the problem. 

Let  and  be respectively the solenoid- 
dal velocity of the fluid, the magnetic field, the magnetic 
induction, the current density and the electric field. 
Hence  

, , ,V H B J E

0, 0divV div B                 (2) 

, ,H B J  and  connected by the relations E

 ,mB H J E V B             (3) 

where m  is the magnetic permeability and   is the 
electrical conductivity. And the Maxwell equations 

curl , curl
t

B
E J


  


H            (4) 

where the displacement current has been neglected in the 
second of these Maxwell equations as is customary in 
situation when free charge is instantaneously dispersed. 
By substituting from (3), (4)2 in to (4)1 obtain by 

 

 

 

1
curl

t σ

1
curl curl

curl curl curl

m

B
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   (5) 

where 
1

m

η
μ σ

 
 
 



B

 is electrical resistivity. By using 

   2curl curl grad divB B   

and 

     curl V B B V V B      

then Equation (5) reduce to 

    2

t

B
B V V B 

     


B   (6) 

The equation of motion is 

 

0

2
0

t

V
V V

P V g V J



  

    
B        

 (7) 

where P  is hydrostatic pressure,   is the dynamic 
viscosity and 2 is three-dimensional Laplacian operator. 
And by subsituting from (3)1, (4)2 in to the Lorentz force 
J B  we obtain 

2

1
curl

1 1

2

m

m

J B B B

B B B





  

     
 

       (8) 

Hence the equation of motion becomes 
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and so the governing equations of the fluid layer are  
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and the governing equations of the porous medium layer 
are 
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S
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1
curlm

mm
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    2

t
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B
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 m  (19) 

where fP , m  are the modified pressure of the fluid 
and the porous medium layers respectively and 

P

21

2 f r  , 
21

2 m r   are the centrifugal force of the  

fluid and porous medium layer respectively, ,f mV V  are 
the solenoidal and seepage velocity respectively,  
 2 f fV Ω ,  2 m mV   are the coriolis acceleration 

of the fluid and porous medium layer respectively, 
,f mT T  are the Kelvin temperature of the fluid and po- 

rous medium layer respectively, ,f mS S  are salt concen- 
tration of the fluid and porous medium layer respectively, 

f m  are the mass diffusivity of the fluid and porous 
medium layer respectively, 
D ,D

,m f m m   are magnetic 
permeability of fluid and porous layer respectively, 

f m  are the thermal and overall thermal conductivity 
of fluid and porous layers respectively, 
k ,k

0ν    is the 
kinematic viscosity, is the permeability, K   is its po- 
rosity and    0 ,pρ c ρ c0 mf

 are the heat and overall 
heat capacity per unit volume of the fluid and porous 
medium layers at constant pressure. In fact 

      0 0 01p pm f m
ρ c φ ρ c φ ρ c    

where  0 pc
m

 is the heat capacity per unit volume of 
the porous substrate. Suppose that 3 fx d

T

 is rigid and 
maintained at constant temperature u and constant salt 
concentration u , and 3 mS x d   is impenetrable and 
maintained at constant temperature l  and constant salt 
concentration , then the boundary conditions can be 
written as 

T

lS

   

   

     

3

3 3
3

0, 0,
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f f f

f f u f f u
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f f f f
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    (20) 

on the upper boundary, and 
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0, 0,

,
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m m l m m l

m
m m m

w
w d d

x

T d T S d S

B
ζ d J d d
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 m

   (21) 

on the lower boundary, where fw  and m  are the nor- 
mal axial velocity components of the fluid in fluid layer 
and porous medium layer respectively, 3

w

f
ζ  and 3m

 
are the normal axial vortecity components of the fluid in. 
fluid layer and porous medium layer respectively. 

ζ

The boundary conditions on the interface plane x3 = 0 
are based on the assumption that temperature, salt con- 
centration, heat flux, salt flux, normal and tangential 
fluid velocity, normal stress and tangential stress are con- 
tinuous so that 
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Equations (10)-(19) have an equilibrium solution 
satisfying the boundary conditions (20)-(22) on the form 
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   (23) 

and with the boundary conditions  
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          (24) 

and the interface conditions 
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the equilibrium temperature field, hydrostatic pressure 
and salt concentration in the fluid layer and porous me- 
dium layer are respectively 
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3. Perturbed Equations 

We apply the perturbation by following linear perturba- 
tion quantities  
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to the governing equations in the fluid layer and porous 
medium layer respectively and to the boundary condi- 
tions. After perturbation, the non-dimensionlisation will 
be apply by using 

2
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for the fluid layer, and by using 
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for the porous medium layer, here  m m p f
λ k ρc  and 

 f f p f
λ k ρc  are the thermal diffusivity of the fluid 
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phase and porous medium respectively ,then the Equa- 
tions (10)-(14) becomes 
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The boundary conditions (20)-(22) becomes 
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where ,  and  are given by d̂ ˆ ˆ T S Tn,m,ε ,ε ,γ
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4. The Linearized Equations 

Linearization will be done by neglecting all products and 
powers (higher than the first) of the linear perturbation 
quantity, and by dropping the (•) superscript, then by 
taking the curl of the Equations (30) and (35) we obtain  
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Now, the third components of Equations (31), (32), 
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bξ
Rs s Ta Da

x x






     


    

 

  (54) 

2m
m T m

m

θ
G F w θ

t


  



3

m

x x x






 
        

  
        

m             (55) 

2m
S m m

m m

sφ
F w

Le t


  


s            (56) 




 (44) 

3 3 2
3

3

1 mf f

m f

fm

f
m m

j ξ
Q

P t x
j

 
 

 
      (57) 
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21

m

m m
f m

m m m

b w
Q

P t x

 
 

 
b         (58) 

where 
2

2 2
2 2

3x


   


 is tow-dimensional Laplacian  

operator and . We apply the normal modes 
solution in the form 

 24 2  

     3 1 2expΦ x,t Φ x i nx mx σ t     

with the functions ,f f f f f f m m m mw ,θ ,s ,ξ , j ,b ,w ,θ ,s ξ ,  
 and .Thus the governing equations are mj mb

2 2 2

2
3

f

f

m

f
f f f f f f f f f f

r

f
f f f f f

m

σ
L w L w a Rt θ a Rs s

P

σ
Ta D ξ D b Q D w

P

  

   f f

 (59) 

3 3 3f f f

f

f
f f f f f

r

σ
ξ L ξ Ta D w D j

P
           (60) 

f f T f fσ θ F w L θ  f                     (61) 

f
f S f f f

f

σ
s F w L s

Le
                     (62) 

3 3 3f f

f

f
f f f

m

σ
j Q D ξ L j

P
 

f
               (63) 

f

f
f f f f f f

m

σ
b Q D w L b

P
                  (64) 

2 2

2
3

m

m

m

m m f m m m m m m m m
r

m m m m m m m
m

Da
σ L w L w a Rt θ a Rs s

φP

Da
Ta Dξ σ D b DaQ D w

P

   

  
 (65) 

3 3 3

3

m m m

m

m

m m
r

m m m

Da
σ ξ ξ DaL ξ

φP

Ta Dw DaD j

  

 
         (66) 

m m m T m m mG σ θ F w L θ                    (67) 

m m S m m m
m

φ
σ s F w L s

Le
                   (68) 

3 3 3f fm m

m

m
m m m f

m

σ
j Q D ξ L j

P
                (69) 

m

m
m m m m m

m

σ
b Q D w L b

P
  m                  (70) 

where 2 2
f fa n m  f  and 2 2

m ma n m  m  are non- 

dimensional wave numbers in the fluid layer and porous 
medium layer respectively,  is the growth rate and σ

   

   

2

3 3
3 3

2 2 2 2

ˆ
ˆ , ,

1

m

f m,

0,f θ

, 0 , 1 0 ,

and

f m f
T

f f f m m m

d
a da σ σ

ε

D x ,D x ,
x x

L D a L D a .

 

 
    
 

   

 

The boundary conditions in the final form are 

3 3

3

0, 0,

0, 0 on 1

0, 0
f

f

f f f

f

f

w D w

s ξ , x

Db j

  
  


  

   (71) 

2

2 3 2

2 3
3 3 3 3

2 3

2 3

3 3 3

3 2 2
3
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, ,

, ,

S m

m m

m

m

f f

D s

w

ξ

D

w

ˆ ,

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ
, ,

ˆ ˆ

3

f m f m

f m m

f

f

T f T m S f S m

f f T m m f f m

f m f f

f f m m
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f m f f m
T

f f
T

f
f f f f f f f

r

γ θ ε θ γ s ε s

D θ ε D θ D s ε

w dw D w d D

D w d D w

ξ d ξ D ξ d D

d d
b b D b b

m mε

d d
j j D b D j

m mε

σ
D w a D w D Ta ξ D

P

 

 

 



 

 

 

   

3

4
2 2

4 2

on 0

ˆ
1 3

ˆ
ˆ

m

f

m m m m
r

m m m m m

x

b

d Da
σ a D DaD w

Da φP

d
d Da D b D w a ξ

Da















4

a

T









 
     

     



 
(72) 

3 3

3

0, 0, 0

0, 0, on 1

0, 0
m

m

m m m m

m

m

w D w θ

s ξ x

Db j

  
  
  

     (73) 

5. Numerical Solution 

A Legendre polynomials (see Bukhari [5]) is applied to 
solve the Equations (59)-(70) with the relevant bound- 
ary conditions (71)-(73), and we map  3 0 1x ,  and 

 3 1 0x ,   into  1 1z ,   by the transformations 

32 1z x   and 32 1z x   respectively, and get  

3

2 ,
x z

 
 thus  2 , 1f mD D D z ,1

z


    


.  
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then, suppose that  

     
1

0

,1 28 1 1
M

r kr k
k

y z α P z r z ,




    

8

,

,
m

 

let the variables  where 1  be defined by ry 2r 
2 3

1 2 3 4

5 3 6 3 7 8

9 10 11 12

13 14

2 3
15 16 17 18

19 3 20 3 21 22

23 24 25 2

, , ,

, , , ,

, , ,

,

, , , ,

, , ,

, , ,

f f

m m

f f f f f f f

f f f f

f f f f f

f f

m m m m m m

m m m m

m m m m

y w y D w y D w y D w

y ξ y D ξ y θ y D θ

y s y D s y b y Db

y J y DJ

y w y D w y D w y D w

y ξ y D ξ y θ y D θ

y s y D s y b y

   

   

   

 

   

   

   6

27 28,
m

m m

Db

y J y DJ .



 

 

Then the Equations (59)-(70) can be rewritten in a sys- 
tem of twenty ordinary differential equations of first or- 
der, since  and if we put f mD D D  mσ σ  then  

2ˆ
f

T

d
σ

ε
 σ  so the eigenvalue problem can be reformu- 

lated in the form 

 d
, 1

d

Y
Y σ Y z ,

z
   A B 1  

where A and B are real 28 × 28 matrices. The final eigen- 
value problem reduces to V σ VE F where matrices E 
and F have the block forms. The boundary conditions 
replace the 1 Mth, 2 Mth, … 28 Mth rows of E and F. 

6. Results and Remarks 

Using Legendre polynomials, the eigenvalue problems 
(59)-(70) with the boundary conditions (71)-(73) are 
transformed to a system of fourteen ordinary differential 
equations of first order in the fluid layer and a system of 
fourteen ordinary differential equations of first order in 
the porous layer with twenty eight boundary conditions. 
In this work, we will discuss the numerical results 
through two cases—when the heat and salt concentration 
affected from above and below.  

Case (1): the heat and the salt concentration af- 
fected from above. 

Here, we put FT = 1, FS = 1and the value of the initial 
salt Rayleigh number of the porous medium Rsm = 5000 
to find the thermal Rayleigh number of the porous me- 
dium m  corresponding to the wave numbers m  for 
the different values of m , m , m ,  

Rt a
,Ta Q Da d̂

fr  P fLe  
and 

fm . In this case, the eigenvalues are real, and thus 
the stationary instability happens, as shown in the fol- 
lowing Tables 1-4 and Figures 2-5. Therefore, we con- 
cluded that: 

P

Table 1. The relation between am and Rtm for different va- 

lues of Tam when , Dam = 0.0003, Qm = 100, d̂ . 0 01

fr fP Le  1 and 
fmP  3 . 

mRt  

15mTa   10mTa 5mTa   
ma

 
 

15442.275 

1612.915 

962.857 

1870.107 

2290.704 

2517.540 

4404.851 1411.452 

2651.554 

2735.177 

2788.741 

2822.960 

2843.926 

2855.233 

2859.100 

2856.979 

2849.797 

2838.122 

2822.374 

2802.753 

2779.416 

2752.387 

1926.006 

3112.021 

3531.430 

3724.639 

3826.280 

3883.113 

3914.926 

3931.247 

3937.112 

3935.370 

3927.696 

3915.128 

3898.286 

3877.578 

3853.229 

3825.368 

3794.040 

3759.245 

3720.946 

3791.053 

4244.928 

4407.321 

4480.673 

4516.271 

4532.339 

4536.749 

4533.343 

4524.163 

4510.357 

4492.585 

4471.240 

4446.537 

4418.593 

4387.447 

4353.093 

4315.484 

4274.550 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

4230.195 20 

 
Table 2. The relation between am and Rtm for different va- 

lues of Qm when Tam = 5, , Dam = 0.0003, d̂ . 0 01

fr fP Le  1  and 
fmP  3 . 

mRt  

500mQ   300mQ   200mQ 100mQ   
ma

 

1973.94 2383.89 

4043.10 

4428.29 

4561.69 

4619.42 

4645.42 

4655.00 

4654.70 

4647.67 

4635.56 

4619.30 

4599.37 

4576.11 

4549.64 

4520.04 

4487.33 

4451.48 

4412.42 

4370.05 

4324.32 

4113.01 

4444.95 

4563.75 

4616.37 

4640.33 

4649.09 

4648.52 

4641.48 

4629.49 

4613.41 

4593.73 

4570.70 

4544.49 

4515.16 

4482.70 

4447.09 

4408.27 

4366.16 

4320.64 

1404.08 

3792.31 

4247.22 

4409.66 

4482.88 

4518.33 

4534.26 

4538.55 

4535.04 

4525.77 

4511.89 

4494.05 

4472.63 

4447.87 

4419.87 

4388.67 

4354.26 

4316.60 

4275.62 

4231.21 

1411.45 

3791.05 

4244.92 

4407.32 

4480.67 

4516.27 

4532.33 

4536.74 

4533.34 

4524.16 

4510.35 

4492.58 

4471.24 

4446.53 

4418.59 

4387.44 

4353.09 

4315.48 

4274.55 

4230.19 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
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Table 3. The relation between am and Rtm for different val- 

ues of Dam when Qm = 100, Tam = 5, ,d̂ . 0 01
fr fP Le  1  

and . 
fmP  3

mRt  

0.003mDa   0.00003mDa   0.000003mDa   
ma  

3012.461 

4294.012 

4544.738 

4636.163 

4676.610 

4693.868 

4697.788 

4692.409 

4679.407 

4659.348 

4632.211 

4597.615 

4554.980 

4503.524 

4442.376 

4370.544 

4286.951 

4190.427 

4079.744 

3953.576 

2261.610 

4064.695 

4411.751 

4536.455 

4591.995 

4617.560 

4627.285 

4627.358 

4620.852 

4609.440 

4594.085 

4575.375 

4553.683 

4529.256 

4502.256 

4472.792 

4440.952 

4406.774 

4370.297 

4331.551 

2199.443 

4045.497 

4400.439 

4527.884 

4584.631 

4610.809 

4620.854 

4621.115 

4614.721 

4603.393 

4588.100 

4569.475 

4547.890 

4523.591 

4496.759 

4467.546 

4436.022 

4402.228 

4366.225 

4328.078 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

 
Table 4. The relation between am and Rtm for different val- 

ues of  when Qm = 100, Dam = 0.0003, Tam = 5, 
and . 

d̂
e

fr fP L  1
fmP  3

mRt  

ˆ 0.3d   ˆ 0.2d   ˆ 0.1d   ˆ 0.005d   
ma  

2037.71 

3590.73 

4136.76 

4382.40 

4500.78 

4560.55 

4590.30 

4602.90 

4604.60 

4598.71 

4587.04 

4570.64 

4550.15 

4525.93 

4498.20 

4467.07 

4432.57 

4394.70 

4353.40 

4308.56 

2075.69 

3637.21 

4146.82 

4383.17 

4500.16 

4560.02 

4590.02 

4602.80 

4604.62 

4598.81 

4587.20 

4570.87 

4550.43 

4526.26 

4498.58 

4467.49 

4433.04 

4395.20 

4353.93 

4309.19 

2172.34 

3774.26 

4210.74 

4411.01 

4513.35 

4567.15 

4594.47 

4605.96 

4607.13 

4600.96 

4589.15 

4572.68 

4552.16 

4527.94 

4500.22 

4469.11 

4434.63 

4396.79 

4355.50 

4310.72 

2490.38 

4160.48 

4474.34 

4583.48 

4630.30 

4650.60 

4656.94 

4654.70 

4646.47 

4633.62 

4616.88 

4596.69 

4573.27 

4546.74 

4517.15 

4484.48 

4448.69 

4409.72 

4367.48 

4321.85 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
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Figure 2. The relation between am and Rtm for different 

values of Tam when , Dam = 0.0003, Qm = 100, d̂ . 0 01

fr fP Le  1  and 
fmP  3 . 
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Figure 3. The relation between am and Rtm for different 

values of Qm when Tam = 5, , Dam = 0.0003, d̂ . 0 01

fr fP Le  1  and 
fmP  3 . 
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Figure 4. The relation between am and Rtm for different 

values of Dam when Qm = 100, Tam = 5, , d̂ . 0 01

fr fP Le  1 and
fmP  3 . 

 As mTa  increases mRt  decreases which means that 
the increase of the rotation causes the increase of the 
thermal convections, leading to an increase in the in- 
stability of the fluid, as shown in Figure 2 and its 
numerical results in Table 1. 
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Figure 5. The relation between am and Rtm for different 

values of  when Qm = 100, Dam = 0.0003, Tam = 5, 
and . 

d̂

f  1
frP Le

fmP  3

 
 The presence of the linear magnetic field helps reduce 

the currents of the thermal convections, meaning that 
the stability will increase in the fluid, as shown in 
Figure 3 and its numerical results in Table 2.  

 The fluid becomes unstable when the permeability of 
the porous medium increases, as shown in Figure 4 
and its numerical results in Table 3.  

 The increase of depth ratio between the two layers 
makes the fluid unstable meaning that as d̂  in- 
creases Rtm decreases, as shown in Figure 5 and its 
numerical results in Table 4. 

Case (2): the heat and the salt concentration af- 
fected from below. 

Here, we put  and the value of the 
initial salt Rayleigh number of a porous medium Rsm = 
10000, to find the thermal Rayleigh numbers of a porous 
medium, m  corresponding to wave numbers,  for 
different values of mTa , m , m , 

 fr f  and 

1T SF ,F   

Q Da

1

Rt ma
ed̂ ,P L

fm . In this case, the eigenvalues are complex, and thus 
the overstability happens, as shown in the following Ta- 
bles 5-8 and Figures 6-9. Therefore, we got the follow- 
ing results: 

P

 The increase of the rotation helps reduce the currents 
of the thermal convections meaning that the stability 
will increase in the fluid, as displayed in Figure 6 and 
its numerical results in Table 5.  

 The presence of the linear magnetic field makes the 
fluid more stable as displayed in Figure 7 and its 
numerical results in Table 6. 

 As mDa  increases mRt  decreases which means 
that the increase of the permeability causes the in- 
crease of the thermal convections, leading to an in- 
crease in the instability of the fluid, as shown in Fig- 
ure 8 and its numerical results in Table 7. 

 As d̂  increase mRt  increases meaning that the in-  

Table 5. The relation between am and Rtm for different va- 

lues of Tam when , Qm = 100, Dam = 0.0003, d̂  0.2

fr fP Le  1  and 
fmP  3 . 

mRt  

1mTa   0.75mTa   0.5mTa   
ma  

395.390 

262.237 

228.383 

209.907 

198.264 

192.528 

192.523 

197.972 

208.575 

224.162 

244.717 

270.341 

301.217 

337.593 

379.769 

349.180 

241.258 

213.226 

198.527 

190.068 

186.774 

188.387 

194.781 

205.910 

221.804 

242.559 

268.330 

299.322 

335.792 

378.047 

307.785 

223.032 

201.231 

190.352 

184.497 

182.855 

185.456 

192.435 

203.924 

220.055 

240.976 

266.869 

297.955 

334.500 

376.815 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

 
Table 6. The relation between am and Rtm for different va- 

lues of Qm when Tam = 0.5, , Dam = 0.001, d̂  0.2

fr fP Le  1  and
fmP  3 . 

mRt  

100mQ  50mQ  10mQ  
ma  

307.785 

223.032 

201.231 

190.352 

184.497 

182.855 

185.456 

192.435 

203.924 

220.055 

240.976 

266.869 

297.955 

334.500 

376.815 

303.729 

221.929 

199.797 

188.482 

182.540 

181.046 

183.871 

191.069 

202.743 

219.020 

240.056 

266.035 

297.187 

333.781 

376.134 

300.107 

221.652 

199.023 

187.148 

181.057 

179.641 

182.618 

189.975 

201.789 

218.181 

239.307 

265.357 

296.563 

333.199 

375.583 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 
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Table 7. The relation between am and Rtm for different va- 

lues of Dam when Tam = 0.5, Qm = 50, , d̂  0.2
frP   

 and . fLe  1
fmP  3

mRt  

0.001mDa   0.0001mDa   0.00001mDa   
ma  

307.785 
223.032 
201.231 
190.352 
184.497 
182.855 
185.456 
192.435 
203.924 
220.055 
240.976 
266.869 
297.955 
334.500 
376.815 

326.913 
243.922 
230.599 
229.691 
233.587 
240.404 
249.527 
260.736 
273.963 
289.209 
306.512 
325.946 
347.627 
371.724 
398.437 

331.794 
245.825 
232.947 
233.441 
239.325 
248.566 
260.452 
274.684 
291.119 
309.681 
330.329 
353.042 
377.805 
402.569 
427.332 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

 
Table 8. The relation between am and Rtm for different va- 

lues of  when Tam = 0.5, Dam = 0.001, Qm = 100, 
 and . 

d̂
e

fr fP L  1
fmP  3

mRt  

ˆ 0.2d   ˆ 0.02d   
ma  

307.785 
223.032 
201.231 
190.352 
184.497 
182.855 
185.456 
192.435 
203.924 
220.055 
240.976 
266.869 
297.955 
334.500 
376.815 

325.430 
225.413 
203.245 
192.852 
187.424 
186.039 
188.738 
195.706 
207.121 
223.150 
243.962 
269.748 
300.736 
337.192 
379.428 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
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Figure 6. The relation between am and Rtm for different va- 

lues of Tam when , Qm = 100, Dam = 0.0001, 
 and . 
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Figure 7. The relation between am and Rtm for different va- 

lues of Qm when Tam = 0.5, , Dam = 0.001, d̂  0.2

fr fP Le  1  and
fmP  3 . 
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Figure 8. The relation between am and Rtm for different va- 

lues of Dam when Tam = 0.5, Qm = 50, , d̂  0.2
frP   

fLe  1  and 
fmP  3 . 
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Figure 9. The relation between am and Rtm for different va- 

lues of  when Tam = 0.5, Dam = 0.001, Qm = 100, d̂
e

fr fP L  1  and 
fmP  3 . 
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crease of the depth ratio between the two layers 
makes the fluid unstable, as displayed in Figure 9 and 
its numerical results in Table 8. 
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