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ABSTRACT

A linear stability analysis is applied to a system consisting of a linear magneto-fluid layer overlying a porous layer af-
fected by rotation and salt concentration on both layers. The flow in the fluid layer is governed by Navier-Stokes’s
equations and while governed by Darcy-Brinkman’s law in the porous medium. Numerical solutions are obtained using
Legendre polynomials. These solutions are studied through two modes of instability: stationary instability and oversta-
bility when the heat and the salt concentration are effected from above and below.

Keywords: Navier-Stokes Equation; Darcy-Brinkman Law; Legendre Polynomials; Salt Concentration; Vertical Linear

Magnetic Field

1. Motivations and Goals

Thermal instability theory has attracted considerable in-
terest and has been recognized as a problem of funda-
mental importance in many fields of fluid dynamics. The
earliest experiments to demonstrate the onset of thermal
instability in fluids are those of Bernard’s [1,2]. Benard
worked with very thin layers of an incompressible vis-
cous fluid standing on a levelled metallic plate main-
tained at a constant temperature. The upper surface
which was usually free and, being in contact with the air,
was at a lower temperature. In his experiments, Benard
deduced that a certain critical adverse temperature gra-
dient must be exceeded before instability can set in. The
instability of a layer of fluid heated from below and sub-
jected to Coriolis forces has been studied by Chand-
rasekhar [3,4] for a stationary and overstability case. He
showed that the presence of these forces usually has the
effect of inhibiting the onset of thermal convection. Nield
[5] considered the onset of salt-finger convection in a
porous layer. Taunton ef al. [6] considered the thermoha-
line instability and salt-finger in a porous medium and
solved the boundary value problem. Sun [7] was the first
to consider such a problem, and he used a shooting
method to solve the linear stability equations. Sun [7]
and Nield [8] used Darcy’s law in formulating the equa-
tions of porous layer. In Darcy’s law of motion in porous
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mediums, the Darcy resistance term took the place of the
Navier-stokes viscosity term, while in the modified
Darcy’s law (Brinkman model), suggested by Brinkman
[9], the Navier- stokes viscosity term still exists. Chen &
Chen [10] considered the multi-layer problem when the
above layer is heated and salted from above, and the so-
lution of the problem is obtained using a shooting me-
thod. Lindsay & Ogden [11] worked in the implementa-
tion of spectral methods resistant to the generation of
spurious eigenvalues. Lamb [12] used expansion of Che-
byshev polynomials to investigate an eigenvalue problem
arising from a model discussing a finitely conducting
inner core of the earth on magnetically driven instability.
Bukhari [13] studied the effects of surface-tension in a
layer of conducting fluid with an imposed magnetic field
and obtained results when the free surface is deformable
and non-deformable. He solved that by using Chebyshev
spectral method, and thus obtained some different results
from that of Chen & Chen [10]. Straughan [14] studied
the thermal convection in fluid layer overlying a porous
layer and considered the problem of lower layer heated
from below and surface tension driven on the free top
boundary of upper layer. In [15], he also dealt with the
same problem considering the ratio depth of the relative
layer and investigated the effect of the variation of rele-
vant fluid and porous material properties. Allehiany [16]
studied Benard convection in a horizontal porous layer
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permeated by a conducting fluid in the presence of mag-
netic field and coriolis forces. In this work, we studied
the effects of rotation and salt concentration on thermal
convection in a linear magneto-fluid overlying a porous
layer. The numerical solution was presented in different
boundary conditions solved by using Legendre polyno-
mials.

2. The Governing Equations

We consider a fluid layer overlying a porous layer so that
the top of the porous layer touches the bottom of the fluid
layer. The plane interface between the two layers is
x, =0, the upper boundary of the fluid layer is x; =d
and the lower boundary of the porous medium layer is
x, =—d, where the subscripts /' and m denote the fluid
layer and porous medium layer respectively. We suppose
that the upper layer is filled with an incompressible
thermally and electrically conducting viscous fluid con-
sisting of melted salt which flows in it and governed by
Navier-Stokes equations. However, the lower layer is
occupied by a porous medium permeated by the fluid
flowing in it and governed by Darcy-Brinkman’s law.
Both layers subjected to a constant vertical linear mag-
netic field and affected by a rotation around x, with a
constant angular velocity Q . Gravity g acts in the nega-
tive direction of x; (see Figure1l).

Convection is driven by the temperature depending on
the fluid density and salting, and damped by viscosity.
The Oberbeck-Boussineq approximation is used as the
density of fluid is constant everywhere except in the
body force term where the density is linearly propor-
tional to temperature and salt concentration, i.e.

pr=p[1-a(T-T,)+B(S-S,)]. 4

where T denotes the Kelvin temperature of the fluid, S is
the salt concentration, p, is the density of fluid at 7|
and S,, a (constant) is the thermal coefficient of vo-
lume expansion of the fluid and £ (constant) is the sal-
ting coefficient of volume expansion of the fluid. Let V'
be the solenoidal velocity of the fluid.

x,=d,
Fluid layer
2,20 ey SR e erennnd
1 rPorous fayer:.
-+ - (contain sdlt). .
X, =l e ——————————————————

Figure 1. Schematic diagram of the problem.
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Let V,H,B,J and E be respectively the solenoid-
dal velocity of the fluid, the magnetic field, the magnetic
induction, the current density and the electric field.
Hence

divV =0,divB=0 2)
H,B,J and E -connected by the relations
B=u,H,J =G| E+(VxB)] (3)

where g, is the magnetic permeability and & 1is the
electrical conductivity. And the Maxwell equations

curl £ = —%B,J = curlH @)

where the displacement current has been neglected in the
second of these Maxwell equations as is customary in
situation when free charge is instantaneously dispersed.
By substituting from (3), (4), in to (4), obtain by

B _ —curl {é] —(VxB)}
ot c

:—curl{ 1_curlB—(V><B)} (5)
u,c

= curl (V' x B) -7 curl curl B
1 . . o .
where # = (—_J is electrical resistivity. By using
lLtnlo-

curl curl B = grad div (B)—V2 (B)
and

curl (VxB)=(B-V)V —(V-V)B
then Equation (5) reduce to

%B:(B.V)V_(V.V)Bm VB (6)

The equation of motion is
ov

=-VP+NV+pg+p,(VxQ)+JxB

(7

where P is hydrostatic pressure, x is the dynamic
viscosity and V?is three-dimensional Laplacian operator.
And by subsituting from (3);, (4), in to the Lorentz force
JxB we obtain

JXB:LcurleB

Ho,
) | @®)
= —(B-VB ——VBZJ
Hy 2
Hence the equation of motion becomes
JEMAA
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oy (%—It/w-w/j:—v(fu

+pg+2p, (VXQ)-FLB'VB
Hy,

2 2
VB J+ e
,
©

and so the governing equations of the fluid layer are

ov,
LAV,

Pf 2
=-VL+wWi,
Po (10)

_g[l—a(Tf —TO)+,3<S_/' _SO)J

+2(Vf><Qf)+

orT
S
(pocp){gwf-vn}w%f ()

G‘S_/- 2
7+Vf -VSf = DfV Sf (12)
1
J, =——curlB, (13)
lumf
0B,

L=(B,-V)V,~(V,-V)B,+n,V'B, (14)

and the governing equations of the porous medium layer
are

LoV, _ vh Yy v

9 ot p K

~g[1-a(T, = T,)+5(S, ~S,)] (15)
1

+2(V,xQ, )+
( ) pOlumm

(Bm ~VBm)

(poc)maaitm-‘r(pc ) VYT, =k, VT,  (16)

f m-
=D,V’S, (17)
1
J, =——curlB, (18)
ll'tmm
OB R
» =(B,-V)V,—-(V,-V)B,+n,VB, (19)

where P,, P, are the modified pressure of the fluid
and the porous medium layers respectively and
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%|Q ; ><r2, %|Qm ><r|2 are the centrifugal force of the
fluid and porous medium layer respectively, V,,V, are
the solenoidal and seepage velocity respectively,

Z(V xQ ) 2(V,, xQ,,) are the coriolis acceleration
of the ﬂuld and porous medium layer respectively,
T,,T, are the Kelvin temperature of the fluid and po-
rdus medium layer respectively, S,,S, are salt concen-
tration of the fluid and porous medium layer respectively,
D,,D,, are the mass diffusivity of the fluid and porous
medium layer respectively, u, ,,4,, are magnetic
permeability of fluid and porous layer respectively,
kf,km are the thermal and overall thermal conductivity
of fluid and porous layers respectively, v=u/p, is the
kinematic viscosity, K is the permeability, ¢ is its po-
rosity and (po 03/_,(p0 c) ~are the heat and overall
heat capacity per unit volume of the fluid and porous
medium layers at constant pressure. In fact

(poc), = (p(po € )‘, +(1=9)(po <, )m

where ( poc,) s the heat capacity per unit volume of
the porous substrate Suppose that x; =d, is rigid and
maintained at constant temperature 7,and constant salt
concentration S, , and x; =-d, is impenetrable and
maintained at constant temperature 7, and constant salt
concentration S, then the boundary conditions can be

written as

Wy (df ) =0, 8x; (df) =0,
T (d.f' ) =T1..5, (d.f' ) =S, (20)
OB
&, (df) =0,J5, (df) =0 axf (df)
3
on the upper boundary, and
ow,, B
Wm ( dm ) = O’ axm (dm ) - 07
L, (~d,)=T.5,(~d,)=S, 1)
0B,

on the lower boundary, where w, and w, are the nor-
mal axial velocity components of the fluid in fluid layer
and porous medium layer respectively, ( 3, and (,
are the normal axial vortecity components of the fluid in.
fluid layer and porous medium layer respectively.

The boundary conditions on the interface plane x; = 0
are based on the assumption that temperature, salt con-
centration, heat flux, salt flux, normal and tangential
fluid velocity, normal stress and tangential stress are con-

tinuous so that
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7,(0)=1,(0).5, (0)=5,(0)
oT, oS,
kS (0) =k, S2(0).0, 1 (0) = D, T=(0)
X3 X3 X3 X3

wy (0)=w, (0).u, (0)=u,(0).v,(0)=v,(0)

P (O 2EL0) =, (0241 5(0) @
0 ov
FHO=52(0).510)=32(0)
1,(0)= 20,0, 2L S 0) = E o
B, (0)= 5,0k, S0) -4, Z2(0)

Equations (10)-(19) have an equilibrium solution
satisfying the boundary conditions (20)-(22) on the form
V,=0V,=0,

“VE +pg=0.-VE, +p;g =0,

VT, =V’T, =0,VS, = VS, =0,

Q, = (0,0,Q_/. ),Q_/. constant, (23)
Q,=(009,),9, constant,

B, = (0, 0,B, ), B, constant,

B, =(0,0,B,), B, constant

and with the boundary conditions
Tf (df): T,.T, (_dm): 1,

(24)
S,(d,)=5,.5,(-d,)=5,
and the interface conditions
oT, oT
7.(0)=T (0),k, —(0)=k —2(0),
1 (0)=T, (0).k, 5 (0)=k, Z2(0)
oS, as
S, (0)=S (0),D,—L(0)=D_ —2(0), (25
1(0)=5.(0).0, 5 1(0)= D, Z2(0). 29

F(0)=£,(0)
the equilibrium temperature field, hydrostatic pressure
and salt concentration in the fluid layer and porous me-
dium layer are respectively

X
T, =1, ‘(To _Tu)d_3’Pf =P (x3)=
;
/ e

X
Tm :%_(E_T())d_S’Pm :Pm (‘x3)’

m

S, :SO—(SO—S”);C—3,O£x3 <d

<x; <0

m

S :SO—(SZ—SO);—3,—d

m

Copyright © 2012 SciRes.

m=u

s Mo T
D.d,+D,d,

k,d, T, +k,d,T,
k.d,+k,d,

D,d,S,+D,d,S,

where T, =

3. Perturbed Equations

We apply the perturbation by following linear perturba-
tion quantities

Vy=0+ev, P =P (x;)+ep,,

X
Tf =76_(]—2)_7:l)d_3+€9/')
f
X3
S, :SO—(SO—Su)d—+gsf,
;
Jf=0+gjf,Bf:Bf e3+£bf, @7
V,=0+ev, P, :Pm(x3)+8p

m?2

T, =T,~(T, 1)+ o6

m?
m

S, :SO—(S,—SO);—3+esm,

J,=0+¢j,..B, =B e +¢b,,

to the governing equations in the fluid layer and porous
medium layer respectively and to the boundary condi-
tions. After perturbation, the non-dimensionlisation will
be apply by using
d2
tz—ft'f,vf :Lv'f,

Af f

2
PoV

x=d,x ., p, =——
SrEr 2
d;

p.f’
28
1So =S, |v . (25)
S;=————S
D,
2
Polly sV .
bf = B d2
Sr

_|n -7y

0
Y
Ay

0,

2
PV
= B.d Jr
4y

for the fluid layer, and by using

x=d,x,.,v, zlv'm,
d,
d2 p0v2
t=—"2¢, =
0 :|];_TO|V . :|S1_S0|Vs.
m ;L)n m>~m Dm m
v PollynV’
;o .o b _ 0 mm
jm Bmdfn ] m?>~m

Do
(29)

B2 "

for the porous medium layer, here 1, =k, / ( pec, )f and
4 =k, [(pe,), are the thermal diffusivity of the fluid
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phase and porous medium respectively ,then the Equa-
tions (10)-(14) becomes

1 6vf 3 )
?E——fo +V Vf +Rtf(9f
T (30)
—Rs s, +Ta»(v xe )+%
fof f\Ur 3 x,
a0,
——+Fv, =V 6’/ 3D
6t/.
LaS—f—i-FSv =V-s (32)
Le, ot, ! !
J, =curlb, (33)
1 be 8vf ,
——=0,——+V°b 34
B, o, 9 ox, 4 G4

where e, is the unit vector in the x;-direction and
P ,Rtf,Rsf,Taf,Qf,Lef and P, are non-dimen-
R A A [ /

sional numbers denote the viscous Prandtl number, ther-
mal Rayleigh number, salt Rayleigh number, Taylor
number, Chandraskhar number, Lewis number and mag-
netic Prandtl number of the fluid layer and given by

all, T |d’ S,—-S,|d}
Rf:L,Rtf:g|0 u f,RS/:g'B|O u| f’
Ay Vi, vD,
2 2 p2
Ta. = 2Q.f'd.f _ def
= " % T
v Koy PVl ¢
D
Lef :_f’mei :r]_f
/lf /lf
and the Equations (15)-(19) becomes
Da v, =-Vp,—v, +Rt 0,
oF, o,
" (35
—Rs s +Ta (v xe, )+ Da—=
m m m( m 3) 6x3
G, ,, +Fv, =V, (36)
ot,
£ aS—’"-i—FSvm = stm (37)
Le}?l m
J, =curld, (38)
1 ob ov )
——" =0 —2+V°b 39
Pmm ot, O Ox; " (39)

where G, =( poc)m / (pocp )f and Da, P, Rt,, Rs,, Ta,,
O, Le, and Pmm are non-dimensional numbers denote
the Darcy number, viscous Prandtl number, thermal
Rayleigh number, salt Rayleigh number, Taylor number,

Copyright © 2012 SciRes.

Chandarsekhar number, Lewis number and magnetic
Prandtl number of the porous medium layer and given by

K o|l, - T,| Kd
Da=—P :L,Rtm :M’
a2 Vi,
S, —-S,|Kd 2Q K
Rsm — gﬁ| 1 0| m ,Tam — m ,
vD, v
d.B; D
m o 7Lem :_m7Pm = i
:“mmpo"”m /lm " ﬂ’m
and where

5 _(h-1) (-1,
" n-1]  |n-g)

—1, when heating from below,

1, when heating from above,
_ _(So _Su) _ _(Sl _So)
: |SO_Su |S/_So|

—1, when salt concentration from below,

1, when salt concentration from above.

The boundary conditions (20)-(22) becomes

ow,
(1)=0,—L(1)=0,0, (1) =0,
w (=025 ()=0., (1)
s, (1)=0,¢, (1)=0,
ob
L (M)=0,j (1)=0,
S (0=0.7,, (1)
00, 20 os, as
0)= m(0),—L(0) = m(0),
ax}() %ax}()aa%() 8sax3()
w, (0)=dw, (0),u, (0) = du, (0),v, (0) = dv, (0),
d? ob, d> b
b,(0)="-b (0),—L(0)= (0),
(0=, (0.5 (0)= 2 2(0)
. d> 9, d 9,
(0) = 0). 22 (0y="2_T1(q), (40)
(0= 7. (005 50) =4 -2 (0)
ow 42
0)-2—L(0)=——p (0)-2d>=—=(0),
s (0)-25H(0) = 2 (0)-2 220
o . O 0 .. 0
al;f (0)=d* azf( ) a:f( )=d" a;f
3 3 3 3
ow
-1)=0,—2(-1)=0
w ()=0.2 (1)
0,(-1)=0,5,(-1)=0,& (~1)=0,
ob
" (1)=0, /. (1)=0
6x3() Jsm()
JEMAA
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where d, n,m,e;,eg,y, and are given by
A d Q B
d=—L ha=—L jp="n
d, Q. B,
y_|TE)_T;4_dAy_|SO_Su_‘2
T =T /s — )
|]}_72)| ér |S1_So| s
o= P
! l’ﬂ’ S Dm’
and
1 74 4
B =—PF ,Rt, = Zd Rt Rs;, =——Rs,,
o " & Da esDa
A2
Taf—ﬂTam,Lef:—SLem
* Da &r

4. The Linearized Equations

Linearization will be done by neglecting all products and
powers (higher than the first) of the linear perturbation
quantity, and by dropping the () superscript, then by
taking the curl of the Equations (30) and (35) we obtain

P ;f VE, + Rt (Vx0,)
(41)
ov, aJ,
~Rs, (Vxs,)+Ta, —L+
Ox;  Ox,
0
Da Cen_ ¢ 1 Davie, +Ri, (Vx0,)
g0f:"m atm (42)
0 oJ
—Rs,, (Vxs,)+Ta, “nt pg S
X, 0Ox;

if return to the original Equations (30) and (35), but in
this case we take the (curl curl). Thus

Lﬁw‘,f
P ot,
’ .
0
=V, —Rt,|V—L-V?0 e 43
f ( o, At (43)
s ob
+Rs,| V—L-V’s e, |-Ta, —L+V*—L
Oox, X, Oox;
Da ivzv’ﬂ
¢k, o,

a0
=V?v, +DaV'v, - Rt, [V—'"— V30 e, j (44)

0
i—stmeJ—Tam

Ox,

+Rs,, {V

Copyright © 2012 SciRes.

and if we use the curl of Equations (34) and (39) with us-
ing (33) and (38), we obtain

1 dJ, o,
——L=0,— L4V, (45)
B, ot, T Ox,
1Y, =Q, % +V3iJ, (46)
Pmm 8t ox,

Now, the third components of Equations (31), (32),
(34), (36), (37), (39) and (41)-(46) are

oc ow, 0
L2y g +Ta,—L+—L (47
P ot / ox;  Ox,
f J
19 O vy,
P oo,
S
=Viw, + Rt V30, (48)
0 ob
Rs, Vs, ~Ta, —L+V>
‘ X, Ox,
60/- 2
=, =V, (49)
,
0s .
L_upsw/_ — Vs, (50)
Le, ot, '
1 ob, ow,
— = —+V°b 51
P, ot 9 ox, 4 ©l
f
1 6}3/ a53,- 5
= L4V 52
P, o, 9 ox, & (52)
Da 53
=-¢, + DaV
0P ot S 53;
o (53)
+Ta,, Y\ p T
X, Ox,
Da ivzw)ﬂ
9k, o,
=-V’w, +DaV'w, +Rt V30, (54)
ob,,
—Rs, Vs, —Ta, %, pay> L
X, Ox;
o0
Gma—”’+FTwm =V°0, (55)
ds
L Ty Fow, = Vs, (56)
Le, ot,
1 aj3, 653, 2
"=, —L 4V 57
™ fin atm Qf ax} s ( )
JEMAA
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1 ob ow.
B o, U, 9

2

o . . . .
where V2 =V? —— is tow-dimensional Laplacian

X3
operator and V* = (VZ )2 . We apply the normal modes
solution in the form
®(x,1) =D (x, )exp[i(nx, +mx,)+0t]

with the functions w/ﬂ/isf,f/,jf',b/,wm,Gm,sm,
J. and b, .Thus the governing equations are

m?’

% Low, = 2w, —d’Rt,0, +a>R
p W T Wy T Ay T apRs.s,
ry (59)
af 2
~Ta; D¢, +P_bef -0, Dyw,

My

O'f .

P_éf =Ly, +Ta;Dyw,+ D, j;, (60)
I‘f‘

6,0, +Fw, =10, 61)

2 +Fw, =L (62)
Sy T W = LSy

Le,

Or . .

P_hf :Qfo@_, +Lf]3f (63)
my

%

B =9 D+ Liby (64)
my

- l;a O-m mef = Lm Wm + ariRtmem _arflemsm
9P,
! (65)

+Ta, D&, —f—aamDmbm +DaQ,D.w,

mm

Da
0w, =&, ~Dal,G,
oL, (66)
-Ta,Dw, —DaD, j;
anam em +FTWm = Lmem (67)
4 _
= 0w Sm + FSWm - Lmsm (68)
Le,
o, . .
P_szm = QmDm§3ﬁ” +L,Jjs, (69)
o
- bm = QmDme +Lmbm (70)

mm

_ 2 2 _ 2 2
where a, =/n} +m; and a, =\|n, +m, are non-

Copyright © 2012 SciRes.

dimensional wave numbers in the fluid layer and porous
medium layer respectively, ¢ is the growth rate and

A

2

a,=da,,0, =—a
ér

0 0
D, =— x,€|01[,D =—,x, €[-1,0],
= (01,0, = L e[10)
L, =(D}-a}) and L,=(D}-a).
The boundary conditions in the final form are
w, :0,waf :O,Qf =0,
sy :0,53‘/ =0,
Db, = 0,75, =0

onx,; =1 (71)

VTHf = gTam’ySSf = &Sy

D6, =¢D,0

m_m?>

D;s, =¢sD,s

m=m?
s s
w,=dw,,D,w,=d"D,w,

m’m?2

Diw, =D}

&, =d°¢, D&, =d'D,¢,
72 73

b, =L b,.00, = Db,
m ' me;

A A

) 2 a3 ) on x,=0
iy = s Diby =Dy,

m
T

D? 3a:D %D T Db
Wy t2a,Dpwy “p O a,&, — Db,
rf

T4
__4 &om +1-3a’Da—DaD}w,
Dal oP,

4

+d*Da Db, Jmem —d—Tamg“
Da

(72)
w,=0,D,w, =0,0, =0
s, =08 =0,
Db, =0,j; =0

on x, =-1 (73)

5. Numerical Solution

A Legendre polynomials (see Bukhari [5]) is applied to
solve the Equations (59)-(70) with the relevant bound-
ary conditions (71)-(73), and we map x, €[0,1] and
X, € [—1,0] into ze [—1,1] by the transformations
z=2x,—1 and z =2x; +1 respectively, and get

9 2£, thus D, =D, = 2E =D, ze[-11].
Ox, 0z 0Oz
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then, suppose that
M-
», (z): ZakrPk (z),lSrS28 ze[—l,l]
k=0
let the variables y, where 1<r <28 be defined by
Y =Wes Vs :Dfo:ys :Djz'wfay4 :D;Wf:
Vs :53/ » Ve :Dfé-:3f9y7 :H/ays :DfH 5
Yo =875 V10 :Dfsf’yll =075 )12 :Dbf
i3 :Jf=y14 :DJf
Vis = Ws Yie = DyW,s V17 :Driw > Vig :Diw

m m m?

Yie =€5,5Y20 = D,&5 52 =0,y =D,0

V23 =S5 Yoy =D, V25 = b,,, ¥y = Db,
Vo =J, Y =DJ,.

Then the Equations (59)-(70) can be rewritten in a sys-
tem of twenty ordinary differential equations of first or-
der, since D, =D, =D and if we put ¢, =0 then

52

o, =—oac so the eigenvalue problem can be reformu-
&r

lated in the form

d—YzAY+aBY,
dz

ze [—1, 1]

where A and B are real 28 x 28 matrices. The final eigen-
value problem reduces to EV =c FV where matrices E
and F have the block forms. The boundary conditions
replace the 1 Mth, 2 Mth, --- 28 Mth rows of E and F.

6. Results and Remarks

Using Legendre polynomials, the eigenvalue problems
(59)-(70) with the boundary conditions (71)-(73) are
transformed to a system of fourteen ordinary differential
equations of first order in the fluid layer and a system of
fourteen ordinary differential equations of first order in
the porous layer with twenty eight boundary conditions.
In this work, we will discuss the numerical results
through two cases—when the heat and salt concentration
affected from above and below.

Case (1): the heat and the salt concentration af-
fected from above.

Here, we put F'7 =1, Fg= land the value of the initial
salt Rayleigh number of the porous medium Rs,, = 5000
to find the thermal Rayleigh number of the porous me-
dium R¢, corresponding to the wave numbers a, for
the different values of Ta,, O,, Da,, d F., Le,
and P, . In this case, the eigenvalues are real, and thus
the stationary instability happens, as shown in the fol-
lowing Tables 1-4 and Figures 2-5. Therefore, we con-
cluded that:
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Table 1. Therelation between a,, and Rt,, for different va-
lues of Ta, when d=001, Da, = 0.0003, Q, = 100,
P,=Le,=1land B, =3.

Rt,
" Ta,=5 Ta, =10 Ta, =15
1 1411.452 4404.851 15442.275
2 3791.053 1926.006 1612.915
3 4244.928 3112.021 962.857
4 4407.321 3531.430 1870.107
5 4480.673 3724.639 2290.704
6 4516.271 3826.280 2517.540
7 4532339 3883.113 2651.554
8 4536.749 3914.926 2735.177
9 4533.343 3931.247 2788.741

10 4524.163 3937.112 2822.960
11 4510357 3935.370 2843.926

12 4492.585 3927.696 2855.233

13 4471.240 3915.128 2859.100

14 4446.537 3898.286 2856.979

15 4418.593 3877.578 2849.797

16 4387.447 3853.229 2838.122

17 4353.093 3825.368 2822.374

18 4315.484 3794.040 2802.753

19 4274.550 3759.245 2779.416

20 4230.195 3720.946 2752387

Table 2. The relation between a,;,, and Rt,, for different va-
lues of Q, when Ta, = 5 d=001, Da, = 0.0003,
P,=Le;=1 and B, =3.

Rt,

0, =100 0, =200 0, =300 Q. =500
1 1411.45 1404.08 2383.89 1973.94
2 3791.05 379231 4113.01 4043.10
3 4244.92 4247.22 4444.95 4428.29
4 4407.32 4409.66 4563.75 4561.69
5 4480.67 4482.88 4616.37 4619.42
6 4516.27 4518.33 4640.33 4645.42
7 4532.33 4534.26 4649.09 4655.00
8 4536.74 4538.55 4648.52 4654.70
9 4533.34 4535.04 4641.48 4647.67
10 4524.16 4525.77 4629.49 4635.56
11 4510.35 4511.89 4613.41 4619.30
12 4492.58 4494.05 4593.73 4599.37
13 4471.24 4472.63 4570.70 4576.11
14 4446.53 4447.87 4544.49 4549.64
15 4418.59 4419.87 4515.16 4520.04
16 4387.44 4388.67 4482.70 4487.33
17 4353.09 4354.26 4447.09 4451.48
18 4315.48 4316.60 4408.27 4412.42
19 4274.55 4275.62 4366.16 4370.05
20 4230.19 4231.21 4320.64 4324.32
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Table 3. The relation between a,, and Rt,, for different val-

ues of Day, when Q= 100, Tap =5, d=001,P, =Le, =1
and P, =3.

Rt,
" Da, =0.000003 Da, =0.00003 Da, =0.003
1 2199.443 2261.610 3012.461
2 4045.497 4064.695 4294012
3 4400.439 4411751 4544738
4 4527.884 4536.455 4636.163
5 4584.631 4591.995 4676.610
6 4610.809 4617.560 4693.868
7 4620.854 4627.285 4697.788
8 4621.115 4627.358 4692.409
9 4614.721 4620.852 4679.407
10 4603.393 4609.440 4659.348
11 4588.100 4594.085 4632211
12 4569.475 4575.375 4597.615
13 4547.890 4553.683 4554.980
14 4523.591 4529.256 4503.524
15 4496.759 4502.256 4442376
16 4467.546 4472792 4370.544
17 4436.022 4440.952 4286.951
18 4402.228 4406.774 4190.427
19 4366.225 4370.297 4079.744

20 4328.078 4331.551 3953.576

Table 4. The relation between a,, and Rt,, for different val-
100, Da,, = 0.0003, Ta, = 5,

ues of d when Q =
P,=Le,=1land P, =3.

Rt,

d=0.005 d=0.1 d=02 =03
1 2490.38 2172.34 2075.69 2037.71
2 4160.48 3774.26 3637.21 3590.73
3 4474.34 4210.74 4146.82 4136.76
4 4583.48 4411.01 4383.17 4382.40
5 4630.30 4513.35 4500.16 4500.78
6 4650.60 4567.15 4560.02 4560.55
7 4656.94 4594.47 4590.02 4590.30
8 4654.70 4605.96 4602.80 4602.90
9 4646.47 4607.13 4604.62 4604.60
10 4633.62 4600.96 4598.81 4598.71
1 4616.88 4589.15 4587.20 4587.04
12 4596.69 4572.68 4570.87 4570.64
13 457327 4552.16 4550.43 4550.15
14 4546.74 4527.94 4526.26 4525.93
15 4517.15 4500.22 4498.58 4498.20
16 4484.48 4469.11 4467.49 4467.07
17 4448.69 4434.63 4433.04 4432.57
18 4409.72 4396.79 4395.20 4394.70
19 4367.48 4355.50 4353.93 4353.40
20 4321.85 4310.72 4309.19 4308.56
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Figure 2. The relation between a, and Rt, for different
values of Ta, when d=001, Da, = 0.0003, Q, = 100,

P,=Le,=1 and P, =3.
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Figure 3. The relation between a, and Rt, for different
values of Q. when Ta, = 5, d=001, Da, = 0.0003,

P, =Le =1 and P, =3.
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Figure 4. The relation between a, and Rt, for different
values of Da, when Q, = 100, Ta, = 5 d=0.01,

P,=Le =landP, =3.

e As Ta, increases Rt, decreases which means that

the increase of the rotation causes the increase of the
thermal convections, leading to an increase in the in-
stability of the fluid, as shown in Figure 2 and its
numerical results in Table 1.
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Figure 5. The relation between a, and Rt, for different
values of d when Q, = 100, Da, = 0.0003, Ta, = 5,
P,=Le=1land R, =3.

o The presence of the linear magnetic field helps reduce
the currents of the thermal convections, meaning that
the stability will increase in the fluid, as shown in
Figure 3 and its numerical results in Table 2.

o The fluid becomes unstable when the permeability of
the porous medium increases, as shown in Figure 4
and its numerical results in Table 3.

o The increase of depth ratio between the two layers
makes the fluid unstable meaning that as d in-
creases Rt,, decreases, as shown in Figure 5 and its
numerical results in Table 4.

Case (2): the heat and the salt concentration af-
fected from below.

Here, we put F, =—1,F; =—1 and the value of the
initial salt Rayleigh number of a porous medium Rs,, =
10000, to find the thermal Rayleigh numbers of a porous
medium, Rf, corresponding to wave numbers, a, for
different values of 7Ta,, O,, Da,, d B, .Le, and
me . In this case, the eigenvalues are complex, and thus
the overstability happens, as shown in the following Ta-
bles 5-8 and Figures 6-9. Therefore, we got the follow-
ing results:

e The increase of the rotation helps reduce the currents
of the thermal convections meaning that the stability
will increase in the fluid, as displayed in Figure 6 and
its numerical results in Table 5.

e The presence of the linear magnetic field makes the
fluid more stable as displayed in Figure 7 and its
numerical results in Table 6.

e As Da, increases Rt, decreases which means
that the increase of the permeability causes the in-
crease of the thermal convections, leading to an in-
crease in the instability of the fluid, as shown in Fig-
ure 8 and its numerical results in Table 7.

e As d increase Rt increases meaning that the in-
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Table 5. The relation between a,, and Rt,, for different va-
lues of Ta, when d=02, Q, = 100, Da, = 0.0003,
P,=Le =1 and P, =3.

Rt,
am

Ta, =0.5 Ta, =0.75 Ta, =1
1 307.785 349.180 395.390
2 223.032 241.258 262.237
3 201.231 213.226 228.383
4 190.352 198.527 209.907
5 184.497 190.068 198.264
6 182.855 186.774 192,528
7 185.456 188.387 192,523
8 192.435 194.781 197.972
9 203.924 205.910 208.575
10 220.055 221.804 224.162
11 240.976 242.559 244717
12 266.869 268.330 270.341
13 297.955 299.322 301.217
14 334.500 335.792 337.593
15 376.815 378.047 379.769

Table 6. The relation between a,, and Rt,, for different va-
lues of Qn when Ta, = 05 d=02, Da, = 0.001,
P ,=Le,=1 andP, =3.

Rt,

a,

0,=10 0, =50 0, =100
1 300.107 303.729 307.785
2 221.652 221.929 223.032
3 199.023 199.797 201.231
4 187.148 188.482 190.352
5 181.057 182.540 184.497
6 179.641 181.046 182.855
7 182.618 183.871 185.456
8 189.975 191.069 192.435
9 201.789 202.743 203.924
10 218.181 219.020 220.055
11 239.307 240.056 240.976
12 265.357 266.035 266.869
13 296.563 297.187 297.955
14 333.199 333.781 334.500
15 375.583 376.134 376.815
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Table 7. The relation between a,, and Rt,, for different va-
lues of Da, when Ta, = 05, Qn = 50, d=02, P
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Le,=1 and B, =3.

It

Rtm

a

Da, =0.00001 Da, =0.0001 Da, =0.001
1 331.794 326.913 307.785
2 245.825 243.922 223.032
3 232.947 230.599 201.231
4 233.441 229.691 190.352
5 239.325 233.587 184.497
6 248.566 240.404 182.855
7 260.452 249.527 185.456
8 274.684 260.736 192.435
9 291.119 273.963 203.924
10 309.681 289.209 220.055
11 330.329 306.512 240.976
12 353.042 325.946 266.869
13 377.805 347.627 297.955
14 402.569 371.724 334.500
15 427332 398.437 376.815

Table 8. The relation between a,, and Rt,, for different va-
lues of d when Ta, = 05, Da, = 0.001, Q, = 100,

P, =Le =1 and P, =3.

Rt,
a”’ A A
d=0.02 d=02
1 325.430 307.785
2 225.413 223.032
3 203.245 201.231
4 192.852 190.352
5 187.424 184.497
6 186.039 182.855
7 188.738 185.456
8 195.706 192.435
9 207.121 203.924
10 223.150 220.055
11 243.962 240.976
12 269.748 266.869
13 300.736 297.955
14 337.192 334.500
15 379.428 376.815

[-e-Tam=0.5 = Tam=0.75 - Tam=1]

100 +

50

Figure 6. The relation between a,, and Rt,, for different va-
lues of Tam, when d=02, Q, = 100, Da, = 0.0001,

am

P, =Le =1 and P, =3.
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Figure 7. The relation between a,, and Rt,, for different va-
lues of Q, when Ta, = 05 d=02, Da, = 0.001,
P,=Le =1 andR, =3.
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Figure 8. The relation between a,, and Rt for different va-
lues of Da, when Ta, = 05, Q, = 50, d=02, P =

Le,;=1 and B, =3.
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Figure 9. The relation between a,, and Rt for different va-
lues of d when Ta, = 05, Da, = 0001, Q, = 100,
P,=Le;=1 and B, =3.
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crease of the depth ratio between the two layers
makes the fluid unstable, as displayed in Figure 9 and
its numerical results in Table 8.
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