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ABSTRACT 

Cellulosic and agricultural bio-energy crops can be utilized as feedstock source for bio-fuels production and provide 
environmental benefits such as hydrology, water quality. This study compared potential feedstock yield and water qual-
ity benefit scenarios of six bio-energy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), 
Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Corn (Zea mays), and Soybean {Glycine max (L.) 
Merr.} at the watershed scale using Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated 
(1998 to 2002) and validated (2003 to 2010) using monthly measured USGS stream flow data. Model was further veri-
fied using available monthly sediment yield, and county level NASS corn and soybean yield data within the watershed. 
The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest 
when growing Miscanthus grass scenario (21.9 Mg/ha) followed by Switchgrass (15.2 Mg/ha), Johnsongrass (12.1 
Mg/ha), Alfalfa (7 Mg/ha), Corn (5.9 Mg/ha), and Soybean (2.35 Mg/ha). Model results determined the least amount of 
average annual sediment yield (1.1 Mg/ha) from the Miscanthus grass scenario and the greatest amount (12 Mg/ha) 
from the corn crop scenario. About 11% less annual average surface water flow from the watershed could be anticipated 
when converting land areas from soybean to Miscanthus grass. The results of this study suggested that growing Mis-
canthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits. The results of 
this study may help in developing future watershed management programs. 
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1. Introduction 

The world’s energy consumption will be increased by 
54% from 2001 to 2025, which impacts on CO2 increase 
by 55% for the same period [1]. Although, US CO2 
emission in 2009 is reported slightly decreased due to 
economic impact on energy use [2]; it is estimated to rise 
significantly until 2025 [3] due to increase in the popula- 
tion from 6.9 billion in 2011 to 9.4 billion in 2050 and 
10.4 billion by 2100 [4]. Increased CO2 emission impacts 
and bio-fuels needs could be benefitted with promoting 
cellulosic feedstock sources such as Switchgrass in the 
locally available agricultural marginal lands [5,6]. Grow- 
ing bio-fuels demand in view of water quality and energy 
impact related with biofuels production need additional 
research. 

Several study in the past [5,7,8] reported benefits and 
limitations of food-based and non-food-based feedstock 
sources in terms of their energy, CO2, and bio-fuel pro- 
ductions. Increasing level of research is needed on cellu- 
losic bio-energy crop sources as they can be an alterna- 
tive feedstock sources to produce bio-fuels. The produc- 
tion of various feedstock sources could have different  

levels of environmental impacts (e.g. water quality, po- 
tential bio-energy) as each feedstock sources are man- 
aged differently in the agricultural landscapes. In addi- 
tion to several traditionally growing potential bio-energy 
feedstock sources (e.g. Johnsongrass, Alfalfa, Corn, Soy- 
bean), Miscanthus and Switchgrass are being considered 
as a promising crops for environment and feedstock 
sources. The Miscanthus or Giant Miscanthus or (Mis- 
canthus × giganteus) feedstock source is characterized as 
a perennial grass, which is a very tall grass, and grows 
very well during warm-season of the year. Miscanthus is 
considered as one of the main feedstock source for the 
bio-fuel industries and it is under experimental research 
[9]. Miscanthus has been evaluated in the Mississippi 
State University over the past 5 - 10 years as an alterna- 
tive grass for the biofuels. Since the plant can get as tall 
as 4 m, it can yield up to 50 Mg per ha per year in Mis- 
sissippi [10]. 

The Switchgrass was recognized as one of the best 
bio-energy crops for further study as it was successfully 
tested by some universities in the various geographic re- 
gions (e.g. Auburn University, AL; Virginia Tech., VA;  
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Purdue University, IN; Iowa State University, IA) of the 
country [11]. The Switchgrass was determined as a suit- 
able alternative bio-energy crop due to several benefits 
including high yielding crop, capable to grow on minor 
agricultural lands, and low management input costs. The 
Switchgrass is an alternative to the corn crop due to 
greater energy productivity [12]. Cultivation of Switch- 
grass can help in reducing more soil erosion and nutrients 
as compare to the traditional crops [13]. It is estimated 
that Switchgrass can produce about 260.8 GJ per ha of 
average energy at a production level of approximately 25 
Mg per ha per year [10] in the southeast US. 

Sedimentation, biological impairments, pathogens, 
organic enrichment and nutrients are considered five 
major causes of water body contamination in the state of 
Mississippi [14]. The Ross Barnett Reservoir (RBR) re- 
ceives waters from the UPRW (Figure 1) and it is con- 
sidered as one of the important surface water bodies in 
the state of Mississippi that has been utilized for supply- 
ing daily drinking water to the people of Jackson and its 
surrounding areas in Mississippi, and recreational use for 
the significant number of visitors every year. Although 
various field level studies have been carried out in the 
past to assess biomass and feedstock yields of several 
bio-energy crops, the study of their effects on environ- 
ment and water quality is still limited. An evaluation of 
the bio-energy crop yield potential response to the water 
quality benefits is essential for the watershed that drains 
into the RBR. The plant growth models such as Erosion- 
Productivity Impact Calculator (EPIC) [15] in conjunc- 
tion with hydrologic simulation tools such as the SWAT 
[16] model can be used to investigate potential crop 
yields, water quality and hydrologic impacts (e.g. surface 
runoff, water yield, sediment yield, potential evapotran- 
spiration) due to land use change. 

A broad analysis of the articles published previously 
reported that the SWAT model is a useful model for eva- 
luating the impact of agricultural practices on hydrology, 
crop yield, and water quality [17-20]. The SWAT water- 
shed and water quality model application, calibration, 
and validation have been performed to assess surface 
runoff, sediment and nutrient yields, and bacteria load- 
ings from several geographically referenced locations [17, 
21]. The most of the previous modeling studies consi- 
dered only hydrology and water resources implications. 
Previous literatures are limited in using SWAT model to 
evaluate the hydrologic and water quality benefits of 
changing land use area to bio-energy crops at watershed 
scale. The SWAT model was applied in the Delaware 
watershed (3000 km2) of northeast Kansas [22] to evalu- 
ate crop yield, water quality and economic benefits of 
bio-energy crop. However the authors evaluated only 
Switchgrass yield, it’s economic and water quality bene- 
fits. Previous studies [23,24] assessed performance of the  
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Figure 1. Study watershed: Upper Pearl River watershed in 
Mississippi. 
 
SWAT and empirical geographic models respectively in 
the regional scales to predict Switchgrass yield. Authors 
did not evaluate feedstock yields of other bio-energy 
crops such as Miscanthus. Several studies investigated 
other conventional bio-energy crop yields separately 
such as corn and soybean [25]; Alfalfa [26]; and John- 
songrass [27]. It is yet to study hydrologic and water 
quality responses of bio-energy crops to adopt better wa- 
ter management practices. The objective of this study 
was to compare impact of bio-energy crop production on 
water quality at watershed scale using a modeling ap- 
proach. 

2. Materials and Methods 

2.1. Watershed and Model 

This modeling study was performed within the Upper 
Pearl River watershed (UPRW), which is located in the 
east-central, Mississippi. The UPRW encompasses 7588 
km2 (Figure 1) area. The majority of the landuse in the 
watershed is covered by woodlands (72%) as followed 
by grassland (20%). The urban and other land use area 
covers about 8% of the watershed. 

The SWAT model [16,28] is a physically based, con- 
tinuous, daily time step model, which allowed predicting 
surface runoff, sediment and nutrient yields, pesticide, 
bacteria, and crop yields. The SWAT model sub-divides 
watershed into sub-basins and small spatial units called 
the hydrologic response units (HRUs). As the HRUs are 
generated based on the intersection of unique land use 
and soil conditions used in the model, spatially variable 
input parameters can be provided in the model. These 
input parameters can directly impact on the hydrology, 
water quality and crop yields. The SWAT model esti- 
mates daily time-period parameters (e.g. runoff, evapo- 
transpiration), which is largely driven by daily rainfall 
inputs in the model. The variability in the crop growth 
functions are simulated in the SWAT model, which also 
utilizes the EPIC model. In the SWAT model all the 
available heat units above the base temperature helps 
crop-growth and crop-development. The SWAT model  
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keeps the records of the daily sum of the heat units and 
daily average temperature must be greater than the base 
temperature for the crop growth [28].  

The SWAT model needs several geospatial data inputs 
that cover the watershed boundary (e.g. Digital Elevation 
Model (DEM) grid data, land use, soil). The model uses 
these geospatial input parameters to develop specific 
model inputs for each HRU and sub-basins in the water- 
shed. The 30 m × 30 m grid DEM data from the US 
Geological Survey [29] was used to create the UPRW 
watershed boundaries; State Soil Geographic Database 
(STATSGO) [30] was utilized to develop a soil input 
data for the entire watershed; and cropland data layer [31] 
was used to create model input land use data. Model also 
utilized daily measured rainfall and temperatures data as 
a climate data input from the ground based climate sta- 
tions maintained by the National Climatic Data Center 
[32]. The Penman-Monteith potential evapotranspiration 
(PET) method used in this study requires daily rainfall, 
temperatures (both min. and max.), solar-radiation, rela- 
tive-humidity, and wind-speed data input in model. Al- 
though, this study is benefited of using daily rainfall and 
temperatures data from the ground-based climate stations 
the other data required to use in the PET method in the 
model were not available from these climate stations. 
These unavailable data from the ground-based stations 
were generated by the SWAT model for the entire model 
simulation period [28]. 

2.2. Watershed Management and Bio-Energy 
Crops 

Depending up on the land use data layer input in the 
model, the SWAT model estimated that out of 72% of 
the forest land use in the watershed evergreen, mixed, 
and deciduous forest trees cover about 22%, 20%, and 
30% forest land use area respectively. At present, Bahia- 
grass is the dominant grass species in the 20% of grass- 
land or pastureland of the UPRW (Curt Readus, NRCS, 
MS 2009, personal-communication) [21]. The warm- 
season crops are planted during April 15 and harvested 
during September 15 whereas cool-season crops are 
planted during October 15 and harvested during June 15. 
Conservation or minimum tillage is a management prac- 
tice, which is commonly applied in the UPRW (Curt 
Readus, NRCS, MS, 2009, personal-communication) 
[21]. The production of the bio-energy crops (Miscanthus, 
Alamo Switchgrass, Johnsongrass, Alfalfa, Corn and 
Soybean), simulated in this study were evaluated on two 
land uses (croplands and pasturelands) and two soil 
groups (MS048 and MS089) that typically produce corn, 
soybean, and pasture crops. All the bio-energy crops 
were treated equally with auto irrigation based on plant 
water demand and auto fertilization method in the model 
[28]. This study compared potential feedstock yield of 

six bio-energy crops using the SWAT model. The SWAT 
model developed detail crop database for the Switchgrass 
(Alamo), Alfalfa, Johnsongrass, Corn and Soybean. There 
is no crop database developed for Miscanthus grass yet in 
the SWAT model. This study modified Miscanthus grass 
database from Switchgrass considering some important 
crop data as reported by literatures (Table 1) including 
maximum canopy height of 4.0 m [33,34] maximum leaf 
area index of 8.0 m2/m2 [35], and maximum root depths 
of 2.0 m [36]. 

2.3. Calibration, Validation and Analysis 

The SWAT 2005 model was calibrated and validated 
changing one key parameter at a time manually similar to 
previous study [21] to evaluate hydrologic part of the 
model. The SWAT model predicted results were com- 
pared with the field measured data utilizing commonly 
used statistical parameters such as mean, correlation-co- 
efficient (R2), and Nash-Sutcliffe efficiency (E) categories 
as recommended by previous literatures [19,37]. Author 
[21] classified the SWAT model performances of the 
monthly flow simulations using six categories (excellent 
if R2 and E ≥ 0.90; very good if R2 and E = 0.75 - 0.89; 
good if R2 and E = 0.50 - 0.74; fair if R2 and E = 0.25 - 
0.49, and poor if R2 and E = 0 - 0.24; and unsatisfactory if 
R2 and E < 0). 

3. Results and Discussion 

The following sections (flow and sediment, bio-energy 
feedstock yields, and water quality) present results and 
discussion including model calibration, and validation. 

3.1. Flow and Sediment 

The assessment of the SWAT model in the UPRW for 
monthly stream-flow estimated good performances (R2 
from 0.64 to 0.75 and E from 0.67 to 0.73) during 
model calibration at Lena and Edinburg gage stations 
(Figure 2(a) and Figure 3(a)). The SWAT model re- 
sults for the stream flow simulation found slightly de- 
 
Table 1. Comparative crop database parameters used in the 
SWAT model. 

CHTM RDMX BLAI 
)2m/2m(

Crop 
)m(  )m(  

HVSTI   
ha/kg)/(ha/kg( )

Alfalfa 4.0 0.9 3.0 0.90 

Switchgrass 6.0 2.5 2.2 0.90 

Johnsongrass 2.5 3.0 2.0 0.90 

Soybean 3.0 0.8 1.7 0.31 

Corn 3.0 2.5 2.0 0.50 

Miscanthus 8.0 4.0 2.0 0.90 

Note: BLAI = maximum leaf area index, CHTMX = maximum canopy height, 
RDMX = maximum root depth, HVSTI=harvest index. 
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Figure 2. Model responses to monthly observed flow (m3/s) from the Lena USGS gage station in the watershed. 
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Figure 3. Model responses to monthly observed flow (m3/s) from the Edinburg USGS gage station in the watershed. 

 
creased but good performance during model validation 
(R2 from 0.55 to 0.77 and E from 0.61 to 0.62) at the 
Lena and Edinburg USGS gage station (Figure 2(b) 
and Figure 3(b)). 

There was no long-term sediment load data available 
for the watershed during the model calibration and va- 
lidation periods. However, two-years of monthly ob- 
served data (from January, 2000 to December, 2001) 
from the Edinburgh USGS gage station (USGS, 
02482000) was available and used to verify model- 
predicted monthly sediment load from the watershed 
(Figure 4). The SWAT model simulated monthly sedi- 
ment load slightly over-predicted average monthly load 
by 29% but with good model agreement (R2 = 0.55 and 
E = 0.61). 

Previous study applied the SWAT model [38] in the 
Soldier Creek watershed (769 km2) in the northeast 
Kansas. The landuse in the Soldier Creek watershed 
was primarily dominated by grassland (66%) and cro- 
pland (19%). The SWAT model parameters were 
manually adjusted during model calibration process. 
Authors have indicated good model calibration values 
(R2 of 0.74 and E of 0.73) for the monthly stream flow. 
Although their study developed several climate change 
scenarios that consider climate related parameters (e.g. 
temperature, precipitation, carbon dioxide); hydrologic 
response parameters (e.g. stream flow, soil moisture) 
were also determined important. The SWAT model was 

validated for monthly stream flow and sediment yield 
prediction at Pomona Lake watershed in Kansas [39]. 
The calibrated SWAT model validation for monthly 
stream flow indicated good model performance (E 
values from 0.64 to 0.73) in their study. The monthly 
sediment yield validation of the SWAT model demon- 
strated E value of 0.66, which was considered good. 
They have used only two years of monthly data to vali- 
date the SWAT model (2005-2006). They have re- 
ported that un-calibrated and validated SWAT model 
performance determined equally good for most of the 
water quality parameters. The SWAT model was the 
only one model out of four tested in their study, which 
was capable of identifying critical areas in the water- 
shed. 

Further the SWAT model was applied in the Red 
Rock Creek and Goose Creek watersheds (~136 km2 
each), two sub-basins of the Cheney Lake watershed in 
the south-central Kansas [40]. Calibrated and validated 
SWAT model showed good performance (R2 values 
range from 0.62 to 0.81 and E values range from 0.48 
to 0.56) for the monthly stream flow simulation. Simi- 
larly, calibrated and validated SWAT model showed 
good performance (R2 values range from 0.72 to 0.89 
and E values range from 0.61 to 0.73) for monthly 
sediment yield prediction. Their study compared model 
performances in two separate watersheds. The SWAT 
model was also evaluated in a small Mahantango Creek 
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Figure 4. Model responses to monthly observed sediment 
load at Edinburgh (USGS 02482000) from January 2000 
to December, 2001. 
 
watershed (39.5 ha), which is a tributary of the Sus- 
quehanna River a part of the Chesapeake Bay in south 
central Pennsylvania [41]. The SWAT model predicted 
results were compared with monthly measured sedi- 
ment concentration values from 1997 to 2004 with high 
resolution (field-specific management, row crop field); 
and low resolution (generic row crop field) scenarios. 
The model efficiency for the monthly sediment con- 
centration prediction were reported varied (R2 values 
from 0 to 0.15; E values from –1.14 to –0.02) depend- 
ing on the fields. The hydrologic impact due to long- 
term climate change (e.g. stream flow) was assessed 
from the UPRW using the SWAT model [21]. The 
model simulated results in the study indicated good 
model agreement (1981-2008) for mean monthly 
streamflow simulation (R2 from 0.69 to 0.79 and E 
from 0.68 to 0.79). The SWAT model peak flow results 
in his study demonstrated very close to ±10% range of 
the measured peak flow for the 42 peak flow events in 
the watershed. The results of the hydrologic simula- 
tions of this study agreed with the top 35% articles pre- 
viously reviewed [17], which utilized the SWAT hy- 
drologic model calibration and validation. 

3.2. Bio-Energy Feedstock Yields 

This study applied calibrated and validated SWAT model 
for the long-term (1998-2010) monthly stream flow. The 
model was further verified for the monthly sediment 
loads; and corn and soybean yields results within the 
watershed. Model simulations assessed feedstock and 
sediment yields responses of six bio-energy crops. Model 
simulated results of the six bio-energy crops were assessed 
from the selected pastureland and croplands (1669 km2) 
of the UPRW. The model simulated feedstock yields 
were compared for the two dominant Mississippi soils 
(MS048, and MS089) in the watershed. The MS048 and 
MS089 soils covered about 22.1% of the pastureland and 
cropland area in the watershed. The soil characteristics of 

MS048 soil include: fine sandy loam; distributed in the 
higher slope areas (8% - 12%); well drained soil with 
percentage fraction of clay 8.5%, silt 26.89%, and sand 
64.61%; erodibility factor of 0.28; bulk density of 1.45 
g/cm3. Similarly, the soil characteristics of MS089 soil 
include: silt loam; distributed in lower slope areas (0% - 
8%); somewhat poorly drained soil with percentage 
fraction of clay 22.5%, silt 52.72%, and sand 24.78%; 
erodibility factor of 0.32; bulk density of 1.39 g/cm3. 

There is no specific long-term continuous feedstock 
yield data available for the Miscanthus, Switchgrass, 
Johnsongrass, Alfalfa, Corn, and Soybean in the UPRW. 
However, Rankin County’s corn and soybean yield data 
was available for the period of 1998 to 2010 [42] except 
in 2002 and 2008 for soybean and 2008 and 2010 for 
corn to compare with the model simulated feedstock 
yields results. The crop yields data for the year 2002, 
2008, and 2010 were utilized from the Madison County, 
a neighboring County within the watershed. The SWAT 
model simulated average annual corn and soybean yields 
from the selected land use and soil groups (369 km2) 
were compared with the twelve years (1997-2008) of 
Rankin County’s observed National Agriculture Statistics 
Service (NASS) annual average corn and soybean yields 
data.  

The SWAT model reasonably predicted annual ave- 
rage corn yield (6.1 Mg/ha) when compared with the 
NASS county level observed annual average corn yield 
(6.8 Mg/ha) data (Figure 5(a)). Model predicted corn 
yield showed good correlation (R2 = 0.54) with the 
observed county level corn yield data. The SWAT model 
results determined that model under-predicted annual 
average corn yield by only 10%. Similarly, model pre- 
dicted reasonable annual average soybean yield (2.4 
Mg/ha) when compared with the NASS county level 
annual average soybean yield (2.2 Mg/ha) data (Figure 
5(b)). Model predicted corn yield showed good corre- 
lation (R2 = 0.51) with the observed county level corn 
yield data. The SWAT model predicted results showed 
that model over-predicted annual average soybean yield 
by only 9%. The SWAT model predicted corn yield 
showed better correlation with observed data than soy- 
bean yield in this study as determined by R2 values (0.54 
vs. 0.51) and regression slopes (0.62 vs. 0.33). The corn 
and soybean yields results of this study were found 
comparable with previous study using the SWAT model 
in the Lower Mississippi River Basin [25]. 

No compensation was given to corn and soybean or 
any other crops as this study was trying to assess relative 
feedstock yield potential and water quality benefits of the 
six bio-energy crops in the watershed using an equally 
treated management scenarios. Model uncertainty may 
exist due to localized crop management factors, errors 
associated with digital model input, observed crop yield,  
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Figure 5. County level observed and model predicted (a) corn yield (Mg/ha) and (b) soybean yield (Mg/ha) from 1998 to 2010. 
 

Table 2. Model predicted average annual sediment and 
feedstock yields. 

and spatial scale for the crop yield prediction. The 
SWAT model results are more likely affected by climate 
variability factors. Overall, the crop yield simulation re- 
sults were found satisfactory considering the relative 
crop yield prediction for the comparison of six bio-en- 
ergy feedstock yields and their water quality impacts in 
this study. In average feedstock yield from the MS048 
soils had 1% greater than from the MS089 soils. When 
analyzing 13 years of annual average watershed feed- 
stock yield results, Miscanthus grass determined the 
greatest feedstock yield from both MS048 and MS089 
soils followed by Switchgrass, Johnsongrass, Alfalfa, 
Corn, and Soybean. Based on the model simulated feed- 
stock yield results from two different soils (Table 2), it 
was estimated that the pastureland and cropland of the 
UPRW (369 km2) can produce 21.9 Mg/ha of average 
feedstock annually if Miscanthus grass is grown (Table 
2). Similarly Switchgrass, Johnsongrass, Alfalfa, Corn, 
and Soybean can produce annual average feedstock yield 
of 15.2 Mg/ha; 12.1 Mg/ha; 7 Mg/ha; 5.9 Mg/ha; and 
2.35 Mg/ha respectively (Table 2) from the UPRW. 

Bio-energy 
crops 

Sediment yield (ha/Mg) Feedstock yield (ha/Mg)

1 MS048 MS089 MS048 MS089 

Miscanthus 1.6 0.7 22.0 21.8 

Switchgrass 3.1 1.0 15.3 15.1 

Johnsongrass 6.5 2.9 12.2 12.0 

Alfalfa 4.8 1.6 7.2 6.8 

Corn 16.9 7.0 6.0 5.8 

Soybean 14.2 6.1 2.5 2.2 

Note: Area (km2): MS048 = 188, MS089 = 181. 

 
similar trends as long-term annual average watershed 
feedstock yield except for few years (Figure 6). The 
temporal affects on feedstock yields specially Miscan- 
thus and Switchgrass could have been resulted due to the 
variation of climate change parameters, which impact on 
water stresses for each crop during model simulation 
period (1998-2010). 

Previous study applied SWAT model to assess the sus-
tainability of producing Switchgrass as a bio-energy crop 
in a regional scale [23]. The Switchgrass yields predicted 
by the SWAT model varied from 0 Mg/ha in the northern 
US to over 16 Mg·ha–1 in southern Illinois, Arkansas, 
western Kentucky, and Tennessee in their study. Yields 
predicted across the southern extremes of the eastern US 
were reported typically between 6 and 12 Mg·ha–1. An 
empirical modeling tool was presented to simulate Sw- 
itchgrass yields for the conterminous United States, 
which utilized geographically distributed field measured 
data [24]. Modeling tool over-predicted Switchgrass yields 
from the lowland agriculture when compared with the 
SWAT model predicted results. They have reported varia- 
tions in the Switchgrass yields in the southwestern and 
northern margins as predicted by their empirical modeling 
tool. This study evaluated the UPRW conditions (soils: 
MS048 and MS089), which predicted long-term annual 
average Switchgrass yields of 15.2 Mg/ha. 

3.3. Water Quality and Evapo-Transpiration 

Model simulated results determined that the corn crop 
scenario in the watershed had the greatest annual average 
sediment yield (12 Mg/ha) and the Miscanthus grass 
scenario had the least (1.1 Mg/ha) sediment yield. Annual 
average sediment yields from the MS048 soils were pre- 
dicted greater than from the MS089 soils in the water- 
shed as MS048 soil HRUs were spatially distributed in 
the higher slope range of the UPRW. The SWAT model 
simulation determined that annual average water yield 
difference of up to 7% from Miscanthus and soybean 
bio-energy crops scenarios in the watershed (Table 3). 
The model estimated results showed that Miscanthus 
crop had the greatest (532 mm) evapotranspiration (ET) 
demand and the soybean had the least (485 mm; Table 3). 
The SWAT model calculates actual ET, once total PET 
(1550 mm; Table 3) is determined and it evaporates any 
rainfall intercepted by the plant canopy. Based on the SWAT model results, temporal distribu- 

tion (1998-2010) of the feedstock yields followed the  The ET includes all the processes by which water from 
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Figure 6. Model simulated long-term (28 years) average annual feedstock yield (Mg/ha) of the six bio-energy crops from the 
two Mississippi soils (a) 048 and (b) 089 during the study period in the watershed. 
 
Table 3. Estimated annual average PET, ET, and water 
yield for bio-energy crops. 

ET Water 
Bioenergy PET SW 

demand yield 
crops )mm(  ( )mm  

)mm(  )mm(  

Miscanthus 1549.8 531.6 59.5 742.8 

Switchgrass  527.8 52.2 747.6 

Johnsongrass  517.7 51.5 754.7 

Alfalfa  511.5 51.0 759.3 

Corn  501.1 50.5 790.4 

Soybean  485.0 48.0 797.6 

Note: PET = potential evapotranspiration, ET = evapotranspiration, and  

SW = soil water content. 

 
the surface of the ground is changed to water-vapor (e.g. 
from soil and plant-canopy, transpiration). This study 
selected the Penman-Monteith method in the model to 
estimate PET from the watershed. The Penman-Monteith 
method in the SWAT model considers evaporation, water 
vaporization mechanisms, aerodynamic and surface re- 
sistance terms [28]. In the SWAT model crop-yield is 
determined based on the amount of dry-biomass above 
the ground and harvest index, which is calculated daily 
during the plant growing season [28]. The duration of the 
crop period of each bio-energy crops are varied. In this 
study, Miscanthus had 47 mm greater ET demand than 
that of soybean. In addition, Miscanthus holds annual 
average of about 12 mm greater soil water (SW) than 
soybean (59.5 mm vs. 48 mm in Table 3), which means 
about 11% less annual surface water flow from the 
watershed could be anticipated when converting land 
area from soybean to Miscanthus. The SWAT model 
results determined that annual average SW holding from 
Miscanthus greater than Switchgrass and Corn crops. 
The SWAT model predicted annual average ET from the 
Switchgrass crop greater than the corn and soybean crops 
(Table 3), which was anticipated based on the crop pa- 
rameters used in the Table 1; and SWAT model database 
[28]. The results of this study showed consistency with 
previous literatures [43]. Modeling results of this study 

suggested that the more corn and soybean production in 
the watershed will reduce annual ET resulting in the 
greater amount of water and sediment yields. In contrast, 
more pasturelands in the watershed will increase ET re- 
sulting in the less amounts of water and sediment yields 
from the watershed. The relative model simulated results 
presented in this study are good for making comparisons 
and water management evaluations. 

4. Conclusions 

The main objective of this study was to compare poten- 
tial bio-energy crops production and their impact on wa- 
ter quality within the UPRW. Individual feedstock yields 
from two soil groups investigated in this study (MS048 
and MS089) were found slightly different (MS048 higher) 
as determined by the SWAT model. Miscanthus grass 
predicted consistently higher feedstock yield than other 
bio-energy crops from both soils compared in this study. 
Annual average sediment yield from the MS048 soils 
predicted 145% greater than from the MS089 soils in the 
watershed as MS048 soils were distributed in the higher 
slope range of the HRUs in the watershed. 

Overall, model simulated long-term annual average 
feedstock yield results from the UPRW determined the 
greatest when growing Miscanthus grass followed by 
Switchgrass, Johnsongrass, Alfalfa, Corn, and Soybean. 
Miscanthus grass simulated in this study can produce 
about 63% greater feedstock quantity than Switchgrass 
and 79% feedstock quantity than Johnsongrass. Feed- 
stock yields of the bio-energy crops investigated in this 
study could vary depending up on application of fertilizer 
rates and soil water moisture conditions. The bio-energy 
crops Alfalfa, Corn, and Soybean determined the least 
three crops producing feedstock. Model simulated results 
determined that the corn crop scenario in the watershed 
had the greatest annual average sediment yield (12 
Mg/ha) and the Miscanthus grass scenario had the least 
(1.1 Mg/ha) sediment yield. Modeling results also sug- 
gested that increased corn and soybean crop cultivation 
in the watershed will reduce annual average ET, which 

Copyright © 2012 SciRes.                                                                               JWARP 



P. B. PARAJULI 770 

increases water and sediment yields from the watershed. 
In contrast, increase in the grasslands acreage in the wa-
tershed will increase annual average ET and reduce water 
and sediment yields from the watershed. About 11% less 
annual average surface water flow from the watershed 
could be anticipated when converting land areas from 
soybean to Miscanthus grass. The SWAT model simu- 
lated results suggested that growing Miscanthus grass in 
the UPRW would have the greatest feedstock source for 
bio-energy and water quality benefits. Results of this 
study are relevant to the active management of water in 
agriculture in view of growing land use change for bio- 
energy needs. 
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