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ABSTRACT 

Scheduling sports leagues has drawn significant attention to itself in recent years, as it involves considerable revenue as 
well as challenging combinatorial optimization problems. A particular class of these problems is the Traveling Tourna-
ment Problem (TTP) which focuses on minimizing the total traveling distance for teams. In this paper, an efficient 
simulated annealing approach is presented for TTP which applies two simultaneous and disparate models for the prob-
lem in order to search the solutions space more effectively. Also, a computationally efficient modified greedy scheme is 
proposed for constructing a favorable initial solution for the simulated annealing algorithm. Our computational experi-
ments, carried out on standard instances, demonstrate that this approach competes with previous offered methods in 
quality of found solutions and their computational time. 
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1. Introduction 

Scheduling of sports leagues is considered as an impor- 
tant class of optimization problems, which has received 
significant attention in recent years, since it has a great 
impact on the revenue of broadcasting the events on ra- 
dio or television networks and teams’ costs including 
travelling expenses. Theoretically, these optimization 
problems can be solved by trivial mathematical models 
and algorithms, although in practice leads to disappoint- 
ing and infeasible computational results by considering 
the computations time. Accordingly, a great effort has 
been made to devise improved algorithms resulting in 
better computational time as much as possible. 

This paper studies the Travelling Tournament Problem 
(TTP) proposed in [1] with the constraint of Double 
Round-Robin (DRR) scheduling in addition to satisfying 
specific constraints on the home/away pattern of the 
games. Travelling Tournament Problem aims to mini- 
mize the total amount of distance travelled by teams par- 
ticipating in the tournament. Round-Robins are schedules 
involving n teams in which every team has to face all 
other teams in a fixed number of times, say m; accord- 
ingly in the case of Double Round-Robin scheduling m is 
2. The Round-Robin scheduling, especially Double Round- 
Robin, is currently applied widely in many major sports 
tournaments, for instance, Major League Baseball [1] and 
National Basketball Association [2] leagues of United 

States and many European national soccer leagues. 
This literature proposes a simulated annealing algo- 

rithm with some of its features similar to the one pro- 
posed by Anagnostopoulos et al. [3] (TTSA), containing 
certain properties in order to obtain high quality solutions. 
It exploits graph coloring techniques and further heuris- 
tics in order to achieve better computational results rather 
than TSSA. The data and information used for the pur- 
pose of computations and experiments are from the Ma- 
jor League Baseball (MLB) of United States. 

2. Literature Review 

Scheduling of sports events and competitions mentioned 
in the literature are organized and have been studied con-
sidering two major factors, namely the pattern of home/ 
away games of the participating teams and the distance 
these teams have to travel according to the order that is 
specified by the programmed schedule. Therefore, sports 
scheduling problems which are addressed in this paper 
fall into two main categories. The goal of the first cate-
gory is to minimizes the number of breaks, i.e. two con-
secutive home game or two consecutive away games, 
whereas the objective of the second one is to minimize 
the overall distance which teams have to travel. 

Schreuder [4] and De Werra [5,6] have discussed the 
problems of the first category and application of graph 
theoretical techniques to these problems. This kind of 
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scheduling is prevalently used in European leagues in 
which teams have to go back home after playing a game 
away. 

The second class of problems is mainly the center of 
attention for its application in the United States leagues. 
A scheduling problem of a basketball league has been 
studied by Campbell and Chen [7], in which a two-phase 
approach is proposed to solve the problem. Bean and 
Bridge [2] explored a similar scheduling problem on Na- 
tional Basketball Association (NBA) and as a solution 
they proposed an Integer Programming model for the 
mentioned problem that was computationally infeasible 
to carry out, since the size of the problem was large. 
Furthermore, they applied a modified version of Camp- 
bell and Chen’s [7] two-phase method. Ferland and 
Fleurent considered the scheduling of National Hockey 
League (NHL) which its teams was split into two groups 
of Eastern and Western Conferences so was their games 
and corresponding schedule. 

The first meta-heuristic approach to minimize the 
travelling distance as an objective for sports scheduling 
problem was proposed by Costa [8] in the form of a Tabu 
Search/Genetic Algorithm integration. Additionally, a 
Simulated Annealing method has been presented by 
Wright [9] in order to schedule the National Basketball 
league of New Zealand. 

It was Easton et al. [1] who introduced the Travelling 
Tournament Problem. In this problem which is originated 
from the Major League Baseball, in addition to minimiz-
ing overall travelling distance, certain constraints should 
be satisfied, i.e. feasibility constraints, making the prob-
lem more difficult to solve. Numerous approaches have 
been proposed to solve TTP. Among these ap- proaches 
are a combination of Lagrange Relaxation (LR) and 
Constraint Programming (CP), a collaborative scheme by 
Benoist et al. [10], a hybrid Integer Programming-Con- 
straint Programming algorithm by Easton et al. [11] and 
a Simulated Annealing algorithm by Anagnostopoulos et 
al. [3]. In the latter method, a distinction has been made 
between soft and hard constraints. Furthermore, Lee et al. 
[12] in addition to creating an IP model with no-repeat 
constraint offered a TS for solving the problem. Lim et al. 
proposed a hybrid SA-Hill algorithm that is a combina-
tion of Simulated Annealing and Hill-Climbing methods. 
Also, considerable effort has been dedicated to solving 
the Traveling Tournament Problem quite recently and 
new solution methods have been developed for TTP [13- 
16]. In one of the most recent works in this area, Ta-
jbakhsh et al. proposed a hybrid Particle Swarm Optimi-
zation (PSO) and Simulated Annealing algorithm in 
which the results from the PSO section of the algorithm 
is used as an initial solution for the SA section of the 
algorithm. 

In the rest of the paper comes a brief description of the 

Traveling Tournament Problem including the abstraction 
and representations, the proposed modified SA algorithm 
and finally the computational experiments which is fol-
lowed by concluding remarks. 

3. Problem Description 

The problem was introduced by Easton, Nemhauser and 
Trick [1,17]. An input to the problem consists of an inte- 
ger n, and an n × n symmetric matrix D = [di, j] repre- 
senting the number of teams and a distance matrix re- 
spectively, which di, j indicates the distance between the 
homes of teams Ti and Tj. Since the number of teams 
participating in a tournament is usually even, without 
loss of generality, we assume that n is even. In the cases 
where n is odd, the model is valid by simply adding a 
dummy team. A solution to the problem is a schedule in 
which each team has to encounter every other team ex- 
actly twice, once in its own home and once in its oppo- 
nent’s home. This schedule is called double round-robin 
tournament. Consequently, it is clear that a double 
round-robin tournament of size n has 2n – 2 rounds. For 
a tournament with n teams, 2n – 2 is the minimal number 
our rounds and we only consider tournaments with this 
number of rounds. Needless to say, exactly 2n  games 
are held in each round in such tournaments. 

Cost of a team in a given schedule S, is the sum of all 
the distance it has to travel between each game according 
to the order of plays in the schedule. Starting and ending 
position for each team would be its home; meaning that 
each team starts the tournament in its home and ends it 
by returning back there again. The cost of a solution is 
defined as the sum of the costs of all teams in the tour-
nament. 

The goal is to find a schedule with minimum cost sat-
isfying the following two constraints: 

1) At-most Constraint which states that no more than 
three consecutive home or away games are allowed for 
any team. 

2) No-repeat Constraint which states that a game of Ti 
and Tj at Ti’s home cannot be followed by the same game 
at Tj’s home. In other words, each team has to play every 
other team exactly twice in a tournament. No-repeater 
constraint prevents these two games to be in two con-
secutive rounds for any team. 

Consequently, we call a double round-robin schedule 
feasible if it satisfies both these constraints, and infeasi-
ble otherwise. 

In this paper each schedule is represented by a table, 
with its rows and columns corresponding to teams and 
rounds respectively. The opponent of team Ti at round rk 
is given by the absolute value of the element at row i and 
column k of the specified table. Sign of the mentioned 
value indicates where the game takes place; if the value 
is positive, the game is held in Ti’s home, otherwise at 
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Ti’s opponent home. Consider for the sake of demonstra- 
tion, the following schedule, say S, for 6 team (and 
therefore 10 rounds) as it is shown in Table 1. 

Schedule S specifies that team T1 has to successively 
play against teams T6 at home, T2 away, T4 at home, T3 at 
home, T5 away, T4 away, T3 away, T5 at home, T2 at home 
and finally T6 away. Accordingly, the travel cost of team 
T1 would be . 1,2 2,1 1,5 5,4 4,3 3,1 1,6 6,1

It can be observed that consecutive games at home do 
not increase the travel cost but are limited by the at-most 
constraint. This limitation is the reason why this problem 
is hard to solve. 

d d d d d     d d d 

v V

In specific parts of the proposed simulated annealing 
algorithm in this paper, it is necessary to use another 
representation of schedules and solutions. This is a result 
of applying graph theoretic techniques, namely graph 
coloring representation of the problem, in order to con- 
tribute to the efficiency of the local search algorithm. 

Representing Basic Round-Robins as  
Coloring Problems 

Given a simple and undirected graph G(V, E), the graph 
coloring problem (vertex coloring problem) is assigning 
labels (color) to each vertex  such that no pair of 
adjacent vertices is assigned the same label (color) and 
the number of colors used is minimal. The minimum 
number of colors required to color a particular graph is 
called the chromatic number of that graph, denoted x. 

Round-robin scheduling problems can be presented as 
graph coloring problems by considering each individual 
match as a vertex, with edges being added between any 
pair of vertices (matches) which cannot be scheduled in 
same rounds. Each individual round then corresponds to 
a unique color, and the goal is to color the specified 
graph using k colors, where k represents the number of 
available rounds. Note that in this paper, since we only 
consider compact schedules (i.e. schedules with mini- 
mum number of rounds) K = x. Each game (vertex) is 
represented by an ordered pair like {i, j} indicating the 
game between teams Ti and Tj will be held at Ti’s home 
(i.e. the team appearing first in the ordered pair). Thus  
 
Table 1. Showing a sample double round-robin schedule for 
n = 6 with table representation. 

T\R 1 2 3 4 5 6 7 8 9 10

1 6 –2 4 3 –5 –4 –3 5 2 –6

2 5 1 –3 –6 4 3 6 –4 –5 –1

3 –4 5 2 –1 6 –2 1 –6 5 4 

4 3 6 –1 –5 –2 1 5 2 –6 –3

5 –2 –3 6 4 1 –6 –4 –1 3 2 

6 –1 4 –5 2 –3 5 –2 3 4 1 

every TTP instance satisfying double round-robin con- 
straint with n teams can be converted to an instance of 
the graph coloring problem with n × (n – 1) vertices, with 
each vertex being of degree 4n – 7 and 2n – 2 colors. 
Consequently, each possible coloring scheme for the 
specified graph corresponds to a unique schedule for the 
TTP instance. This particular representation is applied in 
a subroutine in the proposed SA algorithm in order to 
obtain neighbors for the local search procedure. Figure 1 
depicts two equivalent representation of a schedule for a 
TTP instance with 4 teams; one by the discussed table 
representation, the other one by graph coloring scheme. 

As a result, TTP instances can be viewed as graph 
coloring problem instances with a slight difference. In- 
stead of merely searching for a coloring scheme (i.e. any 
assignment of labels to vertices such that no adjacent 
vertices have the same label), a particular one is sought 
which minimizes an objective function; thus, converting 
the graph coloring problem to an optimization problem. 

4. Local Search in SA Algorithm for the TTP 

This paper proposes a Simulated Annealing (SA) algo- 
rithm for the TTP. SA is an efficient local search algo- 
rithm that can be applied effectively to solve numerous 
combinatorial optimization problems. The algorithm  
 

 

 
 

 

    T\R 1    2   3    4   5    6 

 

 
 

  

  

   
 

  

1     3    2   4   –3   –2  –4 
2    –4   –1  –3    4    1    3 
3    –1    4   2    1   –4  –2 
4          2    –3  –1   –2   –3  –1 

 
(a) 

 
(b) 

Figure 1. Two equivalent schedules for a TTP instance with 
n = 4, represented by a graph coloring scheme (a), and a 
table representation (b). The ordered pairs inside the nodes 
of the graph are individual games and the labels appearing 
beside them are the round, in number, which they are 
scheduled in. 
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starts with an initial configuration (i.e. a double round- 
robin schedule). Its basic steps move from a current con-
figuration c, to a configuration in the neighborhood of c. 
The SA algorithm follows certain properties such as: 

1) It explores both feasible and infeasible solutions. 
The constraints are divided into two categories: hard con- 
straints which are always satisfied and soft constraints 
which may or may not be violated. The hard constraints 
are round-robin constraints, while the soft constraints are 
no-repeat and at-most constraints. In other words, all 
schedules in the search space are round-robin schedules 
which may or may not satisfy the no-repeat or at most 
constraint. Exploring infeasible solutions as well as fea-
sible ones seems to be crucial to the performance of the 
algorithm; since, a good solution may be reached through 
an infeasible one. 

2) It dynamically modifies the objective function 
which is elaborated in this section, to balance the time 
spent in feasible and infeasible regions. 

3) As the temperature descends in SA procedure, it 
becomes more likely for the search to be entrapped in 
local minima. Thus the SA algorithm uses reheats (e.g. 
[18]) to evade such situations. 

4.1. The Neighborhood Structure in SA  
Algorithm 

The neighborhood of a schedule is defined as the set of 
schedules which can be obtained by applying the follow- 
ing moves to it. The goal is to create similar schedules, 
whether feasible or not, to the current schedule with 
minimal alterations in order to provide a well distributed 
and continuous search space to the problem. The first 
five moves are the same as the moves suggested by 
Anagnostopoulos et al. [3] and the last one is called 
Kempe move proposed in [19]. 
 SwapHomes(S, Ti, Tj). This move swaps the order in 

which team Ti plays against team Tj at its home or 
away. In others words, if according to S, it is sched- 
uled for team Ti to play against team Tj at rounds rk 
and rl at home and away respectively, SwapHomes(S, 
Ti, Tj) is the same schedule as S except that now the 
two games between teams Ti and is Tj held at Ti’s 
home at round rl and at Tj’s home at round rk 

 SwapRounds(S, rk, rl). The move simply swaps 
rounds rk and rl [3]. 

 SwapTeams(S, Ti, Tj). This move swaps the schedules 
of teams Ti and Tj, except for the games that they play 
against each other. 

 PartialSwapRounds(S, Ti, rk, rl). This move considers 
team Ti and swaps its games at rounds rk and rl. Then 
the rest of the schedule for rounds rk and rl is updated 
(in a deterministic way) to produce a double round- 
robin tournament. 

 PartialSwapTeams (S, Ti, Tj, rk). This move considers 

round rk and swaps the games of teams Ti and Tj. 
Then, the rest of the schedule for teams Ti and Tj (and 
their opponents) is updated to produce a double 
round-robin tournament. 

Following the correspondence between graph coloring 
problems, a promising strategy for exploring the space of 
solutions is presented by [19], applying the Kempe-chain 
operators. A Kempe-chain neighborhood takes a graph G 
and involves identifying a connected sub-graph that con- 
tains exactly 2 colors. If G is feasibly colored (i.e. it con- 
tains no pairs of adjacent vertices with the same color), 
then swapping the colors of all vertices within such a 
sub-graph will lead to a new feasible coloring that uses 
no more colors than the original. A demonstration of this 
process is given in Figure 2 where we use the notation 
Kempe(v, c) to denote a move that involves a particular 
selected vertex v and color c (where v is not currently 
assigned to color c). 
 KempeChainMove(S, Ti, rk, rl). This move applies 

Kempe(v, c) move to the graph G = (V, E) corre- 
sponding to the TTP with coloring C corresponding to 
schedule S to obtain a new schedule if possible; 
where vertex v V  represents the game that team Ti 
is scheduled to play at round rk against its opponent, 
say team Tj, and rl is of course any round other than rk. 
In other words, it moves the game between teams Ti 
and Tj from round rk to rl. 

Smart Moves 
The algorithm has two key properties which we call in 
advancing in the search space. It is empirically observ- 
able that these properties have great positive influence on 
the performance of the algorithm. 

1) The moves are not uniformly selected. Each move 
has a different disparate probability to be chosen by the 
algorithm to obtain a new schedule. More complex 
moves, namely KempeChainMove and PartialSwap- 
Teams which obtain schedules with more nontrivial 
modifications are more likely to be applied in each step. 
This way the algorithm explores a greater portion of the 
search space in less time. Figure 3 depicts Kempe move 
being carried out on a sample coloring for a particular 
graph. 

2) The parameters taken by each move as inputs are 
selected randomly but not uniformly. For each specific 
move, if applying a particular combination of parameters 
to an infeasible schedule decreases the number of viola-
tions, is more likely to be chosen. For instance, assume 
that SwapRounds is chosen to obtain a neighbor. Two 
rounds should be passed to this move as input parameters. 
The probability distribution over all rounds is not uni-
form. Meaning that every round has the probability to be 
chosen and this probability is a function of its violations 
in at-most and/or no-repeat constraint, i.e. the more  
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Figure 2. The effects of Kempe move probability on the final found solutions (NL10). 
 

 
                             (a)                                            (b) 

Figure 3. Demonstrating the function of Kempe move. (a) A graph being colored by four distinct colors, say the color of ver-
tex 1 is white and the color of vertex 2 is black. (b) The same graph after applying Kempe (1, black) to it which has yielded 
another consistent coloring for the graph. 
 
violation one round causes the more probability it has to 
be chosen. 

= 10 the matches are ordered as {0, 1}, {0, 2}, {0, 3}, ···, 
{8, 9}. Then the first match is assigned to the first round 
and afterwards each remaining match is considered in 
turn and assigned to the next round where no Interference 
occurs. This way a single round-robin schedule (SRR) is 
obtained and a double round-robin schedule is con-
structed by replicating the SRR schedule in the remain-
ing rounds and then swapping all of {i, j} ordered pairs 
in the replicated section to {j, i}. This greedy scheme in 
computational experiments takes less than a second to be 
performed for instances with large n. Following this pro-
cedure, the graph coloring representation of the schedule 
will be created by simply labeling each individual game 

It is observed that these heuristic strategies in choosing 
a neighbor have significant impact on the outcome of the 
algorithm. Better adjusted probabilities lead to higher 
quality schedules in less time. 

4.2. Initial Solutions 

The algorithm exploits a greedy scheme in order to gen- 
erate an initial random schedule satisfying the hard con- 
straints. This greedy scheme is discussed in [19]. It starts 
with sorting the games in lexicographic order, if they are 
represented in ordered pairs like {i, j}. For instance, for n  



S. NOUROLLAHI  ET  AL. 396 

(vertex of the graph corresponding to the TTP instance) 
with the round it is scheduled in. Afterwards, the Kempe 
neighborhood move is applied to this schedule about a 
hundred times in order to obtain another one. This final 
schedule can be considered approximately random in the 
search space. In other words, appearance of any schedule 
satisfying hard constraints can be considered roughly 
equal. These two steps take imperceptible time to be 
performed and it is as an efficient way to obtain a ran- 
dom initial solution for the SA algorithm. 

4.3. Simulated Annealing for TTP 

As mentioned before, the algorithm uses a simulated an- 
nealing meta-heuristics to explore the search space (i.e. 
the neighborhood graph). It starts by a random schedule 
which is obtained by a greedy algorithm explained in the 
previous section. Then, it follows the conventional simu- 
lated annealing algorithm schema. Given a temperature T, 
the algorithm randomly selects one of the schedules in 
the neighborhood of the current schedule yielded by the 
specified moves, and computes the difference Δ in the 
objective function produced by the move. If Δ < 0, the 
algorithm applies the move. Otherwise it applies the 
move with probability  exp T

T

. As it is intentioned 
in simulated annealing, the probability of accepting a 
non-improving move decreases over time. This behavior 
is obtained by decreasing the temperature as follows. A 
variable counter is used which is incremented for each 
non-improving move and reset to zero when the best so- 
lution found so far is improved. When counter reaches a 
particular upper limit, the temperature is updated to 

  (where β is a fixed constant smaller than 1) and 
counter is reset to zero. 

4.4. The Objective Function 

As discussed before, the schedules in the SA algorithm 
may or may not satisfy certain constraints, namely 
at-most and no-repeat. Furthermore, it is not guaranteed 
that the moves maintain the feasibility even if the search 
is initiated with a feasible schedule. It is crucial to the 
performance of the algorithm that the search goes 
through the infeasible schedules as well as the feasible 
ones, as it is likely that a solution can be reached through 
a series of infeasible schedules. Consequently, the stan-
dard objective function, as stated in [3], is altered so as to 
yield another objective function which makes use of the 
number of violation besides travel distance, therefore 
exploring the infeasible space as well. 

The new objective function is defined as follows: 

 

     2

if Cost S

Cost S w f nbv S




    

where the nbv(S) denotes the number of violations of the 
no-repeat and at-most constraints, w is a weight, and f: n 
→ n is a sub-linear function such that f(1) = 1. Anag-
nopostopoulus et al. [3] suggests that  



 is feasible

otherwise

S

 

 

 1 ln 2f v v v    

is a suitable function to control the violations of the 
TTP’s solutions. 

5. Computational Experiments 

The proposed SA algorithm is tested on a number of in- 
stances of the TTP with no-repeat and at-most constraints. 
The instances, i.e. the NLn instances are based on the 
information in Major League Baseball. The optimal solu- 
tion for NL4, NL6 and NL8 has been reported in the lit- 
erature, e.g., see [6]. The algorithm proposed by this pa- 
per as well leads to optimal solution for these instances, 
significantly improving the time performance and the 
quality of the best found solution for other instances. 
More specifically, the computational time of this algo- 
rithm, compared to that of other studies is considerably 
decreased for NL6 through NL10. Table 2 demonstrates 
the comparison of the results of the proposed algorithm 
with that of earlier researches, namely Simulated An-
nealing, LR-CP, a hybrid Simulated Annealing-Hill 
Climbing approaches and a hybrid PSO-SA approach 
which are respectively proposed in [3,20,21] and [22]. 
The detail of these methods can be found in [17]. 

For each NLn, the algorithm was run several times; 
accordingly the Best Found Solution (BFS) and Total 
Running Time (TRT) of the execution of the procedure is 
reported for each n. These experiments were performed 
on an Intel® Core™i5 CPU with 2.40 GHz clock rate 
and a main memory of 2 GB. Also, the program imple- 
menting the algorithm was written in C++ programming 
language and MinGW GCC was used to compile the 
 
Table 2. Results and comparison of the performances of 
proposed solution methods for the traveling tournament 
problem. 

Method NL4 NL6 NL8 NL10 

BFS - - 39721 59583 
SA [3] 

TRT - - 1639 40269 

BFS 8276 23916 42517 68691 
LR-CP [20]

TRT 1.5 86400 14400 86400 

BFS 8276 23916 39721 59821 
SA-Hill [21]

TRT 1.7 821 4107 40289 

BFS 8276 23916 39721 65002 
PSO-SA [22]

TRT 0.2 30 1800 7200 

BFS 8276 23916 39721 61956 
Efficient SA

TRT 0.0 0.0 667 3000 
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tively. Also, it can be inferred that the optimal values for 
the probability of Kempe move lies in the interval (0.4, 
0.6). 

program. 
The parameters of the SA algorithm in the running 

which are reported are set to the values that appear in 
Table 3. Refer to [3] for detailed description for each of 
these parameters. These parameters have been found 
suitable corresponding to different problem sizes. It can 
be observed that with the size of the problem increasing, 
it is better for the SA algorithm to start with higher initial 
temperatures (T0). This prevents the algorithm to get 
stuck in local minima early in the process of the search, 
when n becomes greater. However, unlike the parameters 
in [1], these initial temperatures are not increasing line- 
arly with respect to n. 

6. Conclusion 

Scheduling sports competitions has drawn significant 
attention to itself in recent years. This is a consequence 
of the involvement of considerable revenue for sports 
club, television networks as well as the involvement of 
dicult combinatorial optimization problems. This paper 
studies the Traveling Tournament Problem, a sports 
scheduling problem (TTP) which has been proposed in [1] 
and has originated from the scheduling of Major League 
Baseball of the United States and it models specific fea-
tures of this sports event. Several recent researches re-
garding this problem have developed heuristic ap-
proaches to solve the problem. However, these works 
apply just one unique modeling to abstract the problem 

Figure 4 indicates the importance of the parameter β. 
In this figure our solutions obtained for NL10 by the al- 
gorithm by applying different β values. For each β, the 
corresponding instance is solved several times and the 
best one is selected. Note that these runs continued for 
3000 seconds the best solution is obtained for β = 0.99 
which is the least value. 

 
Table 3. Parameter values for computational experiments. 

Finally, Figure 2 demonstrates the influence of 
Kempe move on improving the solutions found by the 
SA algorithm. As it was mentioned before, each 
neighborhood movement has different probability in or- 
der to explore the search space more thoroughly and effi- 
ciently. For each Kempe move probability, the instance 
corresponding to NL10 is solved several times and the 
best final solution is determined for each of these prob- 
abilities. Similar to the previous part, each run continued 
for 3000 seconds. It can be observed that by applying 
Kempe move more frequently to a particular point, ap- 
proximately 0.5, better solutions can be obtained. How- 
ever, further use of this move affects the algorithm nega- 

Parameters NL6 NL8 NL10 

T0 120 800 1000 

β 0.999 0.99 0.99 

w0 3500 6000 8000 

δ 1.04 1.02 1.02 

θ 1.04 1.02 1.02 

MaxP 7100 7100 7100 

MaxC 5000 5000 5000 

MaxR 10 10 10 

 

 

Figure 4. The effects of β on the solutions found by the SA algorithm over time (NL10). 
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features. For instance, either just tables model or an In-
teger Programming mathematical model [22]. Our paper 
applies graph coloring and table model simultaneously to 
exploit the properties of graph coloring problems as well 
in order to develop an efficient heuristic model based 
upon the algorithm proposed in [3]. This leads to a sche- 
dule modification technique, that is Kempe move, dis-
cussed in [19] which we use in combination with a greedy 
scheme to generate a high quality initial solution to the 
SA algorithm. Additionally, this graph theoretical techni- 
que is used to better explore the space of solutions. Also, 
the neighborhood in SA algorithm is explored more ef-
fectively by using the techniques called smart moves. The 
experimental results indicate that this particular tech-
nique improves the efficiency of the algorithm, indeed.  

This paper has not considered a hybrid method in or-
der to improve the solutions. There is the possibility of 
applying a Genetic Algorithm (GA) on the schedules 
explored by the SA algorithm. This process can be done 
sequentially with the simulated annealing algorithm. 
Moreover, new methods for exploring neighborhoods in 
the search space can contribute to the performance of the 
SA algorithm. 
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