
American Journal of Operations Research, 2012, 2, 374-381 
http://dx.doi.org/10.4236/ajor.2012.23045 Published Online September 2012 (http://www.SciRP.org/journal/ajor) 

Stochastic Programming Model for Discrete Lotsizing and 
Scheduling Problem on Parallel Machines 

Kensuke Ishiwata1, Jun Imaizumi2, Takayuki Shiina3, Susumu Morito4 
1Global Logistics, Kao Corporation, Tokyo, Japan 

2Faculty of Business Administration, Toyo University, Tokyo, Japan  
3Faculty of Social Systems Science, Chiba Institute of Technology, Chiba, Japan 
4School of Creative Science and Engineering, Waseda University, Tokyo, Japan 

Email: ishiwata.kensuke@kao.co.jp, jun@toyo.jp, shiina.takayuki@it-chiba.ac.jp, morito@waseda.jp 
 

Received July 23, 2012; revised August 27, 2012; accepted September 7, 2012 

ABSTRACT 

In recent years, it has been difficult for manufactures and suppliers to forecast demand from a market for a given prod-
uct precisely. Therefore, it has become important for them to cope with fluctuations in demand. From this viewpoint, 
the problem of planning or scheduling in production systems can be regarded as a mathematical problem with stochastic 
elements. However, in many previous studies, such problems are formulated without stochastic factors, treating sto-
chastic elements as deterministic variables or parameters. Stochastic programming incorporates such factors into the 
mathematical formulation. In the present paper, we consider a multi-product, discrete, lotsizing and scheduling problem 
on parallel machines with stochastic demands. Under certain assumptions, this problem can be formulated as a stochas-
tic integer programming problem. We attempt to solve this problem by a scenario aggregation method proposed by 
Rockafellar and Wets. The results from computational experiments suggest that our approach is able to solve large-scale 
problems, and that, under the condition of uncertainty, incorporating stochastic elements into the model gives better 
results than formulating the problem as a deterministic model. 
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1. Study Background and Objective 

In the manufacturing and supply chain industries in re-
cent times, one of the most important challenges has 
been to determine how best to deal with the significant 
fluctuations in demand. Within the market environment 
of today, it is difficult to forecast customer behavior and 
not uncommon for any forecasts of demand that are made 
to miss the mark. As such, it has become necessary to 
take into account the element of uncertainty when de- 
veloping plans. However, a challenge faced in production 
planning is the lot-scheduling problem. This stems from 
the fact that the main focus in production planning is on 
determination of lot sizes, which corresponds to tactical- 
level decision-making, and determination of scheduling, 
which corresponds to operational-level decision-making, 
where the goal is to optimize both of these factors con- 
currently. 

Almost all past research into the lot-scheduling prob-
lem has considered demand as a definite value. However, 
in light of the above-mentioned circumstances, it seems 
that in many cases, demand should be regarded as an 
uncertain element. For example, even if one is able to 
treat the most recent demand with certainty, it is quite  

likely that when decisions are made at a point in time 
later, uncertain elements will come into the mix. In such 
a situation, it becomes necessary to develop a plan which 
also takes into account those uncertain elements. Mathe- 
matical programming which takes these probabilistic 
factors into consideration is known as stochastic pro- 
gramming (Birge [1], Birge and Louveaux [2], Shiina 
[3]). 

In the present study, we looked at a lot-scheduling 
problem on parallel machines and considered a stochastic 
programming model. Compared with a deterministic 
programming model that does not incorporate probabilis- 
tic factors, the stochastic programming model poses a 
large-scale problem for which it is often extremely diffi- 
cult to find a solution. With this in mind, we felt it would 
be possible to obtain a solution by devising an approxi-
mate solution method based on the scenario aggregation 
method proposed by Rockafellar and Wets [4]. Specifi- 
cally, we referred to the method of Løkketangen and 
Woodruff [5], which presents a specific general frame- 
work for problems incorporating 0 - 1 variables, to de- 
velop a procedure which provides an approximate solu- 
tion. 
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We investigate the advantages of the stochastic pro-
gramming model by numerical simulation to first com-
pare the results obtained when following a deterministic 
programming model with the results obtained when the 
problem is considered in terms of a stochastic program-
ming model, and we then assess the performance of the 
procedure. Next, we discuss the accuracy of the ap-
proximate solution and the computation time, and dem-
onstrate the effectiveness of the solution method we de-
veloped. 

2. Lot-Scheduling Problem 

2.1. Definition of Problem 

The lot-scheduling problem is to decide both the produc-
tion lot size for each item type and the production time 
for each lot, in a lot production process in which pre-
paratory work is required. In the present study, we con-
sider a lot-scheduling problem on parallel machines. A 
summary of the problem is as follows. 

Production is performed in which multiple types of 
items are exchanged around on multiple machines with 
differing performance that make up a single process. 
When the item types are exchanged, time and expense 
are required for preparatory work. Inventory storage 
costs arise in proportion to the amount of inventory. For 
each item type, an ordered shipping amount (demand 
quantity) is provided at designated times, and no item is 
allowed to run out. At any one time, a machine is capable 
of producing only one item type. The machines can be 
used only for a certain duration at a time, and it is neces-
sary to carry out both preparation and production during 
that period. If the unit manufacturing cost is to be low-
ered and the lot size increased, then the expense incurred 
for storage of inventory increases; conversely, if the in-
ventory is reduced, then preparatory work will need to be 
carried out more frequently, leading to the problem of 
increased time and expense for preparation. 

2.2. Past Research and the Relevance of the  
Present Study 

Past research into the lot-scheduling problem on parallel 
machines has, in many cases, studied deterministic pro-
gramming models which treat customer demand as a 
definite value (for example, Meyr [6], Arai et al. [7]). So 
far, there has been almost no research into stochastic 
programming models for the lot-scheduling problem on 
parallel machines. Therefore, we assumed a situation in 
which some of the demand had to be treated as uncertain 
and formulated the lot-scheduling problem on parallel 
machines in terms of a stochastic programming model 
and then calculated a solution by applying the scenario 
aggregation method. 

3. Formulation 

3.1. Deterministic Programming Model 

Item type, machine, and time are represented by N, M, 
and T, respectively. For the constants, the demand for 
item type n at time t is dnt, the length of time taken to 
create one unit of item type n on machine m is pnm, the 
length of time that machine m can be used at time t is Lmt, 
the cost of preparation for item type n on machine m is 
cnm, the time taken for preparation is Cnm, and the cost of 
storage of inventory for item type n is hn. For item type n 
on machine m at time t, the variable representing the 
production amount is xnmt, the variable indicating whether 
production is occurring is ynmt, and the variable indicating 
whether preparation is occurring is znmt. The variable 
representing the amount of inventory for item type n at 
time t is Int. The formulas used are as follows. 

, , ,

min nm nmt n nt
n m t n t

c z h I 

 1s.t. = , ,nt nmt ntn t
m

          (1) 

I I x d n t            (2) 

, , ,nm nmt nm nmt mt nmtp x C z L y n m t  

1, ,nmt
n

y m t 

      (3) 

                (4) 

 1 , , ,nmt nmt nm tz y y n m t  

0 = 0, ,nmy n m

0 = 0,n

         (5) 

                (6) 

I n

0, , ,nmt

                (7) 

x n m t                 (8) 

 0,1 , , ,nmty n m t 

0, , ,nmtz n m t 

0, ,nt

             (9) 

             (10) 

I n t 

td

              (11) 

Here, (1) shows the objective function: the sum total 
of the preparation costs and the inventory storage costs; 
(2) updates the changes in inventory; (3) is the con-
straint on the time that a machine can be used; (4) re-
flects that, at each time, a machine is only capable of 
producing one type of item; (5) is a constraint on 
preparation being carried out; (6) and (7) are the initial 
conditions for production and inventory; and (8), (9), 
(10), and (11) are additional conditions on the individ-
ual variables. 

3.2. Changes in Demand 

In this section, we will discuss demand d, omitting the 
subscripted symbol for the item type. Specifically, this 
means that even though the item type is not indicated, the 
discussion assumes a specific item type. 

Demand at time t, , is defined as a stochastic vari-
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able, designated dt, which is assumed to follow a finite 
discrete distribution. The list of possible values for the 
stochastic variable across time T, represented d = (d1, ···, 
dT), is referred to as a scenario. 

Based on the discrete and finite properties of the dis-
tribution, the number of scenarios is represented with the 
symbol S. The probability that a scenario s, that is to say 

 1= , ,s s sd d d
= 1sP

1

T , will occur is given by Ps (where 

=1s
). In the scenario tree (the directed graph in 

Figure 1), the scenario is represented as routes from the 
root node to the leaf nodes. 

S

If the possible values for demand sd 2 and sd
1 2

 2 , ,sd

 1, , S

 ,B s t

 of 
two scenarios s  and s  (with (s1 ≠ s2)) satisfy the equality 

1 1t t  over the history to a certain 
time t, then they follow the same route on the tree, to 
time t. 

 1 1, ,s sd d  2sd

The decision making for the two scenarios s1 and s2 
must be the same to time t. At time t, the individual 
making decisions cannot anticipate that scenarios s1 and 
s2 will diverge in the future. This is because, at time t, 
they are not provided with information regarding the 
future development from time t + 1 onward, and they 
have to make a decision based on the history of dt until 
time t. This condition is referred to as the nonanticipativ-
ity condition. 

The set of scenarios (represented as numbers) 
 can be partitioned into disjoint subsets at each 

time. The index set for scenarios equal to scenario s in 
history to time t is represented by  and referred 
to as the scenario bundle. For example, in Figure 1, B(1, 
1) = B(2, 1) = {1, 2}, and B(3, 1) = B(4, 1) = {3, 4}. 

3.3. Stochastic Programming Model 

The amount of demand for item type n at time t in sce-
nario s is represented by s

nt  and the probability of oc-
currence of scenario s is Ps, as described above. Fur-
thermore, the variable representing the production 
amount for item type n by machine m at time t in sce-
nario s is 

d

s
nmtx , the variable indicating whether produc-

tion is being carried out is s
nmty , and the variable indi-

cating whether preparation is being carried out is s
nmt . 

The variable representing the amount of inventory of 
item type n at time t in scenario s is 

z

s
ntI . The remaining 

symbols are as defined in Section 3.1. The relevant for-
mulation is as follows. 
 

 

Figure 1. Scenario tree. 

, , ,

min s s s
nm nmt n nt

s n m t n t

P c z h I
 

 
 

  

 1s.t. = , , ,s s s s
nt nmt ntn t

m

         (12) 

I I x d s n t            (13) 

, , , ,s s s
nm nmt nm nmt mt nmtp x C z L y s n m t  

1, , ,s
nmt

n

y s m t 

      (14) 

                 (15) 

 1 , , , ,s s s
nmt nmt nm tz y y s n m t  

0 = 0, , ,s
nm

            (16) 

y s n m

0 = 0, ,s
n

                 (17) 

I s n

 

                   (18) 

 1 2
1 2 1 2 1 2= , , , , , , , , = ,s s

nmt nmtx x s s n m t s s B s t B s t 

 

 (19) 

 1 2
1 2 1 2 1 2= , , , , , , , , = ,s s

nmt nmty y s s n m t s s B s t B s t 

 

 (20) 

 1 2
1 2 1 2 1 2= , , , , , , , , = ,s s

nmt nmtz z s s n m t s s B s t B s t 

   1 2
1 2 1 2 1 2= , , , , , , , = ,s s

nt nt

 (21) 

I I s s n t s s B s t B s t 

0, , , ,s
nmt

   (22) 

x s n m t               (23) 

 0,1 , , , ,s
nmty s n m t 

0, , , ,s
nmtz s n m t 

0, , ,s
nt

           (24) 

             (25) 

I s n t                 (26) 

Here, (12) shows the objective function: the expecta-
tion of the sum total of the preparation costs and inven-
tory storage costs; (13) updates the changes in inventory; 
(14)is the constraint on the time that a machine can be 
used; (15) reflects that, at each time, a machine is only 
capable of producing one type of item; (16) is a con-
straint on preparation being carried out; (17) and (18) are 
the initial conditions for production and inventory; (19), 
(20), (21), and (22) are the nonanticipativity conditions; 
and (23), (24), (25), and (26) are additional conditions on 
the individual variables. 

4. Applying the Scenario Aggregation 
Method 

4.1. Equivalent Deterministic Programming 
Problems 

The formulation of problems (not only the lot-scheduling 
problem on parallel machines) via a stochastic program-
ming model such as this poses a large-scale mathematical 
programming challenge, due to the variables that must be 
defined and the constraint conditions that must be listed 
for all of the scenarios. The lot-scheduling problem, 
which is modeled by the stochastic programming model 
considered in the present study, in particular, involves 

Copyright © 2012 SciRes.                                                                                AJOR 



K. ISHIWATA  ET  AL. 377

very substantial difficulties, if it is to be solved in its 
original format, as a mixed-integer programming prob-
lem. Therefore, in the present study, we took the problem 
structure arising from the modeling and formulation into 
account, and opted to pursue an approximate solution by 
using a framework known as the scenario aggregation 
method, which was proposed by Rockafellar and Wets 
[4]. 

4.2. Overview of the Scenario Aggregation 
Method 

The scenario aggregation method is a solution method 
wherein a scenario sub-problem is defined for each route 
on the scenario tree leading from the root to a leaf, and 
the solutions obtained by solving the scenario sub-prob-
lems are aggregated. An overview of this solution 
method follows. 

First, solutions are computed by solving the scenario 
sub-problems (we call these the admissible solutions). 
Next, the allowable solutions are aggregated, in order to 
compute a solution that satisfies the nonanticipativity 
condition (we call this the implementable solution). 

The admissible solutions are guaranteed to be practi-
cable for each scenario, but do not necessarily satisfy the 
nonanticipativity condition. In contrast, the implement-
able solution is guaranteed to satisfy the nonanticipativity 
condition, but is not guaranteed to be feasible for each 
scenario. Therefore, in the scenario aggregation method, 
the difference between these two types of solution is 
added to the scenario sub-problem in the form of a quad-
ratic penalty term, and these differences are gradually 
allowed to converge until finally a solution to the prob-
lem to be solved can be computed. 

The following section describes this process in detail. 

4.3. Solution Algorithm 

Below is described the specific procedure. In order to 
reduce the computation time required to reach the end 
condition in the scenario aggregation method, following 
the research of Løkketangen and Woodruff [5], we took 
into consideration only the convergence of integer vari-
ables, not the convergence of continuous variables. 

Step 1 
The following initial scenario sub-problem, corre-

sponding to a scenario s, is solved and the admissible 
solutions , , ,s s s s

nmt nmt ntnmtx y z I

,

 are computed. 

, ,

min s s
nmt n nt

n t

c z h I 

, ,s s
nmt nt

nm
n m t

 

 1s.t. =s s
nt n t

m

I I x  d n t  

, , ,s
nmty n m t

1, ,s
nmt

n

y m t 

 



s s
nm nmt nm nmt mtp x C z L   

 

 1 , , ,s s s
nmt nmt nm tz y y n m t  

0 = 0, ,s
nm

 

y n m

0 = 0, ,s
n

 

I n

0, , ,s
nmt

 

x n m t   

 0,1 , , ,s
nmty n m t 

0, , ,s
nmtz n m t 

tnI s
nt ,0,

0, ,s
nt

 

 

I n t 

ˆˆ ˆ ˆ, , ,

 

Step 2 
The following aggregation is applied to the admissible 

solutions, and the implementable solutions  
s s s s
nmt nmt nmt ntx y z I

, , ,
 are computed. The values of the La-

grange multipliers s s s s
nmt nmt nmt nt   

   , ,

ˆ :=

 are set to 0 and 
we go to Step 3. 

s s s s
nmt nmt

s B s t s B s t

x P x P
 

 

   , ,

ˆ :=

 

s s s s
nmt nmt

s B s t s B s t

y P y P
 

 

   , ,

ˆ :=

 

s s s s
nmt nmt

s B s t s B s t

z P z P
 

 

   , ,

ˆ :=

 

s s s s
nt nt

s B s t s B s t

I P I P
 

   

Step 3 
A scenario sub-problem that has the following 0-1 

constraints, corresponding with each scenario s, is solved 
and the admissible solutions s

nmt
s
nmt

s
nmt , s

ntx , y , z I  are 
computed. The objective function terms starting from the 
third term are penalty terms for the admissible and im-
plementable solutions; ρ is a parameter in the scenario 
aggregation method.  

 

 

 

 

, , ,

2

, ,

2

, ,

2

, ,

2

,

min

1
ˆ

2

1
ˆ

2

1
ˆ

2

1 ˆ
2

s s
nm nmt n nt

n m t n t

s s s s
nmt nmt nmt nmt

n m t

s s s s
nmt nmt nmt nmt

n m t

s s s s
nmt nmt nmt nmt

n m t

s s s s
nt nt nt nt

n t

c z h I

x x x

y y y

z z z

I I I

 

 

 

 



    
 

    
 

    
 

    
 











 1s.t. = , ,s s s s
nt nmt ntn t

m

 

I x d n t   I  
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   1 2 1 2, , = ,s s B s t B s t

1 2
1 2= , , , , ,s s

nt nt

, , ,s
nmty n m t

1, ,s
nmty m t 

 1 , , ,s
nm ty n m t 

0 , ,nm

s s
nm nmt nm nmt mtp x C z L   

n


s s

 

nmt nmtz y 

= 0s

 

y n m

0 = 0,s
n

 

I n  

0, , ,s
nmtx n m t 

 0,1 , , ,y n m t 

0, , ,z n m t 

0, ,s
nt

 

s
nmt  

s
nmt  

I n t 

ˆ

 

Step 4 
Aggregation is applied to the admissible solutions, and 

the implementable solutions s
nmtx , ˆ s

nmty , ˆs
nmt , z ˆs

ntI  are 
computed. If the admissible solution s

nmty  and the im-
plementable solution ˆ s

nmty  become equal, we go to Step 
5. Otherwise, the values of the Lagrange multipliers 

s
nmt , s

nmt , s
nmt , s

nt  are altered using the equations 
below and we go to Step 3. 

 s
mtx̂s

n :=nmt
s s

nmt  nmtx  

 ˆs s s s
nmt nmty y :=nmt nmt   

 ˆs s
nmt nmtz z :=s s nmt nmt  

 ˆ:=s s s s
nt ntnt nt I I    

Step 5 
The value of the converged integer variable s

nmty  is 
substituted into the original problem formulation and the 
following linear programming problem is solved. The 
values of the continuous variables s

nmtx , s
nmtz , s

ntI  are 
computed to complete the procedure. 

, , ,

min s s s
nth I

 



, , ,s s
nmt nt

nm nmt
t

z


n
n t


s n m

P c   

 1s.t. =s s
nt n t

m

I I x  d s n t    

, , , ,s
mt nmtL y s n m ts s

nm nmt nm nmtp x C z   

( 1)
s s s
nmt nmt nm tz y y   , , , ,s n m t  

0 = 0, , ,s
nI s n

1 2s s

m

1 2, , , , ,

 

= ,nmt nmtx x s s n m t

 2= ,

 

 1 2 1, ,s s B s t B s t

1 2
1 2= , , , , , ,s s

nmt s s n m t

 

nmtz z  

 

I I s s n t  

   1 2 1 2, , = ,s s B s t B s t

0, , , ,s
nmt

 

x s n m t 

0, , , ,s
nmtz s n m t 

0, , ,s
nt

 

 

I s n t 

s

 

5. Numerical Experiments 

5.1. Objective and Method of Numerical  
Experiments 

Numerical experiments were performed based on the 
following perspectives. 

1) The benefits of the stochastic programming model 
are assessed by comparison with the deterministic pro-
gramming model (see Section 5.2). 

2) Next, the behavior of the solution method using pa-
rameter ρ, as mentioned in Section 4.3, is analyzed. After 
that, the performance of the proposed solution method is 
assessed by comparing it with a case in which a direct 
branch-and-bound method-based solution method is used 
for the formulation of the stochastic programming model 
(a mixed-integer programming problem) (see Section 
5.3). 

The method of simulation was as follows. The num-
bers of item types N, machines M, and times T were set 
as (N, M, T) = (3, 2, 10), (3, 2, 15), (4, 2, 10), (4, 2, 15), 
(4, 3, 10), (4, 3, 15), (5, 3, 10), (5, 3, 15). 

(These problems were then numbered from 1 to 8 so 
that problems could later be reference by number). In-
stances were then generated for each of these by random 
number. However, the changing demand scenarios were 
applied according to Table 1. In the table, up to eight of 
the T number of times have been divided into four equal 
sets, which are named P1, P2, P3, and P4 (for example, 
with T = 10, P1 represents t = 1, 2). The values in the 
table indicate the ratios of how the demand changes in  
 

Table 1. Demand patern in each secenario. 

 P1 P2 P3 P4 

1 0 0 0 0 

2 0 0 0 +20% 

3 0 0 +20% 0 

4 0 0 +20% +20% 

5 0 +20% 0 0 

6 0 +20% 0 +20% 

7 0 +20% +20% 0 

8 0 +20% +20% +20% 
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each scenario, compared with the base amount of de-
mand (the case where s = 1) when the changing demand 
scenarios were generated. 

then computed the mean of these results based on the 
probabilities of the scenarios arising and used this as the 
objective function of the deterministic programming 
model. s

nt  is the amount of demand which could not 
be satisfied by each scenario, and Hn is the penalty per 
unit of demand not satisfied (which corresponds to twice 
the inventory storage cost hn). 

D

, , , ,

min s s s
nm nmt n nt n nt

s n m t n t n t

P c z h I H D
 

  
 

   

 1s.t. = , , ,s s s s
nt nmt nt ntn t
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We consider cases with two, four, and eight scenarios. 
When S = 2, scenarios 1 and 2 each arise with a probabil-
ity of 1 2 ; when S = 4, scenarios 1, 2, 3 and 4 each arise 
with a probability of 1 4 . The case when S = 8 is treated 
similarly. 

The package used to apply the scenario aggregation 
method was OPL Studio 5.2. For optimization of the 
scenario sub-problem in Step 3, which is a quadratic 
programming problem having a 0 - 1 condition, and the 
mixed-integer programming problem used for compari-
son, the mixed integer optimizer in CPLEX (branch- 
and-bound method-based solution) was used. The com-
puter used for experiments was a DELL Precision 490 
(Xeon 5060 3.20 GHz, memory 2 GB). 

   (27) 
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5.2. Value of Stochastic Solution 

As a criterion of assessment, we used the value of sto-
chastic solution (VSS) represented by the equation below. 
If we take the optimal objective function value of the 
stochastic programming model to be zp and the optimal 
objective function value of the deterministic program-
ming model to be zd, then VSS is defined as follows. 

 100 %d pz z
=

d

VSS
z


 

The demand at each time in the deterministic pro-
gramming model was given by the mean of the demand 
across all scenarios in the stochastic programming model, 
and we assume that this demand will arise with probabil-
ity 1 under that scenario only. Specifically, this was 
solved as one instance of the deterministic programming 
model, and the values of the decision variables were de-
cided. 

Next, we looked at the situation depicted in the for-
mulation below that considers the penalty of running out 
of inventory, and computed the costs in each scenario 
when the values of the (only set of) decision variables 
xnmt, ynmt, znmt which could solve the current deterministic 
programming model were used (the number of results 
obtained corresponds with the number of scenarios). We  

I I x d D s n t        (28) 

0 = 0, ,s
nI s n

0, , ,s
nt

             (29) 

I s n t 

0, , ,s
ntD s n t 

             (30) 

             (31) 

Factors which do not appear in the original problem 
are considered here because, in contrast to conventional 
deterministic and stochastic programming models that do 
not allow for inventory to run out, when the values of 
variables are decided in a deterministic programming 
model that incorporates stochastic variation in the de-
mand, it is possible for inventory to run out. As stated 
above, the penalty that arises when inventory runs out in 
such cases is assumed, in this numerical example, to be 
twice the inventory storage cost. 

Table 2 lists the value of solutions from the stochastic 
programming model. Since it is necessary, in this case, to 
accurately assess the model, the formulation by the sto-
chastic programming model (a mixed-integer program) 
was solved in its original format by the mixed integer 
optimizer in CPLEX, and only the data from which an 
optimal solution (within 3600 seconds) was obtained was 
considered. That is to say, the solution found at this time 
was not from the aforementioned scenario aggregation 
method. Table 2 shows the results for Problem 1 and 
Problem 5, for which optimal solutions could be obtained 
for all scenarios (as shown in the table). 

From Table 2, it is apparent that when the number of 
scenarios increases, the VSS value increases accordingly. 
This is thought to be due to the fact that when the num-
ber of scenarios increases and the element of uncertainty  

 
Table 2. Value of solutions from the stochastic model. 

 Prob. 1 Prob. 5 

S stochastic deterministic VSS stochastic deterministic VSS 

 VOF VOF (%) VOF VOF (%) 

2 1865.0 1915.5 2.6 1279.5 1330.5 3.8 

4 1887.5 2071.5 8.9 1286.0 1456.3 11.7 

8 1897.5 2153.5 11.9 1293.5 1564.9 17.3 

VOF: value of objective function. 
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grows, the benefit of the stochastic programming model 
also increases. 

In this section, we have shown only the case solvable 
as an integer programming problem that is equivalent to 
the stochastic programming model. However, in general, 
the scale of the problem grows as the number of scenar-
ios is increased, making it more difficult to obtain a good 
solution (the optimal solution or one close to the optimal 
solution). As such, the importance of a procedure for 
finding the solution for a stochastic programming model 
directly and in a short period of time is heightened. 

5.3. Assessment of Performance of the Proposed 
Solution Method 

The optimal objective function values and computation 
times for the solution method proposed in the present 
study and the method of using the mixed integer opti-
mizer in CPLEX directly to determine the formulation of 
the stochastic programming model (this will be referred 
to below simply as mixed-integer programming) were 
compared for the problem groups described in Section 
5.1 for two, four, and eight scenarios. 

The computation time for the solution method of the 
present study and mixed-integer programming were both 
limited to less than 3600 seconds; if the optimal value 
was not obtained by mixed-integer programming, a ten-
tative objective function value was computed when the 
computation time reached the limit. The results are 
shown in Tables 3-5. 

With proposed solution method, it was necessary to set 
the value of the parameter ρ that appears in Step 3 of 
Section 4.3. It was predicted that the behavior of the op-
timization would depend on this parameter value. There-
fore, all of the results are shown for the values ρ = 0.2, 
0.4, 0.6, 0.8, and 1.0. The optimization problems that 
appear in each step of the proposed solution method, as 
described in Section 4.3, were solved by using CPLEX as 
stated above. 

Two points are of interest here: 
 The relationship between the parameter set and the 

behavior of the solution method 
 The performance of the proposed solution method in 

contrast to the case where the mixed-integer pro-
gramming problem was solved directly using the 
branch-and-bound method-based solution  

 
Table 3. Results from the stochastic model (# of scenario = 2). 

 ρ MIP 

 0.2 0.4 0.6 0.8 1.0  

prob. sol. time sol. time sol time sol. time sol. time sol. time 

1 1865.0 11 1865.0 11 1865.0 11 1865.0 11 1865.0 11 1865.0 5 

2 2853.0 18 2853.0 18 2853.0 18 2853.0 18 2853.0 18 2853.0 8 

3 3149.5 18 3149.5 18 3149.5 18 3149.5 18 3149.5 18 3149.5 8 

4 3901.8 56 3901.8 56 3901.8 56 3901.8 56 3901.8 56 3891.2 55 

5 1279.5 13 1279.5 13 1279.5 13 1279.5 13 1279.5 13 1279.5 7 

6 2768.0 29 2768.0 29 2768.0 29 2768.0 29 2768.0 29 2768.0 21 

7 2964.5 44 2964.5 44 2964.5 44 2964.5 44 2964.5 44 2964.5 35 

8 3023.3 62 3023.3 55 3023.3 62 3023.3 62 3023.3 55 3023.3 53 

 
Table 4. Results from the stochastic model (# of scenario = 4). 

 ρ MIP 

 0.2 0.4 0.6 0.8 1.0  

prob. sol. time sol. time sol time sol. time sol. time sol. time 

1 1887.5 20 1887.5 20 1887.5 20 1887.5 20 1887.5 20 1887.5 6 

2 2955.0 64 2955.0 64 2955.0 64 2955.0 86 2955.0 108 2892.5 20 

3 3167.0 45 3167.0 35 3167.0 35 3167.0 35 3167.0 35 3167.0 13 

4 3951.4 114 3951.4 114 3951.4 114 3951.4 114 3951.4 114 3940.8 352 

5 1286.0 24 1286.0 24 1286.0 24 1286.0 24 1286.0 24 1286.0 9 

6 2849.0 72 3063.0 58 3063.0 58 3063.0 59 3063.0 59 2835.7 89 

7 3023.0 82 3023.0 82 3023.0 82 3023.0 82 3023.0 82 3017.0 213 

8 3120.3 195 3120.3 110 3120.3 110 3120.3 110 3264.3 98 3120.3 322 
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Table 5. Results from the stochastic model (# of scenario = 8). 

 ρ MIP 

 0.2 0.4 0.6 0.8 1.0  

prob. sol. time sol. time sol time sol. time sol. time sol. time 

1 1897.5 41 1897.5 41 1897.5 41 1897.5 41 1897.5 41 1897.5 7 

2 3010.0 118 3010.0 118 3010.0 118 3010.0 167 3010.0 207 2916.5 857 

3 3185.0 59 3185.0 59 3185.0 59 3185.0 59 3185.0 59 3185.0 146 

4 3999.1 217 3999.1 217 3999.1 217 3999.1 217 3999.1 217 4071.6 3600 

5 1293.5 48 1293.5 48 1293.5 48 1293.5 48 1293.5 48 1293.5 30 

6 2903.0 135 3010.0 101 3010.0 101 3010.0 101 3010.0 101 2903.0 3600 

7 3054.5 156 3054.5 156 3054.5 156 3054.5 156 3054.5 156 3048.5 3600 

8 3199.5 250 3199.5 250 3440.8 249 3440.8 249 3349.8 218 3198.8 3600 

 
The changes in behavior that result from changing the 

parameter ρ can be observed by comparing within a 
given row of a particular table. However, no specific 
pattern of behavior can necessarily be observed in the 
computation times and the optimal objective function 
values, and even when the parameter is changed in ad-
dressing the same problem, one cannot say that the effect 
is large enough to bring about any significant differences. 

Comparing the solution method proposed in the pre-
sent study and mixed-integer programming using Tables 
3-5 reveals that although the proposed solution method 
does not always compute the same result as mixed-inte-
ger programming, in many cases either the same or an 
extremely close value is obtained. 

There is a striking increase in the computation time of 
mixed-integer programming as the number of scenarios 
increases. In contrast, the computation time of the solu-
tion method we propose is relatively short, and although 
it falls a little behind the results of the latter in terms of 
how good the solution is, in cases where there are many 
scenarios, it is overwhelmingly superior in computation 
time. In particular, when the number of scenarios is high 
(S = 8), the proposed solution method obtains the feasible 
solution in a short period of time, in contrast to the 
mixed-integer programming computation, which fre-
quently reaches the upper limit of time and has to stop. 

This difference in computation time trends is thought 
to be due to the fact that, with the solution method we 
propose, although the computation time grows as the 
number of scenarios increases, the fact that the problem 
is broken down into sub-problems for each scenario 
which are then solved means that the effects of increas-
ing the number of scenarios can be limited, compared to 
mixed-integer programming. 

6. Conclusion and Future Challenges 

In the present study, we considered the formulation of 

the lot-scheduling problem on parallel machines using a 
stochastic programming model and demonstrated the 
benefit of such a model over a deterministic program-
ming model. 

We developed an approximate solution method which 
applied the scenario aggregation method and demon-
strated that even when the number of scenarios increases, 
thus making the problem large in scale, it is possible to 
compute an accurate solution that is of practical applica-
tion in a short period of time. 
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