
American Journal of Operations Research, 2012, 2, 374-381
http://dx.doi.org/10.4236/ajor.2012.23045 Published Online September 2012 (http://www.SciRP.org/journal/ajor)

Stochastic Programming Model for Discrete Lotsizing and
Scheduling Problem on Parallel Machines

Kensuke Ishiwata1, Jun Imaizumi2, Takayuki Shiina3, Susumu Morito4
1Global Logistics, Kao Corporation, Tokyo, Japan

2Faculty of Business Administration, Toyo University, Tokyo, Japan
3Faculty of Social Systems Science, Chiba Institute of Technology, Chiba, Japan
4School of Creative Science and Engineering, Waseda University, Tokyo, Japan

Email: ishiwata.kensuke@kao.co.jp, jun@toyo.jp, shiina.takayuki@it-chiba.ac.jp, morito@waseda.jp

Received July 23, 2012; revised August 27, 2012; accepted September 7, 2012

ABSTRACT

In recent years, it has been difficult for manufactures and suppliers to forecast demand from a market for a given prod-
uct precisely. Therefore, it has become important for them to cope with fluctuations in demand. From this viewpoint,
the problem of planning or scheduling in production systems can be regarded as a mathematical problem with stochastic
elements. However, in many previous studies, such problems are formulated without stochastic factors, treating sto-
chastic elements as deterministic variables or parameters. Stochastic programming incorporates such factors into the
mathematical formulation. In the present paper, we consider a multi-product, discrete, lotsizing and scheduling problem
on parallel machines with stochastic demands. Under certain assumptions, this problem can be formulated as a stochas-
tic integer programming problem. We attempt to solve this problem by a scenario aggregation method proposed by
Rockafellar and Wets. The results from computational experiments suggest that our approach is able to solve large-scale
problems, and that, under the condition of uncertainty, incorporating stochastic elements into the model gives better
results than formulating the problem as a deterministic model.

Keywords: Stochastic Programming; Lotsizing and Scheduling; Parallel Machines; Scenario Aggregation Method

1. Study Background and Objective

In the manufacturing and supply chain industries in re-
cent times, one of the most important challenges has
been to determine how best to deal with the significant
fluctuations in demand. Within the market environment
of today, it is difficult to forecast customer behavior and
not uncommon for any forecasts of demand that are made
to miss the mark. As such, it has become necessary to
take into account the element of uncertainty when de-
veloping plans. However, a challenge faced in production
planning is the lot-scheduling problem. This stems from
the fact that the main focus in production planning is on
determination of lot sizes, which corresponds to tactical-
level decision-making, and determination of scheduling,
which corresponds to operational-level decision-making,
where the goal is to optimize both of these factors con-
currently.

Almost all past research into the lot-scheduling prob-
lem has considered demand as a definite value. However,
in light of the above-mentioned circumstances, it seems
that in many cases, demand should be regarded as an
uncertain element. For example, even if one is able to
treat the most recent demand with certainty, it is quite

likely that when decisions are made at a point in time
later, uncertain elements will come into the mix. In such
a situation, it becomes necessary to develop a plan which
also takes into account those uncertain elements. Mathe-
matical programming which takes these probabilistic
factors into consideration is known as stochastic pro-
gramming (Birge [1], Birge and Louveaux [2], Shiina
[3]).

In the present study, we looked at a lot-scheduling
problem on parallel machines and considered a stochastic
programming model. Compared with a deterministic
programming model that does not incorporate probabilis-
tic factors, the stochastic programming model poses a
large-scale problem for which it is often extremely diffi-
cult to find a solution. With this in mind, we felt it would
be possible to obtain a solution by devising an approxi-
mate solution method based on the scenario aggregation
method proposed by Rockafellar and Wets [4]. Specifi-
cally, we referred to the method of Løkketangen and
Woodruff [5], which presents a specific general frame-
work for problems incorporating 0 - 1 variables, to de-
velop a procedure which provides an approximate solu-
tion.

Copyright © 2012 SciRes. AJOR

K. ISHIWATA ET AL. 375

We investigate the advantages of the stochastic pro-
gramming model by numerical simulation to first com-
pare the results obtained when following a deterministic
programming model with the results obtained when the
problem is considered in terms of a stochastic program-
ming model, and we then assess the performance of the
procedure. Next, we discuss the accuracy of the ap-
proximate solution and the computation time, and dem-
onstrate the effectiveness of the solution method we de-
veloped.

2. Lot-Scheduling Problem

2.1. Definition of Problem

The lot-scheduling problem is to decide both the produc-
tion lot size for each item type and the production time
for each lot, in a lot production process in which pre-
paratory work is required. In the present study, we con-
sider a lot-scheduling problem on parallel machines. A
summary of the problem is as follows.

Production is performed in which multiple types of
items are exchanged around on multiple machines with
differing performance that make up a single process.
When the item types are exchanged, time and expense
are required for preparatory work. Inventory storage
costs arise in proportion to the amount of inventory. For
each item type, an ordered shipping amount (demand
quantity) is provided at designated times, and no item is
allowed to run out. At any one time, a machine is capable
of producing only one item type. The machines can be
used only for a certain duration at a time, and it is neces-
sary to carry out both preparation and production during
that period. If the unit manufacturing cost is to be low-
ered and the lot size increased, then the expense incurred
for storage of inventory increases; conversely, if the in-
ventory is reduced, then preparatory work will need to be
carried out more frequently, leading to the problem of
increased time and expense for preparation.

2.2. Past Research and the Relevance of the
Present Study

Past research into the lot-scheduling problem on parallel
machines has, in many cases, studied deterministic pro-
gramming models which treat customer demand as a
definite value (for example, Meyr [6], Arai et al. [7]). So
far, there has been almost no research into stochastic
programming models for the lot-scheduling problem on
parallel machines. Therefore, we assumed a situation in
which some of the demand had to be treated as uncertain
and formulated the lot-scheduling problem on parallel
machines in terms of a stochastic programming model
and then calculated a solution by applying the scenario
aggregation method.

3. Formulation

3.1. Deterministic Programming Model

Item type, machine, and time are represented by N, M,
and T, respectively. For the constants, the demand for
item type n at time t is dnt, the length of time taken to
create one unit of item type n on machine m is pnm, the
length of time that machine m can be used at time t is Lmt,
the cost of preparation for item type n on machine m is
cnm, the time taken for preparation is Cnm, and the cost of
storage of inventory for item type n is hn. For item type n
on machine m at time t, the variable representing the
production amount is xnmt, the variable indicating whether
production is occurring is ynmt, and the variable indicating
whether preparation is occurring is znmt. The variable
representing the amount of inventory for item type n at
time t is Int. The formulas used are as follows.

, , ,

min nm nmt n nt
n m t n t

c z h I 

 1s.t. = , ,nt nmt ntn t
m

 (1)

I I x d n t    (2)

, , ,nm nmt nm nmt mt nmtp x C z L y n m t  

1, ,nmt
n

y m t 

 (3)

 (4)

 1 , , ,nmt nmt nm tz y y n m t  

0 = 0, ,nmy n m

0 = 0,n

 (5)

 (6)

I n

0, , ,nmt

 (7)

x n m t  (8)

 0,1 , , ,nmty n m t 

0, , ,nmtz n m t 

0, ,nt

 (9)

 (10)

I n t 

td

 (11)

Here, (1) shows the objective function: the sum total
of the preparation costs and the inventory storage costs;
(2) updates the changes in inventory; (3) is the con-
straint on the time that a machine can be used; (4) re-
flects that, at each time, a machine is only capable of
producing one type of item; (5) is a constraint on
preparation being carried out; (6) and (7) are the initial
conditions for production and inventory; and (8), (9),
(10), and (11) are additional conditions on the individ-
ual variables.

3.2. Changes in Demand

In this section, we will discuss demand d, omitting the
subscripted symbol for the item type. Specifically, this
means that even though the item type is not indicated, the
discussion assumes a specific item type.

Demand at time t, , is defined as a stochastic vari-

Copyright © 2012 SciRes. AJOR

K. ISHIWATA ET AL. 376

able, designated dt, which is assumed to follow a finite
discrete distribution. The list of possible values for the
stochastic variable across time T, represented d = (d1, ···,
dT), is referred to as a scenario.

Based on the discrete and finite properties of the dis-
tribution, the number of scenarios is represented with the
symbol S. The probability that a scenario s, that is to say

 1= , ,s s sd d d
= 1sP

1

T , will occur is given by Ps (where

=1s
). In the scenario tree (the directed graph in

Figure 1), the scenario is represented as routes from the
root node to the leaf nodes.

S

If the possible values for demand sd 2 and sd
1 2

 2 , ,sd

 1, , S

 ,B s t

 of
two scenarios s and s (with (s1 ≠ s2)) satisfy the equality

1 1t t over the history to a certain
time t, then they follow the same route on the tree, to
time t.

 1 1, ,s sd d  2sd

The decision making for the two scenarios s1 and s2
must be the same to time t. At time t, the individual
making decisions cannot anticipate that scenarios s1 and
s2 will diverge in the future. This is because, at time t,
they are not provided with information regarding the
future development from time t + 1 onward, and they
have to make a decision based on the history of dt until
time t. This condition is referred to as the nonanticipativ-
ity condition.

The set of scenarios (represented as numbers)
 can be partitioned into disjoint subsets at each

time. The index set for scenarios equal to scenario s in
history to time t is represented by and referred
to as the scenario bundle. For example, in Figure 1, B(1,
1) = B(2, 1) = {1, 2}, and B(3, 1) = B(4, 1) = {3, 4}.

3.3. Stochastic Programming Model

The amount of demand for item type n at time t in sce-
nario s is represented by s

nt and the probability of oc-
currence of scenario s is Ps, as described above. Fur-
thermore, the variable representing the production
amount for item type n by machine m at time t in sce-
nario s is

d

s
nmtx , the variable indicating whether produc-

tion is being carried out is s
nmty , and the variable indi-

cating whether preparation is being carried out is s
nmt .

The variable representing the amount of inventory of
item type n at time t in scenario s is

z

s
ntI . The remaining

symbols are as defined in Section 3.1. The relevant for-
mulation is as follows.

Figure 1. Scenario tree.

, , ,

min s s s
nm nmt n nt

s n m t n t

P c z h I
 

 
 

  

 1s.t. = , , ,s s s s
nt nmt ntn t

m

 (12)

I I x d s n t    (13)

, , , ,s s s
nm nmt nm nmt mt nmtp x C z L y s n m t  

1, , ,s
nmt

n

y s m t 

 (14)

 (15)

 1 , , , ,s s s
nmt nmt nm tz y y s n m t  

0 = 0, , ,s
nm

 (16)

y s n m

0 = 0, ,s
n

 (17)

I s n

 

 (18)

 1 2
1 2 1 2 1 2= , , , , , , , , = ,s s

nmt nmtx x s s n m t s s B s t B s t 

 

 (19)

 1 2
1 2 1 2 1 2= , , , , , , , , = ,s s

nmt nmty y s s n m t s s B s t B s t 

 

 (20)

 1 2
1 2 1 2 1 2= , , , , , , , , = ,s s

nmt nmtz z s s n m t s s B s t B s t 

   1 2
1 2 1 2 1 2= , , , , , , , = ,s s

nt nt

 (21)

I I s s n t s s B s t B s t 

0, , , ,s
nmt

 (22)

x s n m t  (23)

 0,1 , , , ,s
nmty s n m t 

0, , , ,s
nmtz s n m t 

0, , ,s
nt

 (24)

 (25)

I s n t  (26)

Here, (12) shows the objective function: the expecta-
tion of the sum total of the preparation costs and inven-
tory storage costs; (13) updates the changes in inventory;
(14)is the constraint on the time that a machine can be
used; (15) reflects that, at each time, a machine is only
capable of producing one type of item; (16) is a con-
straint on preparation being carried out; (17) and (18) are
the initial conditions for production and inventory; (19),
(20), (21), and (22) are the nonanticipativity conditions;
and (23), (24), (25), and (26) are additional conditions on
the individual variables.

4. Applying the Scenario Aggregation
Method

4.1. Equivalent Deterministic Programming
Problems

The formulation of problems (not only the lot-scheduling
problem on parallel machines) via a stochastic program-
ming model such as this poses a large-scale mathematical
programming challenge, due to the variables that must be
defined and the constraint conditions that must be listed
for all of the scenarios. The lot-scheduling problem,
which is modeled by the stochastic programming model
considered in the present study, in particular, involves

Copyright © 2012 SciRes. AJOR

K. ISHIWATA ET AL. 377

very substantial difficulties, if it is to be solved in its
original format, as a mixed-integer programming prob-
lem. Therefore, in the present study, we took the problem
structure arising from the modeling and formulation into
account, and opted to pursue an approximate solution by
using a framework known as the scenario aggregation
method, which was proposed by Rockafellar and Wets
[4].

4.2. Overview of the Scenario Aggregation
Method

The scenario aggregation method is a solution method
wherein a scenario sub-problem is defined for each route
on the scenario tree leading from the root to a leaf, and
the solutions obtained by solving the scenario sub-prob-
lems are aggregated. An overview of this solution
method follows.

First, solutions are computed by solving the scenario
sub-problems (we call these the admissible solutions).
Next, the allowable solutions are aggregated, in order to
compute a solution that satisfies the nonanticipativity
condition (we call this the implementable solution).

The admissible solutions are guaranteed to be practi-
cable for each scenario, but do not necessarily satisfy the
nonanticipativity condition. In contrast, the implement-
able solution is guaranteed to satisfy the nonanticipativity
condition, but is not guaranteed to be feasible for each
scenario. Therefore, in the scenario aggregation method,
the difference between these two types of solution is
added to the scenario sub-problem in the form of a quad-
ratic penalty term, and these differences are gradually
allowed to converge until finally a solution to the prob-
lem to be solved can be computed.

The following section describes this process in detail.

4.3. Solution Algorithm

Below is described the specific procedure. In order to
reduce the computation time required to reach the end
condition in the scenario aggregation method, following
the research of Løkketangen and Woodruff [5], we took
into consideration only the convergence of integer vari-
ables, not the convergence of continuous variables.

Step 1
The following initial scenario sub-problem, corre-

sponding to a scenario s, is solved and the admissible
solutions , , ,s s s s

nmt nmt ntnmtx y z I

,

 are computed.

, ,

min s s
nmt n nt

n t

c z h I 

, ,s s
nmt nt

nm
n m t

 1s.t. =s s
nt n t

m

I I x  d n t  

, , ,s
nmty n m t

1, ,s
nmt

n

y m t 



s s
nm nmt nm nmt mtp x C z L 

 1 , , ,s s s
nmt nmt nm tz y y n m t  

0 = 0, ,s
nm

y n m

0 = 0, ,s
n

I n

0, , ,s
nmt

x n m t 

 0,1 , , ,s
nmty n m t 

0, , ,s
nmtz n m t 

tnI s
nt ,0,

0, ,s
nt

I n t 

ˆˆ ˆ ˆ, , ,

Step 2
The following aggregation is applied to the admissible

solutions, and the implementable solutions
s s s s
nmt nmt nmt ntx y z I

, , ,
 are computed. The values of the La-

grange multipliers s s s s
nmt nmt nmt nt   

   , ,

ˆ :=

 are set to 0 and
we go to Step 3.

s s s s
nmt nmt

s B s t s B s t

x P x P
 

 

   , ,

ˆ :=

s s s s
nmt nmt

s B s t s B s t

y P y P
 

 

   , ,

ˆ :=

s s s s
nmt nmt

s B s t s B s t

z P z P
 

 

   , ,

ˆ :=

s s s s
nt nt

s B s t s B s t

I P I P
 

 

Step 3
A scenario sub-problem that has the following 0-1

constraints, corresponding with each scenario s, is solved
and the admissible solutions s

nmt
s
nmt

s
nmt , s

ntx , y , z I are
computed. The objective function terms starting from the
third term are penalty terms for the admissible and im-
plementable solutions; ρ is a parameter in the scenario
aggregation method.

 

 

 

 

, , ,

2

, ,

2

, ,

2

, ,

2

,

min

1
ˆ

2

1
ˆ

2

1
ˆ

2

1 ˆ
2

s s
nm nmt n nt

n m t n t

s s s s
nmt nmt nmt nmt

n m t

s s s s
nmt nmt nmt nmt

n m t

s s s s
nmt nmt nmt nmt

n m t

s s s s
nt nt nt nt

n t

c z h I

x x x

y y y

z z z

I I I

 

 

 

 



    
 

    
 

    
 

    
 











 1s.t. = , ,s s s s
nt nmt ntn t

m

I x d n t   I

Copyright © 2012 SciRes. AJOR

K. ISHIWATA ET AL. 378

   1 2 1 2, , = ,s s B s t B s t

1 2
1 2= , , , , ,s s

nt nt

, , ,s
nmty n m t

1, ,s
nmty m t 

 1 , , ,s
nm ty n m t 

0 , ,nm

s s
nm nmt nm nmt mtp x C z L 

n


s s

nmt nmtz y 

= 0s

y n m

0 = 0,s
n

I n

0, , ,s
nmtx n m t 

 0,1 , , ,y n m t 

0, , ,z n m t 

0, ,s
nt

s
nmt

s
nmt

I n t 

ˆ

Step 4
Aggregation is applied to the admissible solutions, and

the implementable solutions s
nmtx , ˆ s

nmty , ˆs
nmt , z ˆs

ntI are
computed. If the admissible solution s

nmty and the im-
plementable solution ˆ s

nmty become equal, we go to Step
5. Otherwise, the values of the Lagrange multipliers

s
nmt , s

nmt , s
nmt , s

nt are altered using the equations
below and we go to Step 3.

 s
mtx̂s

n :=nmt
s s

nmt  nmtx

 ˆs s s s
nmt nmty y :=nmt nmt 

 ˆs s
nmt nmtz z :=s s nmt nmt

 ˆ:=s s s s
nt ntnt nt I I  

Step 5
The value of the converged integer variable s

nmty is
substituted into the original problem formulation and the
following linear programming problem is solved. The
values of the continuous variables s

nmtx , s
nmtz , s

ntI are
computed to complete the procedure.

, , ,

min s s s
nth I

 



, , ,s s
nmt nt

nm nmt
t

z


n
n t


s n m

P c 

 1s.t. =s s
nt n t

m

I I x  d s n t  

, , , ,s
mt nmtL y s n m ts s

nm nmt nm nmtp x C z 

(1)
s s s
nmt nmt nm tz y y   , , , ,s n m t

0 = 0, , ,s
nI s n

1 2s s

m

1 2, , , , ,

= ,nmt nmtx x s s n m t

 2= ,

 1 2 1, ,s s B s t B s t

1 2
1 2= , , , , , ,s s

nmt s s n m t

nmtz z

I I s s n t

   1 2 1 2, , = ,s s B s t B s t

0, , , ,s
nmt

x s n m t 

0, , , ,s
nmtz s n m t 

0, , ,s
nt

I s n t 

s

5. Numerical Experiments

5.1. Objective and Method of Numerical
Experiments

Numerical experiments were performed based on the
following perspectives.

1) The benefits of the stochastic programming model
are assessed by comparison with the deterministic pro-
gramming model (see Section 5.2).

2) Next, the behavior of the solution method using pa-
rameter ρ, as mentioned in Section 4.3, is analyzed. After
that, the performance of the proposed solution method is
assessed by comparing it with a case in which a direct
branch-and-bound method-based solution method is used
for the formulation of the stochastic programming model
(a mixed-integer programming problem) (see Section
5.3).

The method of simulation was as follows. The num-
bers of item types N, machines M, and times T were set
as (N, M, T) = (3, 2, 10), (3, 2, 15), (4, 2, 10), (4, 2, 15),
(4, 3, 10), (4, 3, 15), (5, 3, 10), (5, 3, 15).

(These problems were then numbered from 1 to 8 so
that problems could later be reference by number). In-
stances were then generated for each of these by random
number. However, the changing demand scenarios were
applied according to Table 1. In the table, up to eight of
the T number of times have been divided into four equal
sets, which are named P1, P2, P3, and P4 (for example,
with T = 10, P1 represents t = 1, 2). The values in the
table indicate the ratios of how the demand changes in

Table 1. Demand patern in each secenario.

 P1 P2 P3 P4

1 0 0 0 0

2 0 0 0 +20%

3 0 0 +20% 0

4 0 0 +20% +20%

5 0 +20% 0 0

6 0 +20% 0 +20%

7 0 +20% +20% 0

8 0 +20% +20% +20%

Copyright © 2012 SciRes. AJOR

K. ISHIWATA ET AL.

 AJOR

379

each scenario, compared with the base amount of de-
mand (the case where s = 1) when the changing demand
scenarios were generated.

then computed the mean of these results based on the
probabilities of the scenarios arising and used this as the
objective function of the deterministic programming
model. s

nt is the amount of demand which could not
be satisfied by each scenario, and Hn is the penalty per
unit of demand not satisfied (which corresponds to twice
the inventory storage cost hn).

D

, , , ,

min s s s
nm nmt n nt n nt

s n m t n t n t

P c z h I H D
 

  
 

   

 1s.t. = , , ,s s s s
nt nmt nt ntn t

m

We consider cases with two, four, and eight scenarios.
When S = 2, scenarios 1 and 2 each arise with a probabil-
ity of 1 2 ; when S = 4, scenarios 1, 2, 3 and 4 each arise
with a probability of 1 4 . The case when S = 8 is treated
similarly.

The package used to apply the scenario aggregation
method was OPL Studio 5.2. For optimization of the
scenario sub-problem in Step 3, which is a quadratic
programming problem having a 0 - 1 condition, and the
mixed-integer programming problem used for compari-
son, the mixed integer optimizer in CPLEX (branch-
and-bound method-based solution) was used. The com-
puter used for experiments was a DELL Precision 490
(Xeon 5060 3.20 GHz, memory 2 GB).

 (27)

Copyright © 2012 SciRes.

5.2. Value of Stochastic Solution

As a criterion of assessment, we used the value of sto-
chastic solution (VSS) represented by the equation below.
If we take the optimal objective function value of the
stochastic programming model to be zp and the optimal
objective function value of the deterministic program-
ming model to be zd, then VSS is defined as follows.

 100 %d pz z
=

d

VSS
z



The demand at each time in the deterministic pro-
gramming model was given by the mean of the demand
across all scenarios in the stochastic programming model,
and we assume that this demand will arise with probabil-
ity 1 under that scenario only. Specifically, this was
solved as one instance of the deterministic programming
model, and the values of the decision variables were de-
cided.

Next, we looked at the situation depicted in the for-
mulation below that considers the penalty of running out
of inventory, and computed the costs in each scenario
when the values of the (only set of) decision variables
xnmt, ynmt, znmt which could solve the current deterministic
programming model were used (the number of results
obtained corresponds with the number of scenarios). We

I I x d D s n t     (28)

0 = 0, ,s
nI s n

0, , ,s
nt

 (29)

I s n t 

0, , ,s
ntD s n t 

 (30)

 (31)

Factors which do not appear in the original problem
are considered here because, in contrast to conventional
deterministic and stochastic programming models that do
not allow for inventory to run out, when the values of
variables are decided in a deterministic programming
model that incorporates stochastic variation in the de-
mand, it is possible for inventory to run out. As stated
above, the penalty that arises when inventory runs out in
such cases is assumed, in this numerical example, to be
twice the inventory storage cost.

Table 2 lists the value of solutions from the stochastic
programming model. Since it is necessary, in this case, to
accurately assess the model, the formulation by the sto-
chastic programming model (a mixed-integer program)
was solved in its original format by the mixed integer
optimizer in CPLEX, and only the data from which an
optimal solution (within 3600 seconds) was obtained was
considered. That is to say, the solution found at this time
was not from the aforementioned scenario aggregation
method. Table 2 shows the results for Problem 1 and
Problem 5, for which optimal solutions could be obtained
for all scenarios (as shown in the table).

From Table 2, it is apparent that when the number of
scenarios increases, the VSS value increases accordingly.
This is thought to be due to the fact that when the num-
ber of scenarios increases and the element of uncertainty

Table 2. Value of solutions from the stochastic model.

 Prob. 1 Prob. 5

S stochastic deterministic VSS stochastic deterministic VSS

 VOF VOF (%) VOF VOF (%)

2 1865.0 1915.5 2.6 1279.5 1330.5 3.8

4 1887.5 2071.5 8.9 1286.0 1456.3 11.7

8 1897.5 2153.5 11.9 1293.5 1564.9 17.3

VOF: value of objective function.

K. ISHIWATA ET AL. 380

grows, the benefit of the stochastic programming model
also increases.

In this section, we have shown only the case solvable
as an integer programming problem that is equivalent to
the stochastic programming model. However, in general,
the scale of the problem grows as the number of scenar-
ios is increased, making it more difficult to obtain a good
solution (the optimal solution or one close to the optimal
solution). As such, the importance of a procedure for
finding the solution for a stochastic programming model
directly and in a short period of time is heightened.

5.3. Assessment of Performance of the Proposed
Solution Method

The optimal objective function values and computation
times for the solution method proposed in the present
study and the method of using the mixed integer opti-
mizer in CPLEX directly to determine the formulation of
the stochastic programming model (this will be referred
to below simply as mixed-integer programming) were
compared for the problem groups described in Section
5.1 for two, four, and eight scenarios.

The computation time for the solution method of the
present study and mixed-integer programming were both
limited to less than 3600 seconds; if the optimal value
was not obtained by mixed-integer programming, a ten-
tative objective function value was computed when the
computation time reached the limit. The results are
shown in Tables 3-5.

With proposed solution method, it was necessary to set
the value of the parameter ρ that appears in Step 3 of
Section 4.3. It was predicted that the behavior of the op-
timization would depend on this parameter value. There-
fore, all of the results are shown for the values ρ = 0.2,
0.4, 0.6, 0.8, and 1.0. The optimization problems that
appear in each step of the proposed solution method, as
described in Section 4.3, were solved by using CPLEX as
stated above.

Two points are of interest here:
 The relationship between the parameter set and the

behavior of the solution method
 The performance of the proposed solution method in

contrast to the case where the mixed-integer pro-
gramming problem was solved directly using the
branch-and-bound method-based solution

Table 3. Results from the stochastic model (# of scenario = 2).

 ρ MIP

 0.2 0.4 0.6 0.8 1.0

prob. sol. time sol. time sol time sol. time sol. time sol. time

1 1865.0 11 1865.0 11 1865.0 11 1865.0 11 1865.0 11 1865.0 5

2 2853.0 18 2853.0 18 2853.0 18 2853.0 18 2853.0 18 2853.0 8

3 3149.5 18 3149.5 18 3149.5 18 3149.5 18 3149.5 18 3149.5 8

4 3901.8 56 3901.8 56 3901.8 56 3901.8 56 3901.8 56 3891.2 55

5 1279.5 13 1279.5 13 1279.5 13 1279.5 13 1279.5 13 1279.5 7

6 2768.0 29 2768.0 29 2768.0 29 2768.0 29 2768.0 29 2768.0 21

7 2964.5 44 2964.5 44 2964.5 44 2964.5 44 2964.5 44 2964.5 35

8 3023.3 62 3023.3 55 3023.3 62 3023.3 62 3023.3 55 3023.3 53

Table 4. Results from the stochastic model (# of scenario = 4).

 ρ MIP

 0.2 0.4 0.6 0.8 1.0

prob. sol. time sol. time sol time sol. time sol. time sol. time

1 1887.5 20 1887.5 20 1887.5 20 1887.5 20 1887.5 20 1887.5 6

2 2955.0 64 2955.0 64 2955.0 64 2955.0 86 2955.0 108 2892.5 20

3 3167.0 45 3167.0 35 3167.0 35 3167.0 35 3167.0 35 3167.0 13

4 3951.4 114 3951.4 114 3951.4 114 3951.4 114 3951.4 114 3940.8 352

5 1286.0 24 1286.0 24 1286.0 24 1286.0 24 1286.0 24 1286.0 9

6 2849.0 72 3063.0 58 3063.0 58 3063.0 59 3063.0 59 2835.7 89

7 3023.0 82 3023.0 82 3023.0 82 3023.0 82 3023.0 82 3017.0 213

8 3120.3 195 3120.3 110 3120.3 110 3120.3 110 3264.3 98 3120.3 322

Copyright © 2012 SciRes. AJOR

K. ISHIWATA ET AL. 381

Table 5. Results from the stochastic model (# of scenario = 8).

 ρ MIP

 0.2 0.4 0.6 0.8 1.0

prob. sol. time sol. time sol time sol. time sol. time sol. time

1 1897.5 41 1897.5 41 1897.5 41 1897.5 41 1897.5 41 1897.5 7

2 3010.0 118 3010.0 118 3010.0 118 3010.0 167 3010.0 207 2916.5 857

3 3185.0 59 3185.0 59 3185.0 59 3185.0 59 3185.0 59 3185.0 146

4 3999.1 217 3999.1 217 3999.1 217 3999.1 217 3999.1 217 4071.6 3600

5 1293.5 48 1293.5 48 1293.5 48 1293.5 48 1293.5 48 1293.5 30

6 2903.0 135 3010.0 101 3010.0 101 3010.0 101 3010.0 101 2903.0 3600

7 3054.5 156 3054.5 156 3054.5 156 3054.5 156 3054.5 156 3048.5 3600

8 3199.5 250 3199.5 250 3440.8 249 3440.8 249 3349.8 218 3198.8 3600

The changes in behavior that result from changing the

parameter ρ can be observed by comparing within a
given row of a particular table. However, no specific
pattern of behavior can necessarily be observed in the
computation times and the optimal objective function
values, and even when the parameter is changed in ad-
dressing the same problem, one cannot say that the effect
is large enough to bring about any significant differences.

Comparing the solution method proposed in the pre-
sent study and mixed-integer programming using Tables
3-5 reveals that although the proposed solution method
does not always compute the same result as mixed-inte-
ger programming, in many cases either the same or an
extremely close value is obtained.

There is a striking increase in the computation time of
mixed-integer programming as the number of scenarios
increases. In contrast, the computation time of the solu-
tion method we propose is relatively short, and although
it falls a little behind the results of the latter in terms of
how good the solution is, in cases where there are many
scenarios, it is overwhelmingly superior in computation
time. In particular, when the number of scenarios is high
(S = 8), the proposed solution method obtains the feasible
solution in a short period of time, in contrast to the
mixed-integer programming computation, which fre-
quently reaches the upper limit of time and has to stop.

This difference in computation time trends is thought
to be due to the fact that, with the solution method we
propose, although the computation time grows as the
number of scenarios increases, the fact that the problem
is broken down into sub-problems for each scenario
which are then solved means that the effects of increas-
ing the number of scenarios can be limited, compared to
mixed-integer programming.

6. Conclusion and Future Challenges

In the present study, we considered the formulation of

the lot-scheduling problem on parallel machines using a
stochastic programming model and demonstrated the
benefit of such a model over a deterministic program-
ming model.

We developed an approximate solution method which
applied the scenario aggregation method and demon-
strated that even when the number of scenarios increases,
thus making the problem large in scale, it is possible to
compute an accurate solution that is of practical applica-
tion in a short period of time.

REFERENCES
[1] J. R. Birge, “Stochastic Programming Computation and

Applications,” INFORMS Journal on Computing, Vol. 9,
No. 2, 1997, pp. 111-133. doi:10.1287/ijoc.9.2.111

[2] J. R. Birge and F. Louveaux, “Introduction to Stochastic
Programming,” Springer-Verlag, Berlin, 1997.

[3] T. Shiina, “Stochastic Programming (in Japanese),” In: M.
Kubo, A. Tamura and T. Matsui, Eds., Ôyô Sûri-Keikaku
Handbook, Asakura Syoten, Tokyo, 2002, pp. 710-769.

[4] R. T. Rockafellar and R. J.-B. Wets, “Scenarios and Pol-
icy Aggregation in Optimization under Uncertainty,”
Mathematics of Operations Research, Vol. 16, No. 1,
1991, pp. 119-147. doi:10.1287/moor.16.1.119

[5] A. Løkketangen and D. L. Woodruff, “Progressive Hedg-
ing and Tabu Search Applied to Mixed Integer (0,1) Mul-
tistage Stochastic Programming,” Journal of Heuristics,
Vol. 2, 1996, pp. 111-128.

[6] H. Meyr, “Simultaneous Lotsizing and Scheduling on
Parallel Machines,” European Journal of Operational
Research, Vol. 139, No. 2, 2002, pp. 277-292.
doi:10.1016/S0377-2217(01)00373-3

[7] H. Arai, S. Morito and J. Imaizumi, “A Column Genera-
tion Approachfor Discrete Lotsizing and Scheduling
Problem on Identical Parallel Machines,” Journal of Ja-
pan Industrial Management Association, Vol. 55, 2004,
pp. 69-76.

Copyright © 2012 SciRes. AJOR

http://dx.doi.org/10.1287/ijoc.9.2.111
http://dx.doi.org/10.1287/moor.16.1.119
http://dx.doi.org/10.1016/S0377-2217(01)00373-3

