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ABSTRACT 

There exists a great variety of posturographic para- 
meters which complicates the evaluation of center of 
pressure (COP) data. Hence, recommendations were 
given to use a set of complementary parameters to ex- 
plain most of the variance. However, it is unknown 
whether a dual task paradigm leads to different para- 
metrization sets. On account of this problem an ex- 
ploratory factor analysis approach was conducted in 
a dual task experiment. 16 healthy subjects stood on a 
force plate performing a posture-cognition dual task 
(DT, focus of attention on a secondary task) with re-
spect to different sampling durations. The subjects 
were not aware of being measured in contrast to a 
baseline task condition (BT, internal focus of atten- 
tion) in the previously published part I. In compare- 
son to BT a different factor loading pattern appears. 
In addition, factor loadings are strongly affected by 
different sampling durations. DT reveals a change of 
factor loading structure with longer sampling dura- 
tions compared to BT. Specific recommendations con- 
cerning a framework of posturographic parametriza-
tion are given. 
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1. INTRODUCTION 

The first part of the study has shown that in a typical 
baseline task situation (focus of attention on the postu- 
ral control process) factor structure was unaffected with 
respect to different sampling durations. However, there 
are multiple articles which prove evidence that a secon- 
dary task modality exert influence on postural control 
characteristics [1]. A plurality of research articles con- 
cerning COP fluctuations in static stance conditions has 

emerged in the recent years. However, little success has 
been achieved in discriminating populations and diver- 
ging results are reported [1,2]. For instance, there exists a 
long debate on the effect of a cognitive secondary task1 
on postural control and stability [1]. As far as higher 
brain areas are involved, one may conjecture the 
influence of cognitive sensory information on internal 
processing of postural equilibrium [3]. Postural control 
cannot be regarded merely as an automatic reflex con- 
trolled process but is in fact strongly dependent on 
attentional resources [4]. A theoretical approach to this 
phenomenon is based on the activity of competitive 
neural structures and the limitation of processing re- 
sources in higher brain areas. Nonetheless, researchers 
report on increased, decreased, and no changes of po- 
stural displacements when using a dual-task paradigm [1]. 
One reason for these discrepancies may arise from a lack 
of standardization in experimental procedures [5]. 
Especially, the usage and the different applications of a 
variety of stabilographic parameters which were educed 
from COP excursions consequently disallow compari- 
sons between studies despite similar experimental de- 
signs. Different COP parameters account for different 
specific characteristics of the dataset and henceforth a 
concise analysis of COP displacements necessitates a 
mixed summing-up of various non-redundant parame- 
ters [6-8]. Furthermore, there is no agreement how the 
different measures relate to each other in the context of 
cognitive dual task performance. In part I of this study, 
we have shown that even with different sampling dura- 
tions comprehensive parametrization of COP is not 
affected in a typical quiet stance condition. We recom- 
mended the choice of one posturographic parameter in 
each case from 11 groups of variables which delivers an 
immediate benefit for clinical and research analysis of 
postural control. In a further step one may speculate 
whether a different pattern in the factor structure of des-  

1Definitions of dual-task and secondary task terminologies diverge slightly. 
Concerning the present investigation we determine both as similar. *Corresponding author. 
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criptive posturographic parameter setting occurs while 
performing a secondary task compared to a quiet stance 
task. In the present part we investigate the influence of a 
dual-task on parameter selection in posturography. On 
this purpose we choose a dual-task paradigm with re- 
spect to three different sampling durations. We discuss 
the results with those obtained from part I which is re- 
ferred to the typical BT condition at this juncture. In every- 
day life situations postural control seems to interfere 
with secondary or even more tasks and therefore investi- 
gations concerning BT pose an artificial concept [9,10]. 
Especially in rehabilitation where single task procedures 
are typically applied to evaluate postural performance, 
dual task paradigms have to be integrated. Moreover, 
postural control is often analyzed by only one parameter 
and thus, results have limited significance. Joining both 
aspects, the present study could potentially advance the 
practical rehabilitation field by featuring a paramtrization 
set under dual task methods. 

2. METHODS 

2.1. Experimental Procedure 

As explained by the first part, sixteen healthy students (9 
males and 7 females, age: 26.1 ± 6.7 years; height: 
173.45 ± 11.14 cm; weight: 72.36 ± 13.04 kg) without 
musculoskeletal or neurological dysfunctions partici- 
pated voluntarily in this study. The experimental set-up 
comprised two consecutive parts: subjects were in- 
structed to stand with both feet parallel and upright while 
simultaneously accomplishing a cognitive task (dual task: 
DT) and quietly while fixing a point on the wall in front 
(baseline task: BT, compare part I). Both conditions 
consisted of three trials with different sampling durations 
(35 s, 65 s, 305 s) for each subject. At least 60 s is seen 
to be appropriate for time domain parameters, whereas 
the description of other parameters need 300 s of 
duration [5]. First, the DT subjects performed a visual 
short-term-memory task. A group of icons (workaday 
objects, e.g. chair, car, ball, etc) which were projected for 
10 s on a wall had to be memorized. Subsequently the 
subjects denominated the missing icon of that group in a 
10 s lasting verbal-response phase (Figure 1). Both 
sequences were executed recurrently. To get familiar to 
the memory task a 30 s practice run was completed prior 
to the actual measurement trials. During DT the subjects 
could choose their own comfortable position ad libitum 
(unconstrained standing) with the only instruction not to 
leave the platform of the force plate to adopt their natural 
standing pattern (e.g. [11,12]). The subjects were not 
aware of being measured. They were simply advised to 
stand on the rectangular platform of the force plate and 
told not to leave it while solving the dual task. The 
number of correct answers to the task was not of in-  

 
(a)                       (b) 

Figure 1. Example for the dual task operation (DT). (a) A 
group of icons had to be memorized for 10 s; (b) A missing 
icon indicated by the question mark had to be denominated 
subsequently. 
 
terest, as it had the only function to distract the subjects 
from their internally induced focus of attention [1,13]. 
All subjects solved the identical cognitive sequences to 
gain ceteris paribus validity. In BT condition the sub- 
jects were simply asked to stand as still as possible in hip 
width stance with arms relaxed at both sides and to stare 
at a point on the wall in front. This condition is referred 
to the typical laboratory condition and still in practice, 
for example, to discriminate between different popula- 
tions (e.g. [14]). Due to the fact that distance between the 
eyes and the visual field affects postural performance it 
was left unchanged during the whole measurement (about 
2 m) [15]. 

A 4th order low-pass Butterworth filter with a cut-off 
frequency of 10 Hz was applied to eliminate measure- 
ment noise [1,16]. Time series were downsampled to 
100 Hz (for calculation of entropy values to 20 Hz) and 
detrended by the mean of the time series. Impact effects 
were eliminated by cutting the first 5 s from the time 
series (Figure 2). The person’s task temporally exceeded 
the measured samples so that no end effects were de- 
tectable. 

2.2. COP Parameters and Data Analysis 

We selected the identical parameters for COP analysis as 
in part I of this study. Briefly, the different variables 
comprised the most common traditional and nonlinear 
parameters derived from anterior-posterior and medial- 
lateral direction, and from 2-dimensional COP trace [17- 
21]. With regard to the nonlinear parameters we involved 
a complementary set of comprehensive tools (i.e. entropy 
values, DFA, and wavelet transform), which is recently 
proposed by [22]. 

Data analysis was achieved—identical to part I—by an 
exploratory factor analysis approach (EFA). Concerning 
the quantity of computed parameters the values were di- 
vided into five parameter blocks (1-dimensional ML, 1- 
dimensional AP, 2-dimensional, nonlinear ML, nonlinear 
AP, Figure 2) which subsequently allowed the calcu- 
lation of 15 EFAs (5 blocks × 3 sampling durations). The 
sampling durations were separated into 30 s, 60 s, and 
300 s. We faced the problem of having a small subject  
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(a) 
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Figure 2. (a) Force plate and measurement directions. The COP 
position is expressed as a fraction of deviation from the mid- 
point of the force plate (values in units of length [UL]). Ex- 
emplary COP recording and resultant AP and ML time series 
(values in units of length [UL]); (b) Classification of COP par- 
ameters into five groups. 
 
cohort [23]. For a more detailed description of para- 
meter calculation and EFA procedure we refer to the 
methods section of part I of this study. 

3. RESULTS 

3.1. Sampling Adequacy 

Due to KMO and AIC values we excluded in 2 cases of 
15 EFA’s particular parameters to improve the sampling 
adequacy of the parameter sets. Those were SaEnML (30 
s, DT, nonlinear ML-block) and std r (300 s, DT, 2D 
block). The exclusion process showed no influence on 
the remaining parameter loadings. After this procedure 
the sampling adequacy values matched the requirements 
(mean KMO = 0.69, KMOmin = 0.61, KMOmax = 0.87). 
Item communality values were consistently over 0.83 
which match the specifications of [23] and [24]. This can 
be explained by high correlations between the stabilo- 
metric parameters. As a result, the proband cohort which 
is smaller than traditionally recommended is likely suf- 
ficient for adequate application of EFA [23]. Bartlett’s 
test of sphericity always rejects the null hypothesis that 
the correlation matrix is equal to anidentity matrix [p < 
0.001]. 

3.2. Traditional Parameters 1D ML 

Overall a consistent pattern of the EFA’s is observable 
(Table 1). Regardless of sampling duration two principal 
components with approximately equal loadings in vari- 
ance (appr. 40% to 40%) are extracted. Each EFA explain 
at about 90% of variance on average. The interpretation 
of components is analogous to their mathematical descri- 
ption. The first component comprises parameters from 
the time domain (pathML, velML, rangeML, stdML and 
RmsML) and the second component is clustered of pa- 
rameters from the frequency domain (fmeanML, f50ML, 
f80ML, f95ML and f99ML). Within the frequency para- 
meters three values can be stressed (fmeanML, f80ML 
and f95ML). In the time domain component StdML and 
RmsML show on average higher loadings than the other 
parameters. 

3.3. Traditional Parameters 1D AP 

In anterior posterior direction (Table 2) a similar output 
as in ML direction can be noticed. Two components 
were extracted except of the 30 s trial. Comparable to the 
ML direction time domain and frequency domain values 
are separated (with marginal exceptions: VelAP 30 s, 
f99AP 30 s, PathAP 60 s, VelAP 300 s, and RangeAP 
300 s). The distribution of variances is equally and alike 
to the ML configuration. The total explained variance 
approximates 85% - 90%. Again, higher loadings in the 
frequency domain are observed with fmean, f80 and f95. 

3.4. Traditional Parameters 2D 

The 2-dimensional parameters display three components 
in the 30 s and 300 s trial and two components in the 60 s 
trial (Table 3). Interpretation of these components proves 
to be difficult. Factor loadings were rather similar in the 
30 s and the 60 s run, neglecting the third component in 
30 s. One component is associated with Beta and std 
Beta with ~16% of explained variance. This component 
may be interpreted as the global alignment of the COP 
trace. The residual values load on the first component, 
which forms the greatest deal of explained variance. This 
component is explained principally by area values. 
Length and Turns show no consistent factor loading ac- 
cording to different sampling durations. The 300 s mea- 
surement deserves particular attention. Interestingly, dif- 
ferent variables describing COP area load to different 
components. Furthermore Ae and Ac is not immediately 
associated with Ae sec, std Ae sec and Ac sec, std Ac sec. 
Apparently, the pattern of the shorter sampling durations 
changes to a more complex construct in longer sampling 
durations. The first and second component is associated 
with COP variables describing the elongation and area 
covered of the data. Beside this description of the general 
pattern, a closer glance on the factor loadings reveals 
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Table 1. Factor loadings for 1-D parameters ML (rotated, >0.5 in bold letters). Components and explained variances. 

 30 sec DT 60 sec DT 300 sec DT 

Parametersa 1 (45.67%) 2 (42.21%) 1 (47.52%) 2 (42.7%) 1 (48.3%) 2 (41.32%) 

PathML –0.449 0.852 0.920 –0.324 –0.354 0.899 

VelML 0.095 0.888 0.946 0.115 0.581 0.729 

RangeML –0.192 0.901 0.985 –0.098 0.348 0.857 

StdML –0.400 0.906 0.932 –0.312 –0.247 0.952 

RmsML –0.398 0.907 0.932 –0.311 –0.247 0.952 

FmeanML 0.971 –0.214 –0.174 0.982 0.988 –0.082 

f50ML 0.876 –0.222 0.080 0.801 0.782 0.363 

f80ML 0.948 –0.148 –0.160 0.966 0.937 –0.121 

f95ML 0.951 –0.150 –0.296 0.905 0.957 –0.161 

f99ML 0.697 –0.335 –0.390 0.769 0.862 –0.253 

aAbbreviations of parameters can be looked up in Table 1 of part I. 

 
Table 2. Factor loadings for 1-D parameters AP (rotated, >0.5 in bold letters). Components and explained variances. 

 30 sec DT 60 sec DT 300 sec DT 

Parametersa 1 (43.74%) 2 (29.87%) 3 (15.3%) 1 (44.5%) 2 (43.9%) 1 (51.12%) 2 (37.88%) 

PathAP 0.938 –0.312 0.033 –0.508 0.831 –0.175 0.965 

VelAP 0.670 –0.015 0.697 0.017 0.964 0.701 0.623 

RangeAP 0.975 –0.107 –0.104 –0.074 0.959 0.699 0.632 

StdAP 0.972 –0.195 –0.070 –0.473 0.869 0.014 0.993 

RmsAP 0.971 –0.205 –0.057 –0.472 0.870 0.014 0.993 

FmeanAP –0.222 0.925 0.251 0.964 –0.242 0.993 0.038 

f50AP –0.257 0.680 0.134 0.784 –0.011 0.875 0.221 

f80AP 0.012 0.905 –0.257 0.908 –0.221 0.963 –0.016 

f95AP –0.213 0.780 0.258 0.899 –0.253 0.894 –0.132 

f99AP –0.218 0.228 0.900 0.751 –0.402 0.791 –0.163 

aAbbreviations of parameters can be looked up in Table 1 of part I. 

 
Table 3. Factor loadings for 2-D parameters (rotated, >0.5 in bold letters). Components and explained variances. 

 30 sec DT 60 sec DT 300 sec DT 

Parametersa 1 (58.75%) 2 (16.94%) 3 (16.34%) 1 (73.16%) 2 (17.02%) 1 (41%) 2 (36.67%) 3 (15.32%) 

R 0.762 0.183 0.506 0.959 0.186 0.197 0.970 0.071 

std r 0.934 0.102 0.302 0.973 0.141 x x x 

Ah 0.875 0.234 0.398 0.983 0.170 0.941 0.199 –0.077 

Length 0.269 –0.059 0.942 0.873 0.058 0.860 0.245 0.013 

Turns –0.756 –0.162 0.339 –0.613 –0.309 0.311 –0.732 –0.057 

Beta 0.205 0.954 –0.021 0.161 0.956 –0.094 0.009 0.991 

std Beta 0.188 0.956 0.040 0.145 0.972 –0.005 0.094 0.991 

Ae 0.844 0.235 0.418 0.963 0.185 0.304 0.925 0.033 

Ae sec 0.814 0.268 0.431 0.909 0.163 0.966 0.226 0.029 

std Ae sec 0.894 0.151 0.101 0.980 0.148 0.962 0.019 –0.090 

Ac 0.927 0.173 0.319 0.952 0.182 0.361 0.920 0.009 

Ac sec 0.900 0.195 0.375 0.952 0.184 0.468 0.872 0.017 

std Ac sec 0.923 0.177 0.069 0.983 0.154 0.942 0.291 –0.060 

aAbbreviations of parameters can be looked up in Table 1 of part I. 
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within some parameters dependencies on the respective 
sampling durations. 

3.5. Nonlinear Parameters ML 

Pattern of nonlinear values display a complex irregular 
factor loading behavior (Table 4). Differences occur 
within the three sampling durations. The 30 s trial dis- 
closes two components at which the first component is 
assembled by entropy parameters and the second com- 
ponent is composed of hML and cumWTML. A slight 
difference is arising in the 60 s run. Entropy values go 
along with the Hurst coefficient, whereas cumWTML is 
accompanied by SaEnvelML. This pattern breaks down 
within the longest sampling duration. Three components 
account for the variance in the ML nonlinear data. The 
first component is built up of SaEnML and hML, which 
could be interpreted as a component generally declaring 
irregularity in a particular time scale of the time series. 
The second component comprises of MseML and cum- 
WTML, which is a global indicator concerning different 
time scales. The last component refers to SaEnvelML 
which is the entropy value of the increment time series. 

3.6. Nonlinear Parameters AP 

Nonlinear variables in AP direction highlight a similar 
behavior of factor structure compared to ML (two com- 
ponents in 30 s and 60 s and one component in 300 s; 
(Table 5). Within the 30 s run one could discriminate any 

kind of entropy values from hAP and cumWTAP. Short 
sample durations do not stand for high time scale resolu- 
tion, for which this result could be challenged. This may 
also explain the discrepancies in loading pattern to the 60 
s run. The 300 s trial shows an allocation of values de- 
scribing irregularity of the time series and the split-up of 
the two multi time-scale parameters MseAP and cum- 
WTAP as these values imply the highest factor loadings 
in the principal components. 

4. DISCUSSION 

With respect to the factorial structures thorough COP 
description obviously necessitates various values out of 
different parameter classes [6]. The choice of a set of pa- 
rameters including these characteristics implies a critical 
position opposite to studies using a few parameters for 
COP analysis. Lack of standardization in parametrization 
may be one reason for contradictory results in literature 
[1,2]. The great variety of postural measures can com- 
plicate posturographic data interpretation. For instance, 
within the dual task controversy Huxhold et al. (2006) 
highlight increased COP parameter values (hull area, el- 
liptic area and root mean square ML) with different dual 
task conditions compared to the baseline task [9]. How- 
ever, Hunter and Hoffmann (2001) demonstrate greater 
COP variability (higher values for COP-velocity and 
standard deviation in AP and ML) in subjects with no 
additional cognitive load [25]. 

 
Table 4. Factor loadings for nonlinear parameters ML (rotated, >0.5 in bold letters). Components and explained variances. 

 30 sec DT 60 sec DT 300 sec DT 

Parametersa 1 (45.1%) 2 (26.96%) 1 (53.21%) 2 (27.8%) 1 (34.4%) 2 (30.56%) 3 (26.17%) 

MseML 0.857 0.060 0.939 0.085 0.077 0.854 0.306 

SaEnML x x 0.963 0.179 0.879 0.302 0.339 

SaEnvelML 0.853 0.278 0.520 0.726 0.074 0.005 0.957 

hML –0.154 0.873 –0.749 0.068 –0.962 0.224 0.103 

cumWTML 0.342 0.555 –0.143 0.904 0.100 –0.811 0.416 

aAbbreviations of parameters can be looked up in Table 2 of part I. 
 
Table 5. Factor loadings for nonlinear parameters ML (rotated, >0.5 in bold letters). Components and explained variances. 

 30 sec DT 60 sec DT 300 sec DT 

Parametersa 1 (45.1%) 2 (26.96%) 1 (53.21%) 2 (27.8%) 1 (34.4%) 2 (30.56%) 3 (26.17%) 

MseAP 0.857 0.060 0.939 0.085 0.077 0.854 0.306 

SaEnAP x x 0.963 0.179 0.879 0.302 0.339 

SaEnvelAP 0.853 0.278 0.520 0.726 0.074 0.005 0.957 

hAP –0.154 0.873 –0.749 0.068 –0.962 0.224 0.103 

cumWTAP 0.342 0.555 –0.143 0.904 0.100 –0.811 0.416 

aAbbreviations of parameters can be looked up in Table 2 of part I. 
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4.1. Effect of Sampling Duration on COP 

Parametrization in DT 

With respect to different sampling durations, an effect on 
COP parametrization is observable. Pattern of principal 
component loadings in 2-dimensional and nonlinear ML 
variable blocks break down within the alteration from 
shorter sampling durations to the longest one. In this 
process, it becomes noticeable that measures describing 
the global extent of COP migration divide into two dif- 
ferent components wherein the description of area pa- 
rameters diverges. Sway area is normally defined as the 
elliptic approximation of the COP excursions [26], how- 
ever several articles deal with different algorithms [27, 
28]. The present analysis confirms that applying area 
parameters in a dual task experiment motivates the usage 
of different values in longer sampling durations. The 
longer the sampling duration the more probable transient 
and particular events due to postural changes will occur 
[11,29], and therefore deteriorates an adequate estimation 
of area by Ae or Ac and is differently detected by Ah. 

Nonlinear descriptors in ML direction exhibit a similar 
behavior. Again, a breakdown of loading pattern within 
the longest recording time is recognizable. Durations of 
300s enables a distinction between SaEn and SaEnvel. 
Differentiated time series allow a reduction in nonsta- 
tionarity [30,31]. This effect may be more accurate for 
longer sampling durations [22]. A very complex structure 
manifests in the nonlinear measures, whereas some dif- 
ference grow comparing both directions. In general, one 
may speculate that the longer the sampling duration the 
higher the time scales, which alters information content 
of the parameters. 

It seems to be obvious, that longer sampling times lead 
to more consistent datasets whereas no comparable ex- 
aminations can be found with respect to posture-cogni- 
tion dual task methodology. In simple quiet stance inves- 
tigations, increases in the reliability with increased sam- 
ple duration have been reported [32-34]. However, these 
results were obtained with measurement durations of less 
than 120 s. Recent recommendations extend the duration 
up to 300 s [5]. Concerning nonlinear measures, definite 
recommendations are not generally available in literature. 
Longer time series imply better resolution of frequencies 
and more samples can be obtained on account of explicit 
time scales. For instance, Cannon et al. (1997) propose 
to investigate longer time series in order to generate 
more reliability in calculation of the Hurst coefficient in 
DFA [35]. Sample entropy measures require an adequate 
number of data points of the underlying time series [36]. 
These observations hint the utility of longer time series 
to generate reliable data sets. In other studies, the number 
of data points has been artificially increased by means of 
an increase of the sample frequency. As this study pro-  

poses that the postural control system and its dynamics 
may generate a change of loading pattern and hence enter 
into a different state with longer stance durations in DT, 
this procedure could miss the target. 

Including our results of EFA, inconsistency of the pos- 
turographic 2-dimensional and nonlinear parameters over 
different sampling durations reveal that within a dual- 
task methodology accurate assessment of COP displace- 
ments has to be accomplished with caution. Especially, 
nonlinear values show fine sensitivity to different mea- 
surement times. 

4.2. Comparison of BT to DT 

In part I of this study we dealt with a quiet stance meth- 
odology concerning equal sampling durations (30 s, 60s 
and 300 s) which in comparison to the present part serves 
as the typical baseline condition (BT) under laboratory 
conditions. In general, we can contrast the diverse pos- 
turographic parameter loadings and pattern, generated by 
both conceptual study designs. We found that within BT 
consistent factor loadings occurred despite different 
measurement times. In the present DT condition depen- 
dencies to sampling durations can be recognized in 2- 
dimensional and nonlinear variable blocks. This pheno- 
menon which does not appear in BT could be argued by 
a breakdown of certain loading pattern. Apparently, dis- 
traction from posture which conforms to an automatiza- 
tion mechanism [37] evokes COP dynamics to change 
into a new state with longer sampling durations. In con- 
sideration to factor loadings we can depict the following 
aspects. One-dimensional traditional parameters allocate 
consistently to either time domain or frequency domain 
components which are equal in DT and BT. This invari- 
ance confirms the relative robustness of these parameters 
describing COP excursions despite different experimen- 
tal conditions. Peculiarities are unfolded among the other 
variable blocks. Conspicuously, the indices length and 
turns (which is the normalized length) point out to create 
different meanings in DT and BT. Whereas in quiet 
stance both variables generate complementary informa- 
tion and build a separate component, they tend to act 
independently in DT and group with different parameters. 
Again, robust measures are associated with beta and std 
beta, which are invariant towards DT and BT. Baseline 
conditions in dual task experiments cannot be created 
without complications [1]. COP parameters are strongly 
dependant on initial conditions, e.g. instructions given to 
the subjects leading to different foci of attention [37]. 
The experimental design of the present study challenges 
this problem. Within the DT runs subjects were naïve on 
the experimental purpose. Hence, they were oblivious of 
being measured, so that an automatization of postural 
control mechanisms during solving of the test can be  
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assumed as attention was distracted. This approach is 
therefore useful for proper standardization of posture- 
cognition dual task conditions. 

4.3. Classification of Parameters 

Classifying posturographic variables by means of data 
reduction methods has been shown by others yet [6-8,21]. 
The present study differs from the aforementioned inves- 
tigations with respect to the application of a dual task de- 
sign under different recording times. There exists agree- 
ment on that different posture-cognition dual task meth- 
odologies could lead to different postural performances. 
The theory is based on the limitation of processing ca- 
pacity and the influence of conflicting sensory inputs. It 
is widely accepted that a certain amount of attention is 
required to maintain a stable upright posture [4]. Hence, 
the creation of an additional attentional focus generates 
an interference of processing orders and could constrain 
postural control resources. Evidence has risen from dif- 
ferent points of view. First, reaction time to sensory sti- 
muli seems to be dependent on the difficulty of the pos- 
tural task and proofs therefore indirectly the impact of at- 
tentional influences on postural processing resources [38, 
39]. Second, it is demonstrated by some authors that 
sway dynamics are affected by additional cognitive tasks 
in healthy adults, whereas there is some debate whether 
more difficult tasks lead to more altered COP excursions 
(e.g. [9,13,40]). The present study confirms these find- 
ings as a different loading pattern in DT in opposition to 
BT of a variety of posturographic parameters appears. 
Furthermore, we point out that pattern is inconsistent 
within the 2-dimensional and nonlinear measures and that 
a change of loading structure with longer sampling dura- 
tions is observable. Longer recording times obviously 
have better discriminative power in DT than shorter ones 
especially concerning nonlinear parameters [22]. Hence 
we recommend the usage of longer sampling durations 
(300 s) and refer to these parametrization sets and therein 
13 descriptors as a framework for further research. At this 
juncture, pattern generated by nonlinear variable groups 
proves to be complex. To create a trustful set cumWT 
and an entropy value should be included [22]. Here, we 
could not find a consistent pattern for nonlinear parame- 
ters which may be interpreted as a highly sensitive pat- 
tern depending on specific postural tasks and recording 
times. 

5. CONCLUSIONS 

5.1. Dual Task Paradigm 

Equal to the BT condition (part I) four 1-dimensional 
parameters explaining time domain and frequency do- 
main in AP and ML should be chosen: 1) time domain  

AP; 2) time domain ML; 3) frequency domain AP; 4) 
frequency domain ML. In the 2-dimensional group we 
suggest three parameters. Variables of COP elongation 
and area are split into two components. We suggest to 
take either both COP length and the normalized length 
(turns) or to implement two different area values: 5) 
global alignment of the COP; 6) and 7) length or area 
measures. Nonlinear values should comprise; 8) irregu- 
larity parameter ML; 9) irregularity parameter ML of the 
increment time series; 10) nonlinear multitimescale pa- 
rameter ML; 11) irregularity parameter AP; 12) irregu- 
larity parameter AP of the increment time series; 13) and 
a nonlinear multi-time scale parameter AP. Concerning 
these outcomes a caveat has to be made. As secondary 
tasks comprise a manifold field, different secondary tasks, 
which should distract the subject’s attention from pos- 
tural control, could lead to different parametrization pat- 
tern. 

5.2. Further Aspects 

Beside other studies implementing data reduction meth- 
ods [6,8], both parts of this study constitute a first step to 
evaluate the structure of parametrization in posturogra- 
phy. Evidence is provided that performance in postural 
control cannot be accomplished by a single parameter, 
however, a set of parameters is needed. This finding illu- 
strates the complex sensorimotor function of stance con- 
trol. We depicted which parameters could deliver diffe- 
rent insights into this process. Furthermore, we demon- 
strated that different foci of attention (BT and DT) lead 
to different sensitivities of the parameters. As a cones- 
quence the question arises as to which extent the para- 
meter sets could be transferred to other experimental 
conditions or different cohorts (e.g. patients). Concerning 
the utility of longer sampling durations some conflicting 
aspects have to be discussed. The longer COP motion is 
recorded the more specific information content can be 
readout (especially when nonlinear or frequency analysis 
are conducted) [22]. However, within longer sampling 
duration physiological processes like adaptation, habi- 
tuation and fatigue carry more weight [e.g. 41]. Hence, 
there exists an optimum for postural control mapping. 
Moreover, this optimal trend would be different within 
subjects whose tolerance to e.g. fatigue is altered. Para- 
metrization in posturography could deal nevertheless, as 
a multivariate fingerprint of postural control. This would 
render the application of various stabilometric univariate 
tests unnecessary. However, dynamic postural control con- 
ditions, which are often used in e.g. clinical tests, differ 
from static quiet stance situations [42] and hence con- 
figurations of parameter sets could be modified. As with- 
in additive secondary tasks, an unstable support surface 
demands more processing from the subject which could  
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lead to capacity problems [43]. Just in subjects with lim- 
ited information capacity (e.g. Parkinson disease pa- 
tients), a change in parameter loading pattern could be 
observed within even shorter sampling durations. 

As in the present study parameters were previously 
classified, we do not account for the interaction between 
the variable groups. This has to be elucidated in further 
investigations. 
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