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ABSTRACT 

In this paper, we derive a new method for estimating the parameters of the K distribution when a limited number of 
samples are available. The method is based on an approximation of the Bessel function of the second kind that reduces 
the complexity of the estimation formulas in comparison to those used by the maximum likelihood algorithm. The pro- 
posed method has better performance in comparison with existing methods of the same complexity giving a lower mean 
squared error when the number of samples used for the estimation is relatively low.  
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1. Introduction 

The estimation of the parameters of a distribution with a 
limited number of samples available is usually a chal- 
lenging task. A reduced number of samples constrains 
the use of the method of moments (MoM) which despite 
having low complexity has relatively low performance 
due to its high dependency on the sample size. Prior in [1] 
presented a study of the minimum number of samples 
required for the estimation of the K distribution parame- 
ters estimators using moments. Estimators with smaller 
variance based also on moments are usually preferred, 
though the one based on the maximum likelihood (ML) 
method is generally the method of choice. Despite the 
fact that ML estimators are optimal, in some cases they 
require either the evaluation of uncommon functions or 
the solution of non-linear equations when no closed-form 
expressions of them exist. 

The K distribution is one of those distributions for 
which closed-form expressions for all of its ML parame- 
ters estimators are not known. The distribution is well 
known in the radar and sonar community where it has 
been used to model sea clutter, reverberation and land 
clutter in synthetic aperture radar ([2-5]). It was intro- 
duced by Jakeman and Pusey in [3] for the estimation of 
the magnitude of scattered radiation. Its extension to a 
zero-mean symmetric distribution defined over positive 
and negative values, i.e. double-sided, can easily follow 
from their derivation [6] and it is given by  
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with 1, 0b    . Furthermore, it has been shown that 
the distribution is generated by X Y Z  where Y is a 
zero mean Gaussian random variable with variance b2 
and Z is gamma distributed with parameters  1, 2   
[5]. 

Different types of estimators for the K distribution 
have been proposed that try to overcome the high vari- 
ance of the MoM and the difficulty in finding ML esti- 
mates. Iskander et al. in [7] propose the use of fractional 
moments which they show produce estimates with lower 
variance than the MoM. The authors in [8] and [9] pro- 
pose the use of logarithmic estimators. ML estimates for 
a limited range of   were presented by Raghavan in 
[10] based on an approximation of the K distribution us- 
ing the Gamma distribution. Abraham and Lyons in [11] 
rely on the MoM with bootstrap to find a better estima- 
tor for the shape parameter. The same authors in [12] 
present an estimator of the shape parameter applied to 
sonar using a Bayesian adaptation of the MoM with ana- 
lytical approximations using the gamma distribution 
(Bayes-MoM-AA), using the bootstrap techniques (BB) 
and a mixed one with their corresponding performances 
and trade offs. 

Different extensions of the K distribution have been 
proposed on the literature which have resulted on more 
tractable expressions for the parameter estimators. Hruska 
et al. in [13] present estimators for the Homo-dyned K 
distribution based on the different moments of the distri- 
bution. Iskander and Zoubir in [14] introduce a general- 
ized version of the distribution that the authors named as 
the Generalized Bessel K distribution (GBK) thanks to 
which in [7] they were able to find a ML closed-form  *Corresponding author. 
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expression for the parameter b of the K distribution in 
terms of  . The distribution results from a generalized 
Gamma random variable with scale parameter that is also 
generalized Gamma distributed. The probability density 
function (pdf) is given by  
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with 1 2, , ,c    
   ; ,GBK

X X

. It is understood that  
1 2 , ,GBKf x f x c   . The double-sided K dis- 

tribution can be derived from the GBK as  

   1
;1 2, 1,2 ,2 .

2
GBK

X Xf x f x b      (3) 

Other methods rely heavily on numerical methods to 
find the parameters estimates. They make use of iterative 
methods such as the Expectation-Maximization as in [15] 
and [16], 2-D maximizations as in [17], neural networks 
as in [8] and [18] or non-linear techniques, among others. 
These methods are robust albeit computationally expen- 
sive, which make real time applications infeasible. 

In this paper we derive an estimator that retains the 
simplicity of the method of moments with comparable 
computational requirements but has better performance 
when a small number of samples are available. The me- 
thod is compared with other methods of the same com-
plexity through simulations.   

The rest of the paper is organized as follows: In Sec- 
tion 2 we review some of the existing estimation me- 
thods. In Section 3, the derivation of the new estimation 
method is presented. Section 4 presents simulation re- 
sults. Finally, Section 5 presents some conclusions. 

2. Parameter Estimation Review 

In this section we briefly review some of the estimators 
that have been proposed for the K distribution, which 
will be compared with our proposed method in a later 
section. Specifically, we proceed to find the estimators 
for the two parameters   and b that define the double- 
sided distribution. 

2.1. Method of Moments 

The method of moments (MoM) computes the parame- 
ters of a distribution by finding expressions in terms of 
its moments. The moments are then replaced by their 
corresponding empirical ones computed from the sample 
set. 

The moments of a K distributed random variable X are 
defined as  and they are computed as fol- 
lows:  
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We notice that whenever k is an odd integer  
0kE X     and when k is an even integer the moments 

are given by  
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Then, it follows that the second moment (the variance 
for zero-mean distributions) is given by  
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and the fourth moment by  
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Thus, the kurtosis which is defined as 2
2 4 2    is 

given by  
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It follows that the estimators of   and b are found to 
be  
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respectively, where 2̂  is the second empirical moment 
of the data and ̂  is the empirical kurtosis. 

The estimators are computationally inexpensive and 
easy to implement but they depend heavily on the num- 
ber of samples available. A small sample set causes the 
variance of the estimator to increase to levels that make 
the estimation unreliable as it is seen on Figure 1. The 
figure shows MoM estimates and their variances for pa- 
rameters 0.5   and 0.02b   over 5000 independent 
trials as a function of the sample size. 

2.2. Fractional Moments 

Iskander in [19] noticed that fractional moments produce 
estimates with lower variances. His method proposes the 

se of the ratio:  u 
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Figure 1. Parameter estimation (MoM)   = 0.5, b = 0.02. 
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which in the case of the type of K distribution studied 
here comes with the restriction . Replacing the 
expression with the moments formula given in (4), ap- 
plying the properties of the gamma function and after 
some simplifications, we find that the expression for the 
double-sided K distribution turns out to be  

1p 

 

 

 

,1

1 2 2
1 π 1

2 2
,

1 1 2 2
1 1

2 2 2 2

1 1
2

,
1

p

p p

p p

p
p

 


 





             
   
                    

      
    
 




  (8) 

which is independent of b. Then, the parameter   can 
be easily estimated using the corresponding empirical 
ratio, namely  
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The value of b can be estimated using the empirical 
second moment or any other moment since they establish 
a relation between b and  . 

2.3.  logrX X  Estimation 

Blacknell and Tough in [9] proposed an estimator of   
based on  logrX X  which gives a comparable accu- 
racy with the fractional moments estimators among oth- 

ers. They noticed that setting  leads to simple ex- 
pressions for the estimator of 

1r 
  of the one-sided K dis- 

tribution. We proceed with the derivation of the estimate 
that corresponds to the double-sided K distribution. This 
derivation follows the one given in [9], though in this 
case it is easily seen that setting  gives an estimate 
that does not have 

2r 
  as an argument of any    ,     

or any other exotic function. We also notice that the dis- 
tribution is zero-mean and symmetric around the mean, 
therefore it makes sense to work with the absolute values 
since the logarithm of negatives values is not defined. 

Now,  

 

       

   2

1
2 1

2 2
,

π 1

log log ,
2 2

1 1
log og 4

2 2

1 .

r r

r

r

r r

r r
b

E X

E X b

r
E X X E X b



 



         
        

      

              

    
 

1 1

l

2

r

r





 



(10) 

Setting r = 2 in the previous results we evaluate the 
following expression:  
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since     1
1 1 1
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The estimate ̂  is obtained by replacing the expected 
values by their corresponding empirical estimates. 

2.4. Maximum Likelihood Estimation 

Maximum Likelihood (ML) estimation is one of the most 
reliable estimator even when only a limited number of 
samples exist. Also, the ML estimator is asymptotically 
unbiased and it attains the Cramer-Rao lower bound as- 
ymptotically better than any other unbiased estimator. 
Though the ML estimator performs better than other 
methods, its high complexity prevents its use when li- 
mited computational capabilities are available.  

The ML estimator results from the maximization of 
the likelihood or the log-likelihood function, whichever 
gives a more tractable expression. In the case of the K 
distribution the log-likelihood l is preferred and it is 
given by  
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The parameters estimators are obtained by maximizing 
the log-likelihood function, but it is evident from its 
partial derivatives  
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and  
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that finding closed-form solutions for both parameters is 
a difficult task. In fact, closed-form expressions cannot 
be directly obtained from them [7,9,10,15,17]. 

Iskander et al. in [7] derived a closed-form expression 
for one of the parameters by first finding an expression 
for the parameter   from the generalized Bessel K dis- 
tribution  
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where     is the digamma function. The parameter b 
of the double-sided K distribution can easily be obtained 
following the relationship given in (3). Replacing the 
corresponding values    1 2, , , 1 2, 1, 2 , 2c b     , it 
follows that  
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which turns out to be a non-linear function of  . The 
authors also found from the maximization of the likely- 
hood function that  
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where  
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(19) 

for the generalized Gamma distribution. The maximum 
likelihood estimates can then be found using the expres- 
sions just presented and the equivalence in (3) for the 
double-sided K distribution. Although there exists a 
closed-form expression for one of the parameters, we are 
still required to use computationally intensive methods to 
find both parameters estimates. 

In [7] the maximum likelihood estimates are found 
using a cubic spline interpolation. In [15] the iterative 
method known as the Expectation-Maximization is em- 
ployed. Finally in [8] and [20] neural networks are used. 
This has lead us to investigate a new estimate that retains 
the simplicity of the estimators previously presented 
which yields accurate estimates when we only have ac- 
cess to small sample sets of the process.  

2.5. Cramer-Rao Lower Bound 

The Cramer-Rao lower bound (CRLB) gives a bound on 

Copyright © 2012 SciRes.                                                                                 JSIP 



A Low Sample Size Estimator for K Distributed Noise 297

the performance of an estimator. Specifically, it tells us 
about the minimum value that the variance of an unbi- 
ased estimator can achieve. In other words,  

   CRB ,var              (20) 

where   is the estimator. 
The CRLB is given by  

   2

1 2CRB , , , ; ,NE l x x x     
      (21) 

where  is the log-likelihood function. Deriving a 
closed-form expression of the CRLB for the K distribu- 
tion would be a daunting task but for specific parameters 
of the distribution. Kay and Hu in [21] have also pro- 
posed a method to compute the bound using the charac- 
teristic equation. For the purpose of comparing the dif- 
ferent estimation methods we proceed to evaluate the 
CRLB numerically. 

 l 

3. New Estimator 

We propose an approximate method that leads us to a 
more tractable expression for the estimation of the K dis- 
tribution parameters. This approximation turns out to 
have better performance than others for a low number of 
samples. 

We now proceed to derive estimators that have as a 
starting point an expression found in [7] that results from 
the maximization of the log-likelihood of the GBK dis- 
tribution. The authors found that maximizing the log- 
likelihood gives the following expression:  
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where  
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(23) 
Since standalone expressions derived from the previ- 

ous equations are not known, using numerical methods as 
in [7] are the only methods to find the estimators. 

We notice that the presence of the modified Bessel 
function of the second kind,  adds complexity to 
the derivation of estimators. Thus, it is more convenient 
to express  in terms of well known functions 
since it eases the burden of finding the estimators. 

 gK 

 gK 

Now, it follows that for a large argument the modified 
Bessel function K can be approximated by [22]  
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An expression for the estimator of b for the double- 
sided distribution can be obtained by first using the 
equivalence defined in (3) and the approximation (24) in 
(23). It follows that  
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Now, let  1
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holds whenever  f   is a monotonic function. Then, 
assuming that only a small fraction of the data does not 
satisfy the condition ix b  and using (25) on (22) we 
have that  
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which holds since the log function is monotonic. 
It is now easy to show in a few steps that the estimator 

of b is given by  
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The expression for  just derived does not depend on b̂
 , it is computationally inexpensive and it can be im- 
plemented using a fairly simple architecture. 

The parameter   can be easily estimated from any of 
the moments and the estimate of b just derived. One of 
the options is to use the second moment as follows:  

2
2

ˆ
ˆ 1.

b̂

                   (28) 

b          (24) 
The estimators assume that the ix ’s values that are 
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larger than b outnumber those that are not, because this 
ensures that the actual value of the K function is mostly 
dominated by the approximation (24). On the one hand, 
if b is infinitesimally small the condition is easily met 
since almost all ix  are larger than it. On the other hand, 
if b is large, our estimators still perform well whenever N 
is small since only a fraction of the ix ’s would be 
smaller than b and the approximation holds. 

Estimator Bias 

The bias of the estimator is given by  ˆ ˆbias b E b b    . 
Now,  
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Then, the bias is given by  
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The asymptotic bias can be computed from the previ- 
ous expression as  
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where it can be easily seen that  ˆlim bias 0N b   only  

when 0  . Therefore, the estimator just derived is not 
unbiased or asymptotically unbiased, except for 0  . 

The accuracy of the estimator can be improved by sub- 
tracting the bias from the estimator. However, by doing 
so we end up with the same situation as before, even 
though without the modified Bessel function of the sec- 
ond kind. This is because the bias of b depends on the 
value of  . Therefore, in order to find the estimates we 

will need an iterative process to find the values which 
increases the computational requirements of the estima- 
tors. 

In the next section the performance of this estimator 
and the ones described on the previous section are quan- 
tified. 

4. Simulation Results 

A series of Monte Carlo simulations were carried out to 
evaluate the performance of the estimators. The estima- 
tion methods were applied over 5000 realizations of a K 
distributed process and their performances were analyzed 
using as a measure the mean-square error. For compare- 
son, a maximum likelihood was computed using a one- 
dimensional search for the parameter   with (17) sub- 
stituting the corresponding value in (19). Also, the Cra- 
mer-Rao lower bound (CRLB) was evaluated numeri-
cally to compare it with the others estimators. 

We first analyze the performance of the estimators in 
terms of the number of samples available. The analyses 
are constrained to take on parameters with small values, 

3   and 10b   which does not limit its applicability 
since most of the known processes fall within those 
ranges. Figures 2 and 3 show some of the results for a K 
distributed random process with parameters 0.5  , 

0.02b   and 0.2  

0

, . Comparing with the 
other methods, our estimator outperforms them whenever 
N is small, 

0.8b 

50N   for the cases shown here. We no- 
tice that when N is large, the performance of our estima- 
tor does not improve as the other methods do, being out- 
performed by them. This is not an unexpected result 
since our estimator is based on an approximation that 
does not guarantee the asymptotic unbiasedness of the 
estimator for all values of  . We also notice that for 
small N our estimator performs similar to the maximum 
likelihood estimator with some values giving a slightly 
better performance due to the inaccuracies of the one- 
dimensional search that depends on the choices of the 
grid spacing. 

The behavior of the estimators in terms of   for the 
range −1 to 1.5 is also analyzed. We present here simula- 
tion results with 0.02b   and N = 32, 64, 128, 256, 512. 
Figures 4, 5 and 6 show the estimators when N = 32, 64, 
128. The results confirm that our estimators are more 
consistent and perform better than the others except for 

0.5   , where the fractional MoM and the logx x  
perform slightly better. The simulations show that our 
method performs quite well for parameters 10b   and 

3  . This does not limit the scope of the estimator 
since there is a wide range of K distributed processes 
with parameters inside that range. The proposed estima- 
tor together with the maximum likelihood estimator 
(MLE) are the ones whose mean-squared error is closer    
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Figure 2. MSE estimators comparison:   = 0.5, b = 0.02. (a) Estimators of b; (b) Estimators of  . 
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Figure 3. MSE estimators comparison:   = −0.2, b = 0.8. (a) Estimators of b; (b) Estimators of  . 
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Figure 4. MSE estimator comparison: N = 32, b = 0.02. (a) Estimators of b; (b) Estimators of  . 
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Figure 5. MSE estimator comparison: N = 64, b = 0.02. (a) Estimators of b; (b) Estimators of  . 
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Figure 6. MSE estimator comparison: N = 128, b = 0.02. (a) Estimators of b; (b) Estimators of  .  
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to the CRLB when N is small. In general, the MLE is 
closer to the CRLB for all values of N. 

The performance of the other estimators improves as 
the number of samples available for the estimation in- 
creases, as it is seen on Figure 7 for N = 256. Specially 
the logX X  outperforms the rest but for some values 
in which our estimators still outperform them. 

In [9], it was argued that the estimator based on 
log

r
x x  comes as a natural limit of the fractional mo- 

ments estimator of [19], this turns out to be true when the 
number of samples N is large, where how large N should 
be depends on the parameters   and b, but not when N 
is small as it is shown in the figures. The results confirm 
that the proposed estimator outperforms other estimators 
that are comparable in terms of complexity and computa- 
tional requirements. 

5. Computational Complexity 

In this section we present an analysis of the computa- 
tional complexities of the estimators presented in the 
previous sections. Specifically, we focus on the analysis 
for the estimators of the parameter   referring to the 
expressions given in (6), (9), (12), (17), (18), (19), (27) 
and (28). 

The evaluation of the estimators is straight forward 
except in the case of the MLE estimator which, as we 
mentioned before, needs to be evaluated through a one- 
dimensional search. We use an iterative method to solve 
the one-dimensional search where a set of values is ap- 
plied to the respective equations until the one that better 
satisfies the equations is found. Specifically, the MLE 
estimator is computed with the following algorithm:  
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If q ≈ 0 then 
Return   

end if 
end for 
where V is the set of all points that form the grid over 
which the one-dimensional search is done and    is 
equal to (19). Let V  be the average number of itera- 
tions the algorithm needs to compute the estimate 

N
 , 

then the number of operations is given by V iN N  
where i  is the number of operations per iteration. The 
value of  depends on the grid size and its spacing. 

Limiting the range of values where to search would 
greatly reduce the grid size, otherwise, V  could be too 
large to be implemented on real time applications. 

N
NV

N

Table 1 summarizes the number of operations that 
each estimation method requires. In the case of the MLE 
estimator the table shows the number of operations per 
iteration. In the following analysis we ignore the com- 
plexity that the evaluation of the digamma function, ex- 
ponential function and the square root requires since if 
they are evaluated in an estimator, they are only done 
once. In the case of the absolute value, the implementa- 
tion only requires a check on the sign so overall in com- 
parison with operations such as multiplications and addi- 
tions its contribution to the computational complexity 
can be ignored. We also notice that any quantity raised to 
the second power is simply a multiplication with itself. 
Therefore the analysis reduces to the quantification of 
additions, multiplications, divisions, the evaluation of 
logarithm and the modified Bessel function of the second 
kind  K  . 

The modified Bessel function of the second kind is 
given by  

     
 

π

2 sin π
,

I z I
K 

 
 

 
z          (31) 

where  I z  can be expressed as [23]  

   
 

 
 

2

1 1

2
1 .

1

m

m k

z z
I z

k k



  



 

 
  
    


2

     (32) 

The evaluation of  K   can be conducted using a 
forward recurrence following the method described in 
[23], but for the matter of quantifying its computational 
complexity we truncate the infinite series (32) to some 

sN  that defines the accuracy of the computed value. 
Then, the truncated series is given by  
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The number of operations that contributes largely to 
the evaluation of  K   using the truncated series is 
shown in Table 2. 

Now, we can quantify the complexity of the estimators 
in terms of basic operations such as additions , 
multiplications , divisions  as it is summarize in 
Table 3. 


 

The highest complexity is due to the number of multi-
plications and divisions. Therefore we quantified the 
computational complexity in terms of both operations. In 
terms of multiplications, the complexity for the MLE is 
given by   max ,VN N N s  and for the rest of the 
estimators including the new method is given by  N . 
In terms of divisions, the complexity of the MLE is    



A Low Sample Size Estimator for K Distributed Noise 305

 

 

Figure 7. MSE estimator comparison: N = 256, b = 0.02. (a) Estimators of b; (b) Estimators of  . 
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Table 1. Number of operations of estimators. 

Number of Operations 
Operation 

Moments Fractional logrX X  MLE per iter. New 

Addition 2 1N   3 5N   3 4N   6 3N   3 1N   

Mult. 2 1N   3 2N   2N   2N 4  1N   

Division 3 6 5 2 4N   3 

Log   N 2 1N   N 

 K      3N   

Abs   N N N 

Exponent    1  

  1 1 1   

Digamma    1  

 
Table 2. Number of operations of a truncated modified 
Bessel function of the second kind. 

Operation Number of Operations 

Addition 4 1sN   

Multiplication 2 5sN   

Division 2 6sN   

 
Table 3. Complexity of estimators. 

Algorithm Number of Operations Complexity ( ), 

MoM    2 1 2 1 3N N          , 1N   

Fractional Mo.    3 5 3 2 6N N          , 1N   

logrX X     3 4 2 5N N          , 1N   

MLE 

 
 
  

6 3 2

2 6

2 6

V s

s

s

N N N

N N

N N

 

  

  







   max ,VN N N s

New Method    3 1 1 3N N          , 1N   

 
 max ,VN N N

 1
s  and for the new and other estima- 

tors is . 
The new method has been proved to have a computa- 

tional complexity that is comparable with estimators 
based on moments but low in comparison with the MLE. 

6. Conclusion 

In this paper we have derived a new estimation method 
for the K distribution. The method provides an improved 
performance over existing techniques when only a li- 
mited number of samples is available. It has been shown 
through Monte Carlo simulations that the method pro- 
duces estimates with smaller variance than others while 

maintaining their simplicity and computational require- 
ments low. The performance of the proposed estimator is 
comparable to the maximum-likelihood without the com- 
plexity that this one requires. 

7. Acknowledgements 

We would like to thank the Intel Corporation for funding 
this research work. 

REFERENCES 
[1] M. K. Prior, “Estimation of K-Distribution Shape Pa-

rameter from Sonar Data: Sample Size limitations,” IEEE 
Journal of Oceanic Engineering, Vol. 34, No. 1, 2009, pp. 
45-50. doi:10.1109/JOE.2008.2008040 

[2] C. J. Baker, “K-Distributed Coherent Sea Clutter,” IEEE 
Proceedings F Radar and Signal Processing, Vol. 138, 
No. 2, 1991, pp. 89-92. doi:10.1049/ip-f-2.1991.0014 

[3] E. Jakeman and P. Pusey, “A Model for Non-Rayleigh 
Sea Echo,” IEEE Transactions on Antennas and Propa-
gation, Vol. 24, No. 6, 1976, pp. 806-814.  
doi:10.1109/TAP.1976.1141451 

[4] C. J. Oliver, “Optimum Texture Estimators for SAR 
Clutter,” Journal of Physics D: Applied Physics, Vol. 26, 
No. 11, 1993, p. 1824.  
http://stacks.iop.org/0022-3727/26/i=11/a=002=0pt 

[5] D. A. Abraham and A. P. Lyons, “Novel Physical Inter-
pretations of K-Distributed Reverberation,” IEEE Journal 
of Oceanic Engineering, Vol. 27, No. 4, 2002, pp. 800-813.  
doi:10.1109/JOE.2002.804324 

[6] S. Kay, “Representation and Generation of Non-Gaussian 
Wide-Sense Stationary Random Processes with Arbitrary 
PSDs and a Class of PDFs,” IEEE Transactions on Signal 
Processing, Vol. 58, No. 7, 2010, pp. 3448-3458.  
doi:10.1109/TSP.2010.2046437 

[7] D. R. Iskander, A. M. Zoubir and B. Boashash, “A Method 
for Estimating the Parameters of the K Distribution,” 
IEEE Transactions on Signal Processing, Vol. 47, No. 4, 

Copyright © 2012 SciRes.                                                                                 JSIP 



A Low Sample Size Estimator for K Distributed Noise 307

1999, pp. 1147-1151. doi:10.1109/78.752614 

[8] M. Jahangir, D. Blacknell and R. G. White, “Accurate 
Approximation to the Optimum Parameter Estimate for 
K-Distributed Clutter,” IEEE Proceedings—Radar, Sonar 
and Navigation, Vol. 143, No. 6, 1996, pp. 383-390.  
doi:10.1049/ip-rsn:19960842 

[9] D. Blacknell and R. J. A. Tough, “Parameter Estimation 
for the K-Distribution Based on [z log(z)],” IEEE Pro-
ceedings—Radar, Sonar and Navigation, Vol. 148, No. 6, 
2001, pp. 309-312. doi:10.1049/ip-rsn:20010720 

[10] R. S. Raghavan, “A Method for Estimating Parameters of 
K-Distributed Clutter,” IEEE Transactions on Aerospace 
and Electronic Systems, Vol. 27, No. 2, 1991, pp. 238-246.  
doi:10.1109/7.78298 

[11] D. A. Abraham and A. P. Lyons, “Bootstrapped K-Dis-
tribution Parameter Estimation,” OCEANS 2006, Boston, 
18-21 September 2006, pp. 1-6.  
doi:10.1109/OCEANS.2006.306983 

[12] D. A. Abraham and A. P. Lyons, “Reliable Methods for 
Estimating the K-Distribution Shape Parameter,” IEEE 
Journal of Oceanic Engineering, Vol. 35, No. 2, 2010, pp. 
288-302. doi:10.1109/JOE.2009.2025645 

[13] D. P. Hruska and M. L. Oelze, “Improved Parameter Es-
timates Based on the Homodyned K Distribution,” IEEE 
Transactions on Ultrasonics, Ferroelectrics, and Fre-
quency Control, Vol. 56, No. 11, 2009, pp. 2471-2481.  
doi:10.1109/TUFFC.2009.1334 

[14] D. R. Iskander and A. M. Zoubir, “Estimating the Pa-
rameters of the K-Distribution Using the ML/MOM Ap-
proach,” Proceedings of 1996 IEEE TENCON. Digital 
Signal Processing Applications, Perth, 26-29 November 
1996, pp. 769-774. 

[15] W. J. J. Roberts and S. Furui, “Maximum Likelihood 
Estimation of K-Distribution Parameters via the Expecta-
tion-Maximization Algorithm,” IEEE Transactions on 
Signal Processing, Vol. 48, No. 12, 2000, pp. 3303-3306.  
doi:10.1109/78.886993 

[16] P.-J. Chung, W. J. J. Roberts and J. F. Bohme, “Recursive 

K-Distribution Parameter Estimation,” IEEE Transac-
tions on Signal Processing, Vol. 53, No. 2, 2005, pp. 397- 
402. doi:10.1109/TSP.2004.840811 

[17] I. R. Joughin, D. B. Percival and D. P. Winebrenner, 
“Maximum Likelihood Estimation of K Distribution Pa-
rameters for SAR Data,” IEEE Transactions on Geo-
science and Remote Sensing, Vol. 31, No. 5, 1993, pp. 
989-999. doi:10.1109/36.263769 

[18] A. Mezache and F. Soltani, “A New Approach for Esti-
mating the Parameters of the K-Distribution Using Fuzzy- 
Neural Networks,” IEEE Transactions on Signal Proc-
essing, Vol. 56, No. 11, 2008, pp. 5724-5728.  
doi:10.1109/TSP.2008.929653 

[19] D. R. Iskander and A. M. Zoubir, “Estimation of the Pa-
rameters of the K-Distribution Using Higher Order and 
Fractional Moments [Radar Clutter],” IEEE Transactions 
on Aerospace and Electronic Systems, Vol. 35, No. 4, 
1999, pp. 1453-1457. doi:10.1109/7.805463 

[20] M. P. Wachowiak, R. Smolikova, J. M. Zurada and A. S. 
Elmaghraby, “Estimation of K Distribution Parameters 
Using Neural Networks,” IEEE Transactions on Bio-
medical Engineering, Vol. 49, No. 6, 2002, pp. 617-620.  
doi:10.1109/TBME.2002.1001977 

[21] S. Kay and C. Xu, “CRLB via the Characteristic Function 
with Application to the K-Distribution,” IEEE Transac-
tions on Aerospace and Electronic Systems, Vol. 44, No. 
3, 2008, pp. 1161-1168.  
doi:10.1109/TAES.2008.4655371 

[22] M. Abramowitz and I. A. Stegun, “Handbook of Mathe-
matical Functions: With Formulas, Graphs, and Mathe-
matical Tables,” In: M. Abramowitz and I. A. Stegun, 
Eds., Dover Books on Advanced Mathematics, Dover 
Publications, New York, 1965. 

[23] S.-C. Zhang and J.-M. Jin, “Computation of Special Func- 
tions,” Wiley, New York, 1996.  
http://books.google.com/books?id=ASfvAAAAMAAJ  
=0pt 

 

 

 

Copyright © 2012 SciRes.                                                                                 JSIP 


