
Applied Mathematics, 2010, 1, 124-127 
doi:10.4236/am.2010.12016 Published Online July 2010 (http://www.SciRP.org/journal/am) 

Copyright © 2010 SciRes.                                                                                  AM 

Problem of Determining the Two-Dimensional Absorption 
Coefficient in a Hyperbolic-Type Equation 

Durdimurat K. Durdiev 
Bukhara State University, Bukhara, Uzbekistan 

E-mail: durdiev65@mail.ru 
Received March 25, 2010; revised May 16, 2010; accepted May 29, 2010 

Abstract 
 
The problem of determining the hyperbolic equation coefficient on two variables is considered. Some addi-
tional information is given by the trace of the direct problem solution on the hyperplane x = 0. The theorems 
of local solvability and stability of the solution of the inverse problem are proved. 
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1. Statement of the Problem and the Main 
Results 

 
We consider the generalized Cauchy problem 

2

< 0

( , ) = ( , ),   ( , ) ,  > 0,

             0,
tt xx t

t

u u b x t u x t s x t R s

u

   


 (1) 

where ( )δ x,t  is the two-dimensional Dirac delta func- 

tion, ( )b x,t  is a continuous function, s  is a problem 

parameter, and ( )u x,t,s . We pose the inverse problem 

as follows: it is required to find absorption coefficient 
( )b x,t  if the values of the solution for are known, i.e., if 

the function 

(0 ) ( ) 0 0u ,t,s f t,s ,  t ,  s .            (2) 

Definition. A function ( )b x,t  such that the solution of 

problem (1) corresponding to this function satisfies rela-
tion (2) is called a solution of inverse problem (1), (2). 

The inverse problem posed in this paper is two-dim- 
ensional. For the case where ( , ) ( )b x t b x  the solv-

ability problems for different statements of problems 
close to (1), (2) were studied in [1] (Chapter 2) and [2] 
(Chapter 1). The solvability problems for multidimen-
sional inverse problems were considered in [2] (Chapter 
3), [3,4], where the local existence theorems were proved 
in the class of functions smooth one of the variables and 
analytic in the other variables. In [5], the problems of 
stability and global uniqueness were investigated for 
inverse problem of determining the nonstationary poten-
tial in hyperbolic-type equation. In this paper, we prove 

the local solvability theorem and stability of the solution 
of the inverse problem (1), (2). 

Let 

: {( , ) | 0   }, TQ t s s t T     
Ω : {( , ) | 0 | |   | |},  0T x t x t T x T      , 

1( )t TC Q  is the class of function continuous in s , con-

tinuously differentiable in t , and defined on TQ . We 

let B  denote the set of function )( tx,b  such that 

 ( , )  (Ω )Tb x t C , ( , ) ( , )b x t b x t  . 
Theorem 1. If at a 0T   1( , )  ( )Tf t s C Q  and the 

condition 

1
( 0, )  

2
f s s                 (3) 

is met, then for all 
0 0(0, _ 0),   (1/ 40) ,T T T α   

0α   

( )
4 ( , )

T

'
t C Q

f t s  the solution to the inverse problems (1), 

(2) in the class of function ( , )b x t B  exists and is 

unique. 
Theorem 2. Let the conditions in Theorem 1 hold for 

the functions ( , ),   1,2,kf t s k   and let ( , ),  1,2,kb x t k   

be the solutions to the inverse problems with the data 
( , ),   1,2,kf t s k   respectively. Then the following esti-

mate is valid for 
0 0(0,  ),  ( ( ) T T T  is defined in the 

same way as in proof of the Theorem 1) 

11 2 1 2(Ω ) ( )

4
 ( , ) ( , ) ( , ) ( , )

1-T t TC C Q
b x t b x t f t s f t s

ρ
   , (4) 
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where .
T

T

0

  

 
2. Construction of a System Integral   

Equations for Equivalent Inverse    
Problems 

 
We represent the solution of problem (1) as 

1
( , , ) ( | |) ( , , ).

2
u x t s θ t s x v x t s         (5) 

where 1)( t  for ,0t  ,0)( t  for 0t  , ( ,v x  

, )t s  is a some regular function. 

We substitute the Expression (5) in (1), take into ac-
count that  ( | |) / 2t s x    satisfies (in the generalized 

sense) the equation ( ) ( )tt xxu u δ x δ t s   , and obtain 

the problem for the function v : 

2

,0

1
( , ) ( | |) ( , , ) , 

2

                ( , )  ,   0,

        0. 

tt xx t

t

v v b x t δ t s x v x t s

x t R s

v

       
 



   (6) 

It follows from the d’Alembert formula that the solu-
tion of problem (6) satisfies the integral equation 

Δ( , )

2

1 1
( , , ) ( , )   ( | |) ( , , )

2 2

                ,  ( , )  ,   0,

t

x t

v x t s b ξ τ δ τ s ξ v ξ τ s

dξdτ x t R s

       

 

  

(7) 

where  .,0),(),( txtxxttx    

We use the properties of the  - function and easily ob-
tain the relation in a different form: 

( )

2

( )

2

( , , )

1
( , , ) ( , )

4

1
                ( , ) ( , , ) ,

2

                ,

x t s

x t s

t

Υ x t s

v x t s b ξ s ξ dξ

b ξ τ v ξ τ s dτdξ

t s x

 

 

 



 



      (8) 

where the domain ( , , )x t s  is defined by 

( )
( , , ) ( , ) ,

2

                    , 0 , .
2

x t s
x t s s t x

x t s
s t s const

     



  
     


       


 

By differentiating the equality (8), we obtain 

( )

2

( )

2

1
( , , ) ,

8 2 2

                     ,
2 2

1
( , ) ( , , ) , .

2

t

x t s

t
x t s

x t s x t s
v x t s b

x t s x t s
b

b t x v t x s d t s x    

 

 

         
         

     

 

(9) 

It is obvious that 1
( , ) (0, , ) (0, , ) 

2
f t s u t s v t s    

for 0t  . Moreover, the function ( , )f t s  be must sat-

isfy the condition (9). 
We set 0x   in the equality (9), use the fact that the 

function ( , )b x t  is even in x , and obtain the relation 

   
2

2

1
 ( , ) , 

4 2 2

              , , , , 

               ( , )  .

t

t s

t
t s

T

t s t s
f t s b

b ξ t ξ v ξ t ξ s dξ

t s Q






    
 

  



  

We rewrite this equality, replacing ( ) / 2t s  with 

| |x  and ( ) / 2t s  with t, and solve it for ( , ).b x t  We 

obtain 

 
-

( , ) 4 ( | |, | |) 4 ,  

              ( , | | , | |) ,     | | . 

x

'
t

x

t

b x t f t x t x b ξ t x ξ

v ξ t x ξ t x dξ t x

      

   

 (10) 

Let 

 ( , , ) , 0T x t s x s t T x s t T          

The domain 
T  in the space of the variables , ,x t  

and s  is a pyramid with the base t  and vertex 

(0, , / 2)T T . To find the value of the function b at ( , )x t , 

it is hence necessary to integrate ( , )b x t  over the inter-

val with the endpoints ( | |, )x t  and (| |, )x t  and to 

integrate the function ( , , ) tv x t s over the interval with 

the endpoints ( | |, , | |)x t t x   and (| |, , | |), x t t x  

which belong to the domain 
T . 

One can rewrite the system of Equations (9) and (10) 
in the nonlinear operator form, 

   , A             (11) 

where 
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,

2
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,
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1
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
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The operator A is defined on the set of functions 

 TC   and, according to (9), (10), has the form 

1 2( ,  ),A A A  

where 

 

 

( )

2

1 2 1
( )

2

2

2

2 2

1 2

1
, { ( , )

2

1
,

8 2 2

, } ,
2 2

4 ( | |, | |) 4 ( , )

1
           ( , , ) ,

8

  

x t s

x t s

x

'
t

x

A t x t x

t x s t x s

t x s t x s
d

A f t x t x t x

t x t x x t
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   


   
 

   

   

 

 



    

          
   

  
          

  
 

      

     





  2           , d .x t      

 

At fulfillment of the condition (3) the inverse problem 
(1), (2) is equivalent to the operator Equation (11). 
 
3. Proofs of the Theorems 
 
Define 

    1 2max , .
T TT C C

  


  

Let s be the set of   T T TC      that satisfy 

the following conditions: 

TT
00   , 

where  0
01 02,    (0,  4 ( | |, | |).'

tψ ψ ψ f t x t x     It is obvi-

ously, that 
 

 0
04 ( , )   

T

'
t T TT C Q

f t s Q     . Now we 

can show that if T is small enough, A is a contraction 
mapping operator in S . The local theorem of existence 
and uniqueness then follows immediately from the con-
traction mapping principle. First let us prove that A has 
the first property of a contraction mapping operator, i.e., 
if ,S  then SA   when T is small enough. Let 

S . It is then easy to see that 

.2 0
00  

TTT
 

Furthermore, one has 

 
 

 

 

 
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1
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1
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8 2
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5
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2 8
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1
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8
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x t s

x t s

T

x

x

A t x
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d

A б t x

t x t x x t

x t d
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 
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

 
  

    

   
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
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  

         
 

 

       
 
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20
0 .
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Therefore, if *
01/10T  , then for  0,0 TT   the 

operator A satisfies the condition SA  . Consider 

next the second property of contraction mapping operator 
for A i.e., if     SS  21 ,  , then    11  AA   

   11    with 1 , when T is small enough. 

Let    1 2, .S S    Then one has 

         
 

 

     

   
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






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
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







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


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
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
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    

   

1 2
2 2

1 2
0

,
2 2

5
,

2 T

t x s t x s

T
d

 
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   

 

           
  
  

 

 

        
     

      
        

      
         

   

1 2 1 2
2 2 2 2

1
1

1 (1)
2 2

2 1 2
2 1 1

1 1
2 2

1 1
2 2

1 2
0

4    

,  , , 

1
 ,  ,   

8

 ,   

1
, ,    

8

 ,  ,  

40 . 

x

x

T

A A

t x t x t x

x t x t

t x

t x t x

x t x t

d T

   

   

  

   

   

  

  



  

    
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 
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It follows from the preceding estimates that if 
 00 401T , then for  0,0 TT   the operator A is a 

contraction operator with 0/ TT  on the set S. 

Therefore, the Equation (11) has a unique solution which 
belongs to S according to the contraction mapping prin-

ciple. The solution is the limit of the sequence   n , 

0,1,2,...,n   where         nn A 10 ,0 , and 

the series 

       
 

0

10

n

nn   

converges not slower than the series 

     

Tn

n

T
 


0

010             

We now prove Theorem 2. Since the conditions 
Theorem 1 hold, the solution belong to the set S and 

.2,1,2 0  i
Ti   Let   2,1, kk  be vector 

functions which are the solution of the Equation (11) 
with the data  , , 1,2,kf t s k   respectively, i.e., 

    kk A  
From the previous results in the proof of Theorem 1, it 

follows that 

           1 21 2 1

0 1 2

, , 4 , ,

40 , 1, 2.

k k

QCt T

T

x t s f t s f t s

T k

 

 

  

  
 

Therefore, one has 

    11 21 2 1 24 , ,
T T

t
f t s f t s

QC T
    

  
 

      

The last inequality gives 

    11 21 2

4
, ,

1T
t

f t s f t s
QC T

 


 
  
 

  


  (12) 

The stability estimate (4) follows from the inequality 
(12). 
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