
Intelligent Control and Automation, 2012, 3, 222-228
http://dx.doi.org/10.4236/ica.2012.33025 Published Online August 2012 (http://www.SciRP.org/journal/ica)

Design and Implementation of Electronic Control Trainer
with PIC Microcontroller*

Yousif I. Al Mashhadany
Electrical Engineering Department, Engineering College, University of Anbar, Baghdad, Iraq

Email: yousif_phd@hotmail.com

Received April 26, 2012; revised May 23, 2012; accepted May 30, 2012

ABSTRACT

This paper describes the implementation of a PIC microcontroller in a conventional laboratory-type electronic trainer.
The work comprises software for the PIC and hardware for the software. The PIC controller uses an EasyPIC-6 board
and includes a PC-interfaced programmer for the PIC chip. It has many external modules: 128 × 64 graphic LCD dis-
play, 2 × 16 LCD display, 4 × 4 keypad, and port expander, all in the same bench. The trainer is capable of 36 experi-
ments in logic/analogue electronic and control systems. A 5-sided approximate sensor, two photoelectric sensors
(BR56-DDT-P and BEN9M-TFR), four CMOS, four BCD-7-segment driven by CD4511B, two relays (2-pole and
3-pole), six voltages, ammeter measurement, DC motor, and 24VDC power supply, connect through connectors and
pinions. Results of all the experiments show the trainer satisfying requirements of undergraduate and postgraduate pro-
jects involving conventional electronic and classical control systems.

Keywords: PIC Microcontroller; Photoelectric Sensor; Conventional Electronic Trainer

1. Introduction

Modern microcontroller chips can store hundreds of thou-
sands of transistors each. The first microprocessors had
external peripherals such as memory, input-output lines,
and timers (Matic, 2003). In time came a new device
called integrated circuit (IC), which contains both proc-
essor and peripherals. Also called a microcontroller, this
was the first chip with a microcomputer [1,2].

Peripheral Interface Controller (PIC) is new to elec-
tronics control. Providing complete control in a single
chip, a PIC microcontroller has special function registers,
power on reset, interrupts, user RAM for storing of pro-
gram data, EPROM program memory, timer circuits,
instruction set, low power consumption, and on-board A-
to-D converters. It replaces conventional control of in-
dustrial machinery (e.g., motor-speed control) [2,3].

Microcontroller and microprocessor differ in many
ways. In functionality, a microprocessor needs external
components for receiving/sending data, and memory. A
microcontroller does not need external components be-
cause all the necessary peripherals are built-in, saving
time and space (see Figure 1 for microcontroller set [4-
7]).

The EasyPIC-6 by MikroElektronika (see Figure 2) is
an extraordinary development tool for programming and

experimenting with PIC® microcontrollers. It supports
over 160 MCUs in PIC10, PIC12, PIC16, and PIC18
families, in DIP packages from 8 to 40 pins. The board
comes installed with PIC16F887. An impressive array of
peripherals and expansion connectors are available on-
board, as are optional LCD displays and temperature
sensor [8,9].

An on-board programmer and mikroICD debugger al-
low direct connection to PC via USB cable. Fully func-
tional demo versions of MikroElektronika’s C, Pascal,
and BASIC compilers are included (hex output limited to
2K program words), complete with documentation and
dozens of sample programs. The EasyPIC-6 also includes
an external ICD connector compatible with MPLAB
ICD2 and ICD3, allowing full compatibility with MPL-
AB Integrated Development Environment (IDE) [10,11].

Its main problem is lack of facility for external experi-
ments to be implemented in many undergraduate labora-
tory applications; it is also daunting to beginner design-
ers. This paper presents a practical implementation of
EasyPIC-6-based electronic control trainer able to exe-
cute about 36 experiments, and rearrangement of the
EasyPIC-6 power supply to extend the trainer’s capabil-
ity to AC-DC-current applications.

1.1. Integrated Development Environment (IDE)

The core development tool set operates under the IDE
umbrella called MPLAB. The tools look and feel the same,

*Implement a PIC Microcontroller as trainer at advance control labora-
tory.

Copyright © 2012 SciRes. ICA

Y. I. AL MASHHADANY 223

Figure 1. Microcontroller set [7].

Figure 2. EasyPIC-6 cart by MikroElektronika [11].

so learning of new tool interface is minimized. These are
the development capabilities of the MPLAB IDE:
 Source-code editing;
 Project management;
 Machine-code generation (from assembly or “C”);
 Device simulation;
 Device emulation;
 Device programming.

The comprehensive tool suite allows complete project
development without leaving the MPLAB environment
[12]. The MPLAB IDE software eases software develop-
ment as never before in 8-bit microcontroller. MPLAB is
a Windows application that contains:
o A full-features editor;
o Three operating modes:
 Editor
 Emulator
 Simulator

Copyright © 2012 SciRes. ICA

Y. I. AL MASHHADANY 224

o A project manager;
o Extensive online help;

MPLAB allows
o Editing of source files (ASM and C files);
o One-touch assembly (or compiling) and download to

PIC16/17 tools;
o Debugging via:
 Source files
 Absolute listing file
 Program memory

o Run-up to four emulators on the same PC;
o Run or single-step;
 Program memory
 Source file
 Absolute listing
The microchip simulator, MPLAB-SIM, operates un-

der the same platform as the PICMASTER emulator, so
the user need only learn a single tool set that functions
equally in both the simulator and the full-features emu-
lator [13].

1.2. MPLAB-SIM Simulator Software

The software simulator is a no-cost tool for evaluating
Microchip’s products and designs. Its use greatly helps
debug software, particularly algorithms. Depending on a
project’s design complexity, a time/cost benefit compar-
ing simulator with emulator should be looked into. Pro-
jects with multiple development engineers can keep costs
down by using both simulator and emulator, allowing
speedy debugging of tough problems. MPLAB-SIM Si-
mulator simulates PICmicro series microcontrollers at
instruction level. With any given instruction, the user
may examine or modify any of the data or provide exter-
nal stimulus to any of the pins. The input/output radix
can be set by the user, the execution performed as either
single step, execute until break, or trace. MPLAB-SIM
supports symbolic debugging via MPLAB-C and MPA-
SM. The software simulator’s low-cost flexibility in de-
veloping and debugging code outside laboratory envi-
ronment makes it excellent multi-project development
tool [14,15].

PIC ranges very broadly, from tiny 6-pin 8-bit devices
with just 16 bytes of data memory performing only basic
digital I/O, to 100-pin 32-bit devices with 512 kilobytes
of memory and many integrated peripherals for commu-
nications, data acquisition, and control. Newcomers may
be confused by an aspect of PIC programming: the low-
end devices have entirely separate addresses and data
buses for data and program instructions. 8-bit or 16-bit
refers to the amount of data that can be processed at once,
i.e., the width of the data memory (in microchip termi-
nology, “registers”) and the ALU (Arithmetic and Logic
Unit). Low-end PICs, operating 8-bit data at any one
time, have three architectural families [16,17].

1.2.1. Baseline (12-Bit Instructions)
These PICs are based on the original PIC architecture,
going back to the 1970’s and General Instrument’s “Pe-
ripheral Interface Controller”. They are rather limited,
but within their limits (such as no interrupts) are simple
to work with (particularly in modern assemblers such as
6-pin 10F series, 8-pin 12F509, and 14-pin 16F506).

1.2.2. Midrange (14-Bit Instructions)
An extension of the baseline architecture, it supports in-
terrupts, has more memory and on-chip timers and peri-
pherals, includes PWM (pulse width modulation) for mo-
tor control, supports serial, I2C, and SPI interfaces, and
has LCD controllers. Modern examples include 8-pin
12F629, 20-pin 16F690, and 40-pin 16F887.

1.2.3. High-End (16-Bit Instructions)
Otherwise known as 18F series, this architecture over-
comes some limits of the midrange devices. It has more
memory (up to 128k program memory and almost 4k
data memory) and advanced peripherals (including USB,
Ethernet, and CAN or controller area network) connec-
tivity. The 18F architecture supports C programming and
is, among 8-bit PIC families, the only one with C com-
piler. Examples include 18-pin 18F1220, 28-pin 18F2455,
and 80-pin 18F8520. Maybe a little confusing is that
PIC18F series has 16-bit program instructions operating
on 8-bits of data at a time, and is considered an 8-bit chip
[12,18].

BASIC programming language is known to users as
the easiest and is the most used. The reputation is in-
creasingly transferred onto microcontrollers. PIC BASIC
enables quicker and relatively easier program writing for
PIC microcontrollers, as compared with Microchip’s
assembly language MPASM. During program writing,
the programmer encounters the same problems always:
serial sending of messages, writing of variable on LCD
display, generating of six PWM signals, etc. [16].

Facilitating programming are PIC BASIC’s built-in
commands, which are intended to solve problems typi-
cally found in praxis. Where execution speed and pro-
gram size are concerned, MPASM is less advantaged
than PIC BASIC (therefore giving rise to the possibility
of combining PIC BASIC and assembler). The part of the
program where the same commands are executed many
times or the execution time is critical is usually written in
assembler. Modern microcontrollers such as PIC execute
the instructions in a single cycle lasting 4 tacts of the
oscillator. If the microcontroller oscillator is 4 MHz (one
tact lasts 250 nS), then one assembler instruction requires
250 nS × 4 = 1 uS for the execution. Each BASIC com-
mand is actually a sequence of assembler instructions;
the exact time necessary for execution of a BASIC com-
mand is simply the sum of the times necessary for execu-

Copyright © 2012 SciRes. ICA

Y. I. AL MASHHADANY 225

tion of assembler instructions within one BASIC com-
mand [17,19].

2. Hardware Design of the PIC Trainer
Model

Figure 3 is a laboratory model of the trainer design hard-
ware. The model has three main parts: board for applied
experiments, PIC microcontroller simulator, and inter-
facing board with PC computer. There is also a built-in
power supply.

2.1. Applied Experiments Board

The trainer can execute many experiments: electronic,
control logic circuit, power system, etc. The main circuit
connecting the board in standalone form will hereby be
described. Sensor: the trainer has two types of sensors.
One is an approximate sensor (model TURCK Bi14-cp23
APcx sn: 15 mm) detecting front iron paces with 15 mm
accuracy and is the approximate switch. Another is pho-
toelectric sensors (serial numbers BR56-DDT-P and
BEN9M-TFR). Whereas the former detects interrupts
within 5 m, the latter detects reflection two ways: normal
closed or normal open. Relays: two types are used, i.e.,
two poles and three poles, with 24VDC and 24VDC/5A
supplying the coils. Four 7-segment models are supplied
by 5VDC/2A. Keypads: a matrix of LEDs, with matrix
form through logic gates to run instructions of the (i, j)
form. The matrix instructions are PIC-programmed and
then entered as four rows and four columns. Conveyer
belt: supplied by 5VDC/2A, displaying experiment out-
puts based on sensors or any other processes. DC Motor
(model GMN-3M027A/DC24V): its circuit drive executes
start/stop, opposite direction, and emergency shutdown
instructions; each event is indicated by LEDs with shift
rotating. See Figure 4 for the experiment board.

2.2. PIC Simulator Board and Interfacing

Five input ports (A→E) and two output ports (T0, T1).
The ports transfer instructions and receive sensed signals
from the experiment board. Every input/output signal on
this board is LED-indicated for ON and OFF. The power
supplies are 5VDC, 12VDC, and 24VDC. The PIC si-
mulator is supplied first by the 5VDC and then by the
USB cable through a PC. The experiment software is
installed on-board via USB through the PIC simulator;
another interface is RS232. Figure 5 shows the interfac-
ing board.

3. Software Design of the PIC Trainer

This design uses BASIC language to implement the trai-
ner’s experiments. After the program is written in mikro-
Basic, it is compiled to the PIC. The PC runs the BASIC

Figure 3. The PIC-microcontroller-based conventional elec-
tronic control trainer.

Figure 4. The experiment board.

Figure 5. The interfacing board.

compiler program, which translates the original BASIC
code into the language of 0s and 1s understood by the
microcontroller. Figure 6 shows the translation of a BA-
SIC program into an executive HEX code. The program,
written in PIC BASIC and registered as Program.bas file,
is converted into assembler code (Program.asm), which
is further translated into executive HEX code written to
the microcontroller memory by a programmer (a device
transferring HEX files from the PC to the microcontrol-
ler’s memory). Each experiment has two procedures: one
to write the PIC programming code by software, another

Copyright © 2012 SciRes. ICA

Y. I. AL MASHHADANY

Copyright © 2012 SciRes. ICA

226

Software stage (PC)

BLINK.BAS BLINK.ASM Assembler BLINK.HEX

PIC Compiler converts program
into assembler’s code

Compiler

Assembler converts ASM
code into HEX CODE

Progra
writes

the
micr

mming device
 HEX code into
 memory of

ocontroller

Programming
device

Program translated into HEX
understandable to microcon

 code
troller

Program translated into
assembler’s

Program written in PIC
BASIC language

Figure 6. Details of the PIC trainer software.

to implement the hardware connection.

4. Case Study of the Trainer’s Use

The trainer was designed to implement experiments of
various electrical engineering fields. It is capable of high-
level research projects and can be used in undergraduate
laboratories. Two case studies, for power and electronic,
are presented: DC motor controller and intelligent traffic
light.

Controller for DC Motor: in the experiment, three
main operations (start/stop, control of clockwise and an-
ticlockwise directions, and emergency shutdown) are
applied to a 24VDC motor (see Figure 7 for the drive
circuit of the three operations). A 24VDC one-pole relay
was used. The circuit could be manually controlled and
could also use a PIC microcontroller to operate relay coil
for executing a suitable instruction to the DC motor.

The experiment procedure is:
 Connect the board section (see Figure 8) to the three

external power supplies on-board the microcontroller.
 Connect the other details to the microcontroller’s

output pinnae.
 Write a program for the three experiment parts and

set the program on a PIC chip (any serial, e.g., 16F-

667, 16F84A, etc.) and arrange for port A of the mi-
crocontroller to be the output.

 Feed the emergency inputs sensed by photoelectric
sensor; manual feeding is possible as needed.

 Run the circuit by power ON of the voltage source
and examine the instruction to the DC motor.

 The output must be present as the motor shift rotating
and the corresponding LED lighting up showing the
direction of rotation.

Intelligent Traffic Light: Optimal waiting time for traf-
fic lights to change will reduce carbon monoxide emis-
sion, also save motorists’ time and reduce frustration.
Other advantages are no interference between the sensor
rays and no redundant signal triggering. Ability to inter-
face with software allows this sensor-based traffic system
to easily accept feedback (the software and the hardware
can communicate). Table 1 lists the operation sequences.

The experiment procedure is:
 Connect the section of the board (see Figure 9) to

output ports A and B of the microcontroller board.
 Write a program for the three parts of the experiment

and set the program on the PIC chip (PIC 16F667)
and arrange the output to be at ports A and B of the
microcontroller.

Y. I. AL MASHHADANY 227

DC MOTOR

X1

RELAY
NONC

K

V1
24 V

+ -

X2

RELAY
NONC

K

X3

RELAY
NONC

K

V2
24 V

V3
12 VV4

12 VV5
12 V

J1

Key=
Space

J2

Key=
Space

J3

Key=
Space

LED1 R1

1.0k
R2

1.0k

LED2

Figure 7. The drive circuit in the PIC controller experiment
with the DC motor.

Figure 8. The DC motor section of the experiment.

Figure 9. Traffic light experiment schematic.

 Turn ON the power of the main board and then of the

microcontroller board.
 Record the lighting time and sequence and compare

with the program.

Table 1. Operation sequences of the intelligent traffic light.

No. Time Traffic 1 Traffic 2 Traffic 3 Traffic 4

0 to 10
sec

Green 1 Red 2 Red 3 Red 4

State 1
11 to 15

sec
Yellow 1 Red 2 Red 3 Red 4

16 to 25
sec

Red 1 Green 2 Red 3 Red 4

State 2
31 to 40

sec
Red 1 Yellow 2 Red 3 Red 4

41 to 45
sec

Red 1 Red 2 Green 3 Red 4

State 3
46 to 50

sec
Red 1 Red 2 Yellow 3 Red 4

51 to 60
sec

Red 1 Red 2 Red 3 Green 4

State 4
61 to 65

sec
Red 1 Red 2 Red 3 Yellow 4

66 to 75
sec

Green 1 Red 2 Red 3 Red 4 Return to
State 1
and so
on...

76 to 80
sec

Yellow 1 Red 2 Red 3 Red 4

 Investigate the effect of using photoelectric sensor

signal; can it show what happens at a street intersec-
tion?

5. Conclusions

Results from practical implementation of all the experi-
ments and simulation results from programming the PIC
microcontroller board show the trainer to be very useful
and necessary to many design plans. Its higher perform-
ance, lower cost, higher accuracy, and better speed re-
sponse are all as compared with many types of classical
trainers for electronic and control systems.

Its facilities will shorten the time taken for many de-
sign procedures (where applicable), simulations, and ex-
periments; each can also be an individual system. The
design enables instant initial results and modification of
experiment steps such as setting the initial condition and
updating some of the parameters, so the trainer’s accu-
racy and performance are increased.

The trainer allows practical simulations of many real
systems. Capable of a wide range of experiments, it is
very suitable for use in higher education laboratories.
New experiments can be included by adding new circuits
to the board and rearranging the connections.

6. Acknowledgements

Al Anbar University supported the project through manu-
facturing laboratory instruments funding. Al Sofa office
provided help with consulting notes for the microcon-
troller’s practical application.

Copyright © 2012 SciRes. ICA

Y. I. AL MASHHADANY

Copyright © 2012 SciRes. ICA

228

REFERENCES
[1] N. Barsoum, “Speed Control of the Induction Drive by

Temperature and Light Sensors via PIC,” Transaction in
Controllers and Drives, 2010, pp. 35-59.

[2] M. Bates, “Interfacing PIC Microcontrollers Embedded
Design by Interactive Simulation,” Elsevier, Amsterdam,
2006.

[3] F. J. Diaz, F. J. Azcondo, R. Casanueva and C. Branas,
“Microcontroller Software Applied to Electronic Ballast
Design,” 13th European Conference on Power Electron-
ics and Applications, Barcelona, 8-10 September 2009,
pp. 1-8.

[4] H. W. Huang, “PIC Microcontroller: An Introduction to
Software and Hardware Interfacing,” 2005.
http://www.delmar.com.

[5] J. Main, “Measuring Resistance Using Digital I/O Using
a Microcontroller for Measuring Resistance without Us-
ing an ADC,” 2008.
http://www.best-microcontroller-projects.com

[6] C. Singh and K. Agarwal, “Design of Reactive PIC Mi-
crocontroller,” Proceedings of International Symposium
on Signals, Systems and Electronics, Pilani, 17-20 Sep-
tember 2010, pp. 1-4.

[7] H. Rongen, “Introduction to PIC Microcontroller,” For-
schungszentrum Jülich Zentrallabor für Elektronik, Jülich,
2009.

[8] N. Gardner, “An introduction to Programming the Mi-
crochip PIC in CCS C,” Ccs Inc., Christiansburg, 2002.

[9] B. Hossain, N. Hossain, M. Hossen and H. Rahman, “De-
sign and Development of Microcontroller Based Elec-
tronic Queue Control Systems,” Proceeding of the 2011
IEEE Students’ Technology Symposium, Kharagpur, 14-
16 January 2011, pp. 48-52.
doi:10.1109/TECHSYM.2011.5783862

[10] T. Wilmshurst, “Designing Embedded Systems with PIC
Microcontrollers Principles and Applications,” Elsevier
Ltd., New York, 2007.

[11] N. Matic and G. Maneger, “EasyPIC Microcontroller Board
User Manual,” 2008.

[12] D. Ibrahim, “Advanced PIC Microcontroller Projects in C
from USB to RTOS with the PIC18F Series,” Elsevier,
Amsterdam, 2008.

[13] F. H. Fahmy, S. M. Sadek, N. M. Ahamed, M. B. Zahran,
and A. El-S. A. Nafeh, “Microcontroller-Based Moving
Message Display Powered by Photovoltaic Energy,” In-
ternational Conference on Renewable Energies and Power
Quality, Granada, 23-25 March 2010.
http://www.icrepq.com/icrepq'10/726-Sadek.pdf

[14] Y. Aye, “Design and Construction of LAN Based Car
Traffic Control System,” World Academy of Science, En-
gineering and Technology, Vol. 46, 2010, pp. 586-591.

[15] N. Matic, “BASIC for PIC Microcontrollers,” 2001.
http://scalak.elektroda.eu/html/pliki/BasicforPICMicroco
ntrollers.pdf

[16] F. J. Díaz, F. J. Azcondo, R. Casanueva and Ch. Brañas,
“Microcontroller Software Applied to Electronic Ballast
Design,” University of Cantabria, Cantabria, 2010.

[17] S. C. Hsiung, “The Use of PIC Microcontrollers in Multi-
ple DC Motors Control Applications,” Journal of Indus-
trial Technology, Vol. 23, No. 3, 2007, pp. 2-3.

[18] S. Huseinbegovic and O. Tanovic, “Development of a
Distributed Elevator Control System Based on the Mi-
crocontroller PIC 18F458,” 2010 IEEE Region 8 Interna-
tional Conference on Computational Technologies in Elec-
trical and Electronics Engineering, Irkutsk, 11-15 July
2010, pp. 858-863.

[19] L. D. Jasio, et al., “PIC Microcontrollers,” Elsevier Inc.,
New York, 2008.

http://dx.doi.org/10.1109/TECHSYM.2011.5783862

