
Journal of Software Engineering and Applications, 2012, 5, 639-644
http://dx.doi.org/10.4236/jsea.2012.58074 Published Online August 2012 (http://www.SciRP.org/journal/jsea)

639

Implementing a Personal Software Process (PSPSM)
Course: A Case Study

Sakgasit Ramingwong, Lachana Ramingwong

Department of Computer Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand.
Email: sakgasit@eng.cmu.ac.th, lachana@gmail.com

Received April 5th, 2012; revised May 2nd, 2012; accepted May 13th, 2012

ABSTRACT

In order to remain competitive in software industry, software engineers need to continuously improve their proficiency.
Personal Software Process (PSPSM) provides a strong concept which helps software engineers inspecting and improving
themselves. Yet, when being applied on an undergraduate computer engineering course, several complex mathematical
calculations from PSP official exercises could encumber the performance of students who do not possess adequate
mathematics background. This paper reports a result of implementing PSP course for undergraduate computer engi-
neering students in Chiang Mai University, Thailand.

Keywords: Software Engineering; Personal Software Process; Process Improvement; Case Study

1. Introduction

Personal Software Process (PSPSM) is a software devel-
opment process which focuses on improving quality of
software development in an individual level. It was de-
veloped by Watt S. Humphrey and Software Engineering
Institute, Carnegie Mellon University in 1989 and has
been adopted by a large number of software profession-
als worldwide [1]. PSP utilizes actual historical data of a
software engineer in order to provide precise effort esti-
mation as well as self-propose guidelines which aim to
prevent potential errors and maximize the engineers’
proficiency. Efficiency of implementing PSP is highly
based on each engineer’s discipline and consistency.

An official PSP training course consists of two parts:
PSP fundamental and PSP advanced courses [2,3]. Each
course involves five full days of training. In total, both
courses involve approximately 80 hours of training. The
morning sessions include theories and lectures while the
afternoon session focus on exercise and workshops. Nine
assignments, which comprise eight programming and one
written report, are assigned for the trainees.

Improvement of software development process has
recently become an emerging trend in Thailand. Several
leading universities, such as Naresuan University, Kaset-
sart University and Chiang Mai University, currently
include PSP in their undergraduate and graduate curricu-
lum [4,5]. Generally, each semester of both Thai under-
graduate and graduate study consists of approximately 15
weeks. Chiang Mai University made a first attempt to

implement the official PSP academic material in an un-
dergraduate course in 2010. In order to keep the course
as similar to the official training as possible, the aca-
demic materials were minimally adjusted. Nevertheless,
several difficult issues surfaced during the course. One of
the strongest feedbacks from the students was some ex-
ercises were too difficult. As a result, several students
were demotivated, causing them unable to keep up with
the subsequent exercises. This left rooms for improve-
ment for forthcoming course implementation.

The second section of this paper describes overview of
PSP. Then, a case study of attempting to implement the
official PSP material in a Thai undergraduate course is
described in the third section. The fourth section high-
lights challenges encountered from the course as well as
possible solutions. Finally, the fifth section concludes the
paper.

2. PSP Overview

PSP is a structured guideline for personal software de-
velopment process. It aims to assist software engineers to
study themselves and encouraging them to make changes
as appropriate. PSP measures size, time, defects and de-
velopment processes and collect them as historical data.
The developers are required to manually enter these data
into a provided student workbook. Then, these data are
subsequently used for forecasting of effort needs for new
projects. The accuracy and efficiency of the estimation
are heavily depended on consistency of the software en-

Copyright © 2012 SciRes. JSEA

Implementing a Personal Software Process (PSPSM) Course: A Case Study 640

gineer.
Software Engineering Institute (SEI) officially pro-

vides two PSP training courses. Firstly, PSP fundamen-
tals training includes principles of PSP, introducing of
PSP processes, templates, and data collection. Four pro-
gramming assignments are given to the trainees. At the
end of the course, the trainee should be familiarized with
PSP process and templates. Then, PSP advanced involves
introduction of formal designs, further data collection and
higher level of data interpretation. Three programming
projects are assigned. Additionally, one written self-as-
sessment report based on PSP data from all projects is
given at the end of the course. Details of PSP assign-
ments on both official courses are illustrated in Table 1.

The accuracy of both time and size estimation of the
trainees is likely to increase [1]. This is due to the grow-
ing amount of their historical data, as long as the engi-
neers are consistent with their performance.

3. A Case Study on Implementing Official
PSP Course in Thailand

Software Park Thailand arranged a PSP Academic Initia-
tives program in 2010 [6]. This program aimed to intro-
duce international standards, i.e. PSP and Capability
Maturity Model (CMMI), to academic section. More than
twenty lecturers from leading Thai universities joined the
courses. At the end of the program, more than half of
them are officially accredited as certified PSP Develop-
ers by SEI.

During late 2010, Chiang Mai University, as one of the
certified developer from PSP Academic Initiatives, made
a first attempt to implement the PSP courses for under-
graduate computer engineering students. The students
obtained a free academic version of PSP materials which
is slightly different from the official training materials
[7]. Since the academic version had different preset PSP
templates (for example, PSP0.1 for Program 2 and PSP1
for Program 3) and one extra exercise, the students were
instructed to change the preset templates to match with
the settings in the official student workbook. The last
assignment, Program 8, which was not included in the
official training, was also removed. However, an extra
assignment similar to a prerequisite project of Software
Park Thailand’s PSP Academic Initiative was added to
the assignment list as Program 0. This program involved
a simple source line counting which could be later reused
in Program 2. Program 0 did not require any data collec-
tion or estimation since its objective was to simply test
the students’ programming skills. As a result, the com-
puter engineering students were given a total of nine as-
signments, i.e. eight programming and one written report.

Thirteen senior undergraduate computer engineering
students enrolled in the course. All of them completed at
least three course involving programming using various
computer languages and are moderately to highly skilled
in programming. The students used C++, PHP, Java and
Visual Basic in this class. The distribution of language
they used is displayed in Figure 1.

Table 1. Details assignments on PSP official courses.

PSP Fundamentals PSP Advanced

Day Templates New Artifacts Assignment Day Templates New Artifacts Assignment

1 PSP0
 Time estimation
 Time logging
 Defect logging

Program 1.
Finding mean and standard
deviation from a set of data.

1 PSP2.1  Design templates

Program 5.
Integrate a t-distribution
function using Simpson’s
rule. Program 1 could be
reused.

2 PSP1

 Size estimation
 Test report
 Process improvement

proposal
 Coding standard
 Counting standard

Program 2.
Counting source lines of
code. The counted must be
able to identify parts and
number of items in each
part.

2 PSP2.1 N/A

Program 6.
Reverse calculation of
t-distribution integration.
Program 5 could be reused.

3 PSP2
 Reviewing
 Review checklists

Program 3.
Calculating for correlation
between two data sets.

3 PSP2.1 N/A

Program 7.
Calculating for 70%
prediction intervals.
Program 4 and 6 could be
reused.

4 PSP2.1 N/A

Program 4.
Calculating for relative size
table of a set of data.
Program 1 could be reused.

4 N/A
 Applying concepts of

PSP data collection to
other context

Performance Analysis
Report.
Self-assessment and process
improvement proposals.

5 No assignments 5 No assignments

Copyright © 2012 SciRes. JSEA

Implementing a Personal Software Process (PSPSM) Course: A Case Study 641

The Thai education system, both undergraduate and

graduate, is semester based. There are two semesters in
an educational year. Each semester involves approxi-
mately 15 weeks of study, excluding the examination
weeks. Each subject is lectured for three hours per week,
resulting in a total of 45 hours per semester. In order to
cope with this academic system, the contents in PSP ma-
terials in this case study were moderately tailored. The
assignments were given at week number 2, 3, 4, 6, 7, 9,
11, 12 and 14. It can be seen that there were five weeks
(excluding the first introductory week) without assign-
ments. On the weeks with assignments, all students
needed to submit the projects within five days after in-
structed. Late penalties were applied to the students who
missed the deadline. The assignments were worth 80% of
the course score. In the end, all students appeared to
successfully clear all assignments. Figures 2 and 3 sig-
nify average program size (only codes which were added
or modified are counted) and average development time
of the class, respectively.

Interestingly, although implementing PSP, especially
based on the official material, is likely to improve the
accuracy of effort estimation, statistics from this class
show otherwise. Figure 4 illustrates average error on
program size estimation of the class as well as its linear
regression (the students were not required to estimate
their Program 1’s size thus there were no data at that
point). In addition, students’ average error on develop-
ment time estimation and its linear regression are shown
in Figure 5. The errors of estimation are calculated as in
(1) [1].

Actual Data Estimation
%Error 100

Estimation


  (1)

Obviously, the overall estimating ability of the class
was not improving. In contrast, the accuracy of the class
forecasting on both program size and development time
seemed to go down.

It might be possible to argue that the estimation accu-
racy of the program size was fluctuated. More data might
be needed in order to accurately interpret the result. On
the other hand, from Program 4, the precision of time
estimation error had gone down significantly.

Figure 6 illustrates average productivity (added or
modified source lines of code per hour) of the class. It
can be seen that the productivity slightly continually in-
creased. This is an adequate result since productivity
could harshly drop after the official designing activities
were added to the development process.

Average defect density (defects per 1000 lines of code)
of the class is shown in Figure 7. This is probably the
most outstanding result of this class since the defect density

4

2

2

5 C++
PHP

Visual Basic
Java

Figure 1. Distribution of programming language used in
PSP course.

54

69

95

60

94
102

0

20

40

60

80

100

120

1 2 3 4 5 6 Program

A
d

d
ed

 &
 M

od
if

ie
d

 C
od

e
(L

O
C

)

7

Figure 2. Average added and modified program size (lines of code).

130
145

135

187

124
135

189

0

50

100

150

200

1 2 3 4 5 6 7Program

D
ev

el
op

m
en

t
T

im
e

(H
ou

rs
)

Figure 3. Average development time (hours).

Copyright © 2012 SciRes. JSEA

Implementing a Personal Software Process (PSPSM) Course: A Case Study 642

23.78%

-4.99%

61.25%

9.99%12.54%

48.55%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 3 4 5 6 7Program

A
dd

 &
 M

od
if

ie
d

Si
ze

E

st
im

at
io

n
E

rr
or

 (
%

)

Figure 4. Average error on added and modified size estimation (%).

14.06%
8.82%

5.37%

29.87%

45.04%

-3.74%

54.07%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 3 4 5 6 7Program

A
dd

 &
 M

od
if

ie
d

Si
ze

E

st
im

at
io

n
E

rr
or

 (
%

)

Figure 5. Average error on development time estimation (%).

28
34

38

28

39
36

0

10

20

30

40

50

1 2 3 4 5 6 7Program

P
ro

du
ct

iv
it

y
(L

O
C

/H
r)

Figure 6. Average productivity (lines of code/Hour).

97

69
60

98

70
63

0

20

40

60

80

100

120

1 2 3 4 5 6 Program

D
ef

ec
t D

en
si

ty
 (D

ef
ec

t/
K

L
O

C
)

7

Figure 7. Average defect density (defects/1000 Lines of code).

steadily dropped throughout the course. The dropping
figure suggests that the quality of development process
increased. This might be a benefit from design and re-
view processes as well as personal process improvement
proposals.

4. Challenges and Possible Solutions

A number of challenges surfaced during this implemen-

tation of PSP course. Some of them were raised by the
students while others were obtained by observation.
Among these challenges, two issues were considered as
the most serious matters.

4.1. Complexity of Exercises

One of a hidden objectives of the official PSP exercises
is all trainees will be able to develop their own PSP tools

Copyright © 2012 SciRes. JSEA

Implementing a Personal Software Process (PSPSM) Course: A Case Study 643

after finishing the courses. Almost all of the exercises are
related to statistical tools which are used for data analysis
and prediction. This involves several complex and repeti-
tive use of equations. The complexity of the exercises
continuously rises towards the end of the course. A small
miscalculation in an early project can cause major errors
in later projects. (2) and (3) are examples of complex
calculation in the Program 6 which resulted in the sec-
ond highest development time estimation error [7].

   

   

_ 1

1,3,5

_ 2

2,4,6...

0 4
3

2

num seg

i

num seg

i

W
p F F iW

F iW F x










 




  







 (2)

 
 

 1 22

1/2

1
2

1
*π

2

dof
dof

x
F x

dof dof
dof

 
           
 

 (3)

About half of the students complained about the so-
phisticated mathematical calculation. A few of them ap-
peared to lose motivation. One student even admitted that,
after a number of errors found in testing, he gave up his
attempt and copied parts of the code from his colleague.
This could result in unusable data and ultimately lead to
failure of class objectives.

In order to solve this problem, alternative exercises
might be considered. Since PSP mainly focuses on proc-
esses, a set of continual projects which needs a consid-
erable development time and are partly reusable might be
sufficient. Yet, the hidden objective of developing the
students’ own PSP tools might be voided if this solution
is implemented.

4.2. Continuation of the Course

Due to the difference in course duration and occurrence,
the exercises in this case study were tailored. Unfortu-
nately, this seems to cause interruption between projects,
especially on the weeks without assignments. Some stu-
dents informed that they were unable to remember parts
of their projects.

On the official training program, the trainees are re-
quired to develop programs everyday. Comparing a
half-day and a one-week gap, it is rather obvious that the
official course is more suitable to develop a series of
connected programs. Yet, the impact of this particular
problem might be lessened if the students are encouraged
to focus more on design and documentation. In fact, op-
timistically, having a long gap between assignments is
more similar to actual software development, especially
when the programmers need to fix a deployed system or
release a new version.

4.3. Other

There were also other problems that were encountered
during the PSP implementation in this case. For example,
many of the students had a habit of compiling as soon as
finishing a line of code. If the students are strict with PSP
concept, they might need to switch to the student work-
book and record this activity very often. This might
cause to frequent interruption to their work. In this case,
this challenge was mitigated by setting up a protocol, i.e.
if no defect was found during the compiling, the student
needed not to record this process.

It was also found that the students did not spend
enough time to review their designs and code. This re-
sulted in ineffective defect prevention which is one of the
main objectives of PSP. Also, a few of them were unable
to submit the project within deadlines. This might be
caused by their poor time management skills. Both prob-
lems need the students to increase their focus on the tasks
as well as plan their development ahead.

English capability is another challenge which hindered
the performance of the course. Some students were un-
able to follow the instructions properly, especially on the
late assignments. Translating parts of the materials into
student’s native language might be an solution to this
problem.

5. Conclusion

A PSP course was implemented in Chiang Mai Univer-
sity, Thailand. A group of undergraduate computer engi-
neering attended and finally finished the class. The re-
sults of the class were rather interesting. While the esti-
mation of source code size and development time should
theoretically be increasingly more accurate, the statistics
from this case study suggested otherwise. Several factors,
especially complex mathematical calculations in the ex-
ercises and continuation of the course, were identified as
the main issues behind this. This suggests that some tai-
loring effort might be needed in order to efficiently im-
plementing PSP in particular scenarios.

REFERENCES
[1] W. S. Humphrey, “PSP(SM): A Self-Improvement Proc-

ess for Software Engineers,” Addison-Wesley Profes-
sional, Upper Saddle River, 2005.

[2] Software Engineering Institute, “Personal Software Proc-
ess (PSP) Fundamentals,” Carnegie Mellon University,
Pittsburgh, 2011.

[3] Software Engineering Institute, “Personal Software Proc-
ess (PSP) Advanced,” Carnegie Mellon University, Pitts-
burgh, 2011.

[4] S. Jitprapaikulsarn, “Teaching Classes,” Department of
Computer Engineering, Naresuan University, Phitsanulok,
2011.

Copyright © 2012 SciRes. JSEA

Implementing a Personal Software Process (PSPSM) Course: A Case Study

Copyright © 2012 SciRes. JSEA

644

[5] Department of Computer Engineering, “219342 Software
Process and Quality Assurance,” Kasetsart University,
Bangkok, 2011.

[6] Software Park Thailand, “PSP Academic Initiative,”

Software Park Thailand, Pak Kret City, 2011.

[7] Software Engineering Institute, “PSP Academic Mate-
rial,” Carnegie Mellon University, Pittsburgh, 2011.

