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ABSTRACT 

Network congestion, one of the challenging tasks in communication networks, leads to queuing delays, packet loss, or 
the blocking of new connections. In this study, a data portal is considered as an application-based network, and a cogni-
tive method is proposed to deal with congestion in this kind of network. Unlike previous methods for congestion control, 
the proposed method is an effective approach for congestion control when the link capacity and information inquiries 
are unknown or variable. Using sufficient training samples and the current value of the network parameters, available 
bandwidth is adjusted to distribute the bandwidth among the active flows. The proposed cognitive method was tested 
under such situations as unexpected variations in link capacity and oscillatory behavior of the bandwidth. Based on 
simulation results, the proposed method is capable of adjusting the available bandwidth by tuning the queue length, and 
provides a stable queue in the network.  
 
Keywords: Available Bandwidth; Cognitive System; Data Portal; Network Congestion; Queue Length; Variable Link  
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1. Introduction 

A data portal provides information from diverse sources 
in a unified way. It enables instant, reliable and secure 
exchange of information over the web; in particular, a 
data portal focuses on providing centralized, robust ac-
cess to specific data and supported manipulations. The 
concept of a portal functions to offer a single web page 
that aggregates content from various servers. 

There are different types of data portals, for instance, 
academic portals, including those for scientific data; 
commercial portals; and enterprise portals. A data portal 
can be considered as an application-based network that 
consists of databases, different servers, web-based appli-
cation software, communication links, and computing 
clusters.  

With regard to a data portal, congestion can happen 
when a link or node carries so much data that a loss of 
quality of service for the portal results. As an early effort 
to control the network congestion, the Jacobson’s algo-
rithm [1] was embedded into the Transmission Control 
Protocol (TCP) [2]. Although this protocol controls end- 
to-end congestion conveniently, it also deteriorates net-
work performance due to unstable throughput, increased 
queuing delay, and restricted fairness. Furthermore, 
longer delays will lead to weak link utilization, signifi-
cant packet losses, and poor adaptation to changing link 

loads. 
Conventional congestion control methods often cannot 

achieve both fairness and appropriate bandwidth utiliza-
tion due to packet loss. To deal with the problem, various 
TCP parameters have been utilized for the estimation of 
the available link capacity and the Round-Trip Time 
(RTT) in order to predict congestion [3-7]. 

When a delay-bandwidth product grows, the TCP- 
based networks exhibit an oscillatory behavior under 
some congestion-control algorithms. Reference [8] ex-
plains that when the delay or capacity increases, Random 
Early Marking (REM) [9], Random Early Discard (RED) 
[10], proportional integral controller [11], and virtual 
queue [12] show oscillatory behavior. Whereas the band- 
width-delay product relating to a flow during high band-
width links could contain many packets, TCP could 
waste a lot of RTTs ramping until full utilization, fol-
lowing a congestion burst.  

The main obstacle in TCP is related to its reliance on 
scarce events that provide poor resolution information. 

To improve adaptation to network conditions, achieve 
high utilization, attain stable throughput, and decrease 
standing queues in the network, some approaches have 
been proposed in the literature [13-20]. Explicit Conges-
tion Control (XCC), one of the famous congestion con-
trol approaches, is able to inform sources concerned with 
the network status and control the bit rate in network. 
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The XCC uses a header to carry the throughput informa-
tion and Round-Trip Time (RTT) of the flow to which 
the packet belongs. When the throughput is used for the 
adjustment of bandwidth distribution, the RTT enables 
sources to control the speed of adaptation to network 
conditions. In XCC, routers play an important role in 
informing sources concerned with the network status and 
in helping sources to control their bit rate by accurate 
feedback. In fact, to determine the feedback for sources, 
a router should calculate the current spare bandwidth for 
outgoing links and compute the link capacity.  

Some congestion control methods need explicit and 
precise feedback. As congestion is not a binary variable, 
congestion signaling should provide the congestion de-
gree. By means of precise congestion signaling, it is pos-
sible to determine when the network tells the sender the 
congestion state and how to react to it. In fact, the send-
ers can decrease their sending windows quickly when the 
bottleneck is extremely congested. However, these meth- 
ods—based on a control loop with feedback delay—be- 
come unstable for long feedback delay. To deal with this 
effect, the system should slow down while the feedback 
delay increases. In other words, when delay increases, 
the sources should change their transmission rates more 
slowly [8,21-23]. 

As one of crucial issues related to network congestion, 
robustness of the method should be independent of un-
known and quickly changing parameters (e.g., the num-
ber of flows). Also, for such methods as XCC, conven-
ient bandwidth sharing is difficult when the information 
inquiries and capacity of links are variable. In other 
words, the unpredictability of the network creates a 
problem for XCC. This study focuses on a cognitive 
method to control congestion; it also can perform well 
when the link capacity and information inquiries are un-
known or variable. 

1.1. Cognitive Concept 

A cognitive system is a complex system that has the abil-
ity for emergent behavior [24]. It processes data over the 
course of time by performing the following steps: 1) 
perceive defined situations; 2) learn from defined situa-
tions and adapt to their statistical variations; 3) build a 
predictive model on prescribed properties; and 4) control 
the situations and do all of these procedures in real time 
for the purpose of executing prescribed tasks. 

To optimally adapt the network parameters and to pro-
vide efficient communication services using a cognitive 
approach, learning the relationships between parameters 
of network is crucial. In learning phase, it is possible to 
utilize the Bayesian Network (BN) model. A BN is a 
probabilistic graphical model that represents conditional 
independence relations between random variables by 

means of a Directed Acyclic Graph (DAG) [25]. The 
DAG is constructed with a set of vertices and directed 
edges, each edge connecting one vertex to another, such 
that there is no way to start at vertex i and follow a se-
quence of edges that eventually loops back to i [26-28]. 

The BN model can be used to provide a representation 
of the dependence relationships among network parame-
ters and adjust cognitive parameters to improve the net-
work’s efficiency. It is utilized to deal with congestion, 
one of the challenging tasks in the TCP; there is no effi-
cient mechanism to determine when congestion occurs in 
the network. 

1.2. Variable Link Capacity 

As mentioned earlier, to efficiently control the network 
congestion, and preserve stable throughput, low queuing 
delay, the critical parameters in network can be defined 
and adjusted based on pre-defined criteria and statistical 
variations of the network.  

The available bandwidth, available , which is distrib-
uted among different flows during a certain time period T, 
is defined as follows: 

F

    
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Q t
F k C x t k
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where coefficients 1  and 2  are constant, x(t) is the 
bandwidth utilized for the last period T, C is the esti-
mated capacity of the data transmission link, and Q(t) is 
the minimum queue length that happened during the last 
T seconds.  

The parameter T can be written as 0
real

Q
T T

C
 

T

realC

C C

, in  

which 0  is the system base delay, or the delay exclud-
ing queuing delay; and  is the actual capacity of the 
data transmission link.  

The capacity C is a function of various factors, such as 
the data rate of every link, the number of active links, 
failed transmissions, the number of collisions, and hand-
shake procedures. The estimation error of link capacity is 
defined as real  

C

. The given error should be 
compensated up to a certain limit. To define the limit, the 
parameter C in (1) is replaced by real  . When the 
capacity of the data transmission link is fully utilized, i.e., 
  realx t C , it is expected that the available bandwidth is 

zero or close to zero, due to error. Therefore, the limit of 
the estimation error is defined as the following: 

2
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                (2) 

The value of available  depends on the available band-
width and the standing queue in the router. In fact, if the 
link capacity changes, the Favailable can be adjusted to dis-
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tribute the bandwidth among the active flows. 
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The proposed method computes the Favailable with no 
knowledge of exact channel capacity. It also can adjust 
the Favailable according to bandwidth variations. 

2. Proposed Method 

2.1. Adjustment of Available Bandwidth 

Typically, a router controls each of its output queues; 
therefore, available bandwidth is computed for each of 
them. With the proposed method, in order to compute 
available bandwidth, it is not required for the router to be 
configured with certain medium capacity. In addition, the 
proposed method can adapt to changing bandwidth con-
ditions over time. 

First, the effect of queue speed on available bandwidth 
Favailable is considered. The queue speed can be defined as 
the difference between the capacity of the transmission 
channel and utilized bandwidth during the time period T. 
Equation (3) is written as follows: 

 
available 1

Q
F k 2

Q t
k

T T

 
 
 

   
 

       (3) 

where 
Q

T


 is the queue speed. Due to queue variations,  

the queue length should be adjusted for Favailable, so pa-
rameter α is defined. It is possible to conveniently tune 
Favailable using the parameter α during extreme queue 
variations. The parameter α is adjusted by the cognitive 
algorithm. In fact, the parameter α controls the target 
queue length in which the network stabilizes. 

2.2. Cognitive Congestion Control 

The schematic of the cognitive congestion control is il-
lustrated in Figure 1. Each network parameter is peri-
odically sampled and collected in the input matrix. The 
cognitive process is decomposed into four steps: 1) ob-
servation, 2) learning, 3) decision, and 4) action. 

During the observation step, required information from 
network is collected. Then, the cognitive algorithm learns 
the relations between the parameters and their condi-
tional independences as well as the effect of controllable 
parameters on observable parameters.  

During the decision step, the values to be assigned to 
controllable parameters are calculated to meet pre-de- 
fined requirements. In other words, the values of the  

 

 

Figure 1. Schematic of cognitive congestion control.  
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network parameters of interest are predicted based on the 
observations. This prediction is done by inference, using 
the Bayesian network.  

In the action step, the controllable parameters are 
tuned, and the appropriate actions are taken in the net-
work.  

2.3. Cognitive Process 

2.3.1. Observation 
During the observation step, seven network parameters 
are examined. These parameters are: 

1) The Round Trip Time (RTT), that is, time period 
for which a signal to be sent plus the time period for 
which an acknowledgment of that signal to be received;  

2) The queue length;  
3) The queue speed;  
4) The throughput, that is, total amount of successful 

delivered data over a link;  
5) The contention window size;  
6) The congestion window size, that is, the total 

amount of unacknowledged data;  
7) The congestion window status. 
The congestion window status is considered as 0 if the 

congestion window size at time t becomes 25% less than 
the congestion window size at time t − 1; otherwise the 
status is 1. The status equals to zero is of interest, as the 
congestion is being decreased. 

Here, observed network parameters are considered as 
random variables (x1, ···, x7). It is assumed the given 
variables have unknown dependence relations. The in-
dependent samples from every variable have been gath-
ered into the input matrix (size of n × 7). The construc-
tion of input matrix is performed during the observation 
step. 

2.3.2. Learning 
The learning step is a key step in the cognitive algorithm. 
During this step, the BN is built to provide a structure 
representing conditional independence relations between 
parameters of interest in a DAG. To form the BN and 
demonstrate the relations in a DAG, learning from the 
qualitative relations between the variables and their con-
ditional independences is considered.  

A node in the DAG represents a random variable, 
while an arrow that joins two nodes represents a direct 
probabilistic relation between the two corresponding 
variables. For ix , if there is a direct arrow from j to i, 
node j will be a parent of node i. ( i  describes the set 
of parents of node i). A complete DAG with all nodes 
connected with each other directly can represent all pos-
sible probabilistic relations among the nodes. 

pa

     

During the learning phase, based on the input matrix 
(Im), the dependency is exploited among the variables 

represented as nodes in a DAG. To build the DAG rep-
resenting the probabilistic relation between the variables, 
the selection of DAGs and the selection of parameters are 
utilized.  

2.3.2.1. Selection of DAGs 
For the selection of DAGs, the scoring approach and the 
constraint approach can be utilized [29,30]. 

In the constraint approach, a set of conditional inde-
pendence statements is defined by a priori knowledge. 
Then, the given set of statements is utilized to build the 
DAG, following the rules of d-separation [29].  

The scoring approach generally is utilized when a set 
of given conditional independence statements is not 
available [31,32]. The scoring approach is capable of 
inferring a sub-optimal DAG from a sufficiently large 
data set (i.e., Im). The scoring approach consists of two 
phases: 1) Searching to select the DAGs to be scored 
within the set of all possible DAGs and 2) scoring each 
DAG according to how accurately it defines the prob-
abilistic relations between the variables based on the Im. 

1) Searching process 
The searching process to select the DAGs (i.e., the 

first phase of the scoring approach) is required because it 
is not computationally efficient to score all the possible 
DAGs, since the scoring procedure generally takes a 
great deal of time. For instance, to find the DAG with the 
highest score for a set of m variables, the following for-
mula is expressed [33]: 

   1

1

!
1 2

! !
im i m i

DAG DAGi

m
N m N m i

m i i
 


  

 (4) 

where  DAG  is the total number of possible DAGs. 
When m increases, the DAG  increases significantly, 
and the scoring procedure takes more time. Therefore, a 
searching process is required to choose a small, and pos-
sibly representative, subset of the space of all DAGs.  

N m
N m

Most of searching processes in scoring approaches are 
based on heuristics that find local maxima almost appro-
priately. However, the heuristics do not generally guar-
antee that global maxima is obtained [30]. 

There are two classical searching procedures in litera-
ture [34]: 1) Hill Climbing and 2) Markov Chain Monte 
Carlo. 

Hill Climbing is an iterative algorithm by which an ar-
bitrary solution is initially defined for a problem. Then, 
the hill climbing algorithm searches a better solution by 
incrementally changing a single element of the solution. 
If the change generates a better solution, an incremental 
change is made to the new solution; this is repeated until 
no further improvements can be reached [34,35]. 

Markov Chain Monte Carlo (MCMC) is a category of 
algorithms for sampling from probability distributions 
based on constructing a Markov chain that has the dis-

Copyright © 2012 SciRes.                                                                                IJCNS 



E. SHARIFAHMADIAN, S. LATIFI 485

tribution of interest as its equilibrium distribution. After 
specific procedure, the state of the chain is utilized as a 
sample of the distribution of interest [36,37].  

The searching process results in some DAGs. 
2) Scoring 
The Bayesian information criterion is selected for 

scoring, and is based on the maximum likelihood crite-
rion. The Bayesian information criterion is expressed as 
follows [32]: 

     
2 2

size
log

2

AˆScore log , AA Im P Im A  n

ˆ

  (5) 

where Im is the dataset (i.e. input matrix), A is the DAG 
to be scored, A  is the maximum likelihood estimation 
of the parameters of A, and n is the number of observa-
tions for every variable in the dataset.  

When all random variables are multinomial, the Bay- 
esian information criterion is formulated as follows [30- 
33,38]: 
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where i  is a finite set of outcomes for every variable 

ix ; i  is the number of different combinations of out-
comes for the parents of i

C
x ; ijk  is the number of 

cases in the input matrix in which the variable i

N
x  took 

its kth value (k = 1, 2, ···, Oi), and its parent was instanti-
ated as its jth value (j = 1, 2, ···, Ci); and ij  is the total 
observations related to variable 

N

ix  in the input matrix  

(Im) with parent configuration j (i.e., ). 
1

iO

ij ijk
k

N N


 
Therefore, based on Equation (6), the scoring approach 

is computationally tractable. More details about Bayesian 
information criterion are presented in [38]. 

Now, the DAG with highest score can be selected. 

2.3.2.2. Selection of Parameters 
During the selection of parameters, the best set of the 
controllable parameters are chosen and estimated, based 
on the observed parameters and their independence rela-
tions.  

Based on the Bayesian network definition, every vari-
able is directly calculated by its parents; thus, the estima-
tion of the parameters for every variable xi is performed 
according to the set of its parents in the DAG selected 
during structure learning. The Maximum Likelihood Es-
timation (MLE) technique is used to build a predictive 
model and to estimate the appropriate set of parameters 
describing the conditional dependencies among the vari-
ables. The MLE technique is expressed as follows: 

ˆ
ijk

ijk
x

ij

N

N
 

ˆ
ijk

                (7) 

For x , the parents of node i are in the configuration  

of type j, and the variable ix  takes its kth value (i.e. 

ix k ).  
ˆThe estimated value 

ijkx  provides an approximation  
of the posterior distribution of ix  given the evidence j 
(i.e., parents of node i in the configuration of type j). 
Therefore, Equation (7) can be re-written as follows [30]: 

ˆ
ijkx iP x k j                  (8)  

2.3.3. Decision 
The Bayesian network is completed after selection of 
DAGs and parameters in the learning step. The com-
pleted BN provides the probabilistic relations among 
selected parameters from the selected DAG. 

In this step, the future values of the queue length and 
queue speed—that is, the unobserved parameters—are 
predicted based on selected observed parameters. The 
estimated value of unobserved parameter ix  is defined 
as the expectation of the given parameter, using prob-
ability function represented in Equation (8). Therefore, 
the expected value of  ˆ t

iix  at time t, x , is calculated as 
follows: 

   ˆ t t
i ix E x evidence               (9)  

 t
iwhere x  is the actual value of the unobserved pa-

rameter ix  at time t, and evidence is the set of selected 
observed parameters. 

2.3.4. Action 
To calculate α in Equation (3), the predicted values of the 
unobserved parameters (i.e., queue length and queue 
speed) are considered. In fact, the fluctuation of pre-
dicted values for the queue length and queue speed are 
utilized to set the parameter α; then, parameter α adjusts 
the available bandwidth, Favailable. 

As mentioned earlier, α represents the target queue 
length in which the network stabilizes. When there is no 
queue constructed (underutilization), α explains how 
much bandwidth is distributed in every control interval. 
During full utilization or overutilization, α will control 
how much queuing delay is introduced. 

During the time of underutilization, the bandwidth is 
maximally distributed; if a link is saturated, the queuing 
delay is significantly decreased. Generally, α is high 
during underutilization, and is low during full utilization. 

3. Result 

The base scenario used in the simulation includes a 
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dumbbell network topology, which provides a number of 
nodes connected to a single router. The router is con-
nected to another router over a serial link. A group of 
nodes are connected to that router, creating the dumbbell 
topology.  

25

The network traffic consists of flows between the cli-
ent and server nodes in both directions. It is assumed that 
the flows traversing the network from server nodes to 
client nodes are downloads, while flows in the opposite 
direction are considered uploads.  

The simulations were performed using the ns-3 net-
work simulator [39]. During the simulation, parameters 
of interest were sampled for each flow at certain sam-
pling periods (i.e., every 30 ms and 60 ms). The queue 
length was set to 50 packets while the bottlenecks hap-
pened. The size of the data packets was 1200 bytes, and 
the size of acknowledgment packets was 50 bytes.  

3.1. Variable Capacity 

In this part of the procedure, the response of the proposed 
method to unexpected variations of link capacity was 
emphasized. During this simulation, the data rate changed. 
At first, the simulation was performed by the data rate of 
56 Mbps. The variable capacity was simulated by chang- 
ing the data rate, as shown in Figure 2. The data rate 
changed each 20 seconds, that is, 56 Mbps at t = 0, 21 
Mbps at t = 20, 5 Mbps at t = 40, 21 Mbps at t = 60, and 
56 Mbps at t = 80. 

Due to sudden bandwidth reduction, there are queue 
spikes in the Figure 2. When queue length significantly 
increases, the parameter α increases. Thus, based on 
Equation (3), the difference between the queue length 
and α will not significantly change. Therefore, these 
spikes were compensated by the method, and available 
bandwidth was conveniently utilized. 

3.2. Dynamics of Parameter α 

To demonstrate the responsiveness of the proposed 
method to arrival and departure flows, a 40-sec simula-
tion was performed, and the RTT was set to 60 ms. The 
average queue length as well as the parameter α through- 
out the time are illustrated in Figure 3. It was observed 
that the proposed method responded conveniently to the 
queue fluctuation. In fact, the dynamic of parameter α 
was assessed by observing the queue fluctuation. 

When the queue is reduced, that is a sign of underuti-
lization, and α is increased. During the increase of α, 
more bandwidth is distributed among servers to quickly 
provide full utilization.  

To match the variation of the queue, the queue length 
was increased, while parameter α was decreased. Gener-
ally, there was a low latency caused by queue buildup. 
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Figure 2. The fluctuation of average queue length and pa-
rameter α throughout time during variable capacity. 
 

25

0 5 10 15 20 25 30 35 40
0

5

10

15

20

Time (s)

Q
ue

ue
 l

en
gt

h 
(P

k
ts

)

 

 

Average queue

Alpha

 

Figure 3. The fluctuation of average queue length and pa-
rameter α throughout time. 
 

To prevent high queue spike, the maximum value of α 
should be less than the maximum value for queue length 
(i.e., channel capacity). Parameter α can tune the varia-
tion of bandwidth as it affects the queue.  

3.3. Different Data Rates 

In this part of the procedure, the response of the method 
was assessed while different data rates are used in net-
work. It is considered that a part of the network has a 
data rate of 10 Mbps and the rest of the network has the 
data rate of 56 Mbps. In other words, new flows enter the 
network with data rate of 10 Mbps; other flows with data 
rate of 56 Mbps leave the network, or vice versa. It 
causes an oscillatory behavior for the bandwidth. The 
proposed method provides a stable queue under the given 
situation (Figure 4). 
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Figure 4. Fluctuation of average queue length and parame-
ter α throughout time, while different data rates used in the 
network. 

3.4. Efficiency 

Now, the efficiency of the method is evaluated as net-
work utilization. It is demonstrated that the increase of 
the bandwidth-delay product of network negatively af-
fects the efficiency of the TCP; however, it has trivial 
influence on the efficiency of the proposed method.  

To simulate a traffic pattern, two kinds of flows are 
considered: 1) flows with exponentially distributed dura-
tion, with certain minimum value (1 s) and mean value 
(10 s); and 2) other flows that are active during the simu-
lation.  

Each wired path between the end-system and router 
was configured with a specific latency; latencies of wired 
paths were between 20 ms and 120 ms. The growth of 
the bandwidth-delay product of network was simulated 
by increasing the path delay.  

The result of simulation is shown in Figure 5. As 
shown in the figure, the efficiency scales change based 
on the increase of the link capacity.  

It can be demonstrated that the TCP was not able to 
scale with the bandwidth-delay product of network be-
cause of its fixed dynamics. Based on the traffic pattern 
and the number of flows, the TCP was not able to fully 
utilize network resources for a specific bandwidth thresh- 
old.  

Overall, the proposed method was able to maintain 
convenient utilization at all times. 

3.5. Accuracy of Learning Process 

To predict the status of congestion in future (i.e., t + k) at 
time t, the current value of all parameters of interest was 
considered. It is possible to predict when the congestion 
happens, and try to act before it affects the network. 

To analyze the accuracy of the learning process for 

predicting congestion at time t, the value of Status (t + 
k)—that is, the presence or absence of congestion at time 
t + k, with k ≥ 1—was considered.  

The performance of the learning process is assessed as 
a function of the size (i.e., number of samples) of the 
training set utilized to learn the relations between the 
desired parameters. The parameters are stored during the 
training, and the stored values become the input for the 
inference phase.  

In Figures 6 and 7 the training set size changes. The 
vertical axis of the figures represent the average error for 
the inference, i.e. the expected value of  

     Status t kp , for which Status t k Status t k     
is the actual value of congestion status at time t + k and  
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Figure 5. Efficiency versus capacity. Unlike the proposed 
method, the growth of the bandwidth-delay product of the 
network leads to TCP utilization decreases. In contrast, the 
proposed method is able to maintain utilization. 
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Figure 6. Average prediction error for status (t + 1) which 
depends on the training set size: (a) when the congestion 
status is predicted as Status (t + 1) = 0, i.e., congestion is 
present; and (b) when the congestion status is predicted as 
Status (t + 1) = 1. 

Copyright © 2012 SciRes.                                                                                IJCNS 



E. SHARIFAHMADIAN, S. LATIFI 488 

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

(a) Training set size for learning

A
ve

ra
ge

 p
re

di
ct

io
n 

er
ro

r

 

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

(b) Training set size for learning

A
ve

ra
ge

 p
re

di
ct

io
n 

er
ro

r

 

 

RTT

Queue length

RTT

Queue length

 

Figure 7. Average prediction error for Status (t + 1) as a 
function of the training set size for different values of the 
sampling period ∆T: (a) when the congestion status is pre-
dicted as Status (t + 1) = 0, i.e., congestion is present; and (b) 
when the congestion status is predicted as Status (t + 1) = 1. 
 

 tatus t k

us t   1us t k 

T

p  is the predicted value of congestion 
status at time t + k. When congestion is present, the vari-
able of Status is zero, otherwise it is one. This variable 
can be illustrated as the frequency of an error in the 
process of prediction. In Figures 6 and 7, two cases are 
separately assessed. In other words, the results are shown 
for  and . 

S

  0k  StatStat
In Figure 6, under a different training set size from 

RTT and queue length, the average prediction error is not 
the same. As shown in the figure, if more information 
about RTT and queue length is available, the average 
prediction error decreases. Therefore, the number of col-
lected samples from each parameter of interest should be 
more than 300. 

In Figure 7, the average prediction error changes, 
based on the training set size for different values of the 
sampling period . If enough data (i.e., input samples) 
is available, the learning phase is conveniently preformed, 
and the prediction will be more accurate. 

4. Conclusions 

In this paper, a cognitive method is proposed to improve 
bandwidth sharing and deal with congestion in a data 
portal. For example, when the data portal is about climate 
change data, congestion control is more emphasized be-
cause the scientific climate data is voluminous; there is 
high traffic to/from the data portal by the scientific 
community, research groups, and general readers. In fact, 
this study was performed to improve congestion control 
in such data portals as the climate change portal.  

Here, the data portal is considered as an application- 
based network. The proposed method was able to adjust 
the available bandwidth in the network when the link 

capacity and information inquiries were unknown or 
variable. In fact, it was possible to conveniently adjust 
available bandwidth, using the cognitive method, during 
extreme queue variations. 

The variation of link capacity has an influence on the 
queue. In fact, α dynamically changes over the time, and 
helps the queue to have a smoother behavior while guar-
anteeing that the set is based on pre-defined operating 
conditions. 

The learning phase is a key step in the cognitive 
method. During this step, the collected information in the 
observation phase is used by the Bayesian network 
model to build a probabilistic structure to predict varia-
tions of queue length. 

The efficiency of proposed method was tested by a 
network simulator. Based on results, available bandwidth 
during extreme queue variations can be conveniently 
adjusted by the proposed method. Unlike TCP, in which 
the growth of the bandwidth-delay product of network 
affects negatively TCP’s efficiency, the proposed method 
is able to maintain convenient utilization at all times. 
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