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ABSTRACT 

We proposed the use of a hybrid deformable image registration approach that combines compact-support radial basis 
functions (CSRBF) spline registration with intensity-based image registration. The proposed method first uses the pre-
viously developed image intensity-based method to achieve voxel-by-voxel correspondences over the entire image re-
gion. Next, for those areas of inaccurate registration, a sparse set of landmark correspondences was defined for local 
deformable image registration using a multi-step CSRBF approach. This hybrid registration takes advantage of both 
intensity-based method for automatic processing of entire images and the CSRBF spline method for fine adjustment 
over specific regions. The goal of using this hybrid registration is to locally control the quality of registration results in 
specific regions of interest with minimal human intervention. The major applications of this approach in radiation ther-
apy are for the corrections of registration failures caused by various imaging artifacts resulting in, low image contrast, 
and non-correspondence situations where an object may not be imaged in both target and source images. Both synthetic 
and real patient data have been used to evaluate this hybrid method. We used contours mapping to validate the accuracy 
of this method on real patient image. Our studies demonstrated that this hybrid method could improve overall registra-
tion accuracy with moderate overhead. In addition, we have also shown that the multi-step CSRBF registration proved 
to be more effective in handling large deformations while maintaining the smoothness of the transformation than origi-
nal CSRBF. 
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1. Introduction 

Deformable image registration is becoming an important 
tool for tracking changes in a patient’s anatomy during 
radiotherapy [1-9]. The image-intensity method [10] and 
the landmark method [11] are two main categories used 
in radiation therapy. Landmark-based registration re-
quires the identification of a sparse set of control-point 
pairs in both the source and target images. Therefore, it is 
usually tedious, and subject to inter-observer variations 
in identifying landmark points. This is especially true for 
three-dimensional (3D) registration requiring identifica-
tion of a large number of landmark points. On the other 
hand, image intensity-based registration usually can be 
done automatically using image intensity information as 
the sole input parameters. However, image intensity- 
based registration is subject to intensity variations caused 
by various imaging artifacts. Because little user input is 
required in the intensity-based registration process, cor-
respondence ambiguity in image intensity can be a 

problem in certain situations [12]. Correspondence am-
biguity may lead to unrealistic deformations, a typical 
example of which is low intensity contrast within the 
prostate and bladder region, where intensity-based regis-
tration tends to produce an unsatisfactory motion field 
owing to the lack of image features. The landmark-based 
registration algorithm is less dependent of the underlying 
image content than intensity-based approach if a set of 
key feature correspondences can be reliably defined. 
However, automatic and accurate building a large num-
ber of feature correspondences across an image pair is 
generally a tough problem, and manually labeling the 
correspondences can be extremely labor-intensive. In 
addition, the validity of landmark-based registration de-
pends on the number and distribution of control points. 

To improve the robustness and accuracy of deformable 
image registration in certain clinical situations, we have 
proposed a hybrid registration approach that combines 
the landmark-based method, using compact-support ra-
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 dial basis functions (CSRBFs) [13] with the inten-
sity-based diffusion method [2,3]. In this hybrid ap-
proach, CSRBF spline registration was used to establish 
correspondences over in the local region defined by a 
sparse set of landmarks; while the regions distant away 
from landmarks were registered using the image inten-
sity- based diffusion method. We used a multi-step strat-
egy in our implementation of CSRBFs that can handle 
large geometric deformations. 

Though some researchers have proposed combination 
of image intensity and landmarks for registration [14-18], 
the major difference is that they applied both image in-
tensity- and landmark-based registrations to the entire 
image and calculated the registration by optimization of 
global cost function. In our proposed method, the image 
intensity-based registration applies to the entire image; 
while the landmark-based registration applies only to a 
local region where accurate registration results cannot be 
achieved using intensity-based registration alone. We 
also proposed a multi-step CSRBF registration method 
that has proven to be robust in handling large deforma-
tions and insensitive to the registration parameters used. 

2. Materials and Methods 

2.1. Intensity-Based Diffusion Registration 

Image intensity-based registration is also called voxel 
similarity-based registration because the registration 
metric and the cost function is calculated directly using 
the voxel-intensity values of the two images to be regis-
tered, i.e., source S(x) image and target T(x) image [10]. 
The registration process involves transforming the source 
image to best match the target image. The sum of 
squared-intensity differences (SSD) between source and 
target images is usually used in conjunction with a 
smoothness constraint, which can simulate various me-
chanical property of the material. For example, elastic 
image registration simulates the linear elastic material, 
and fluid image registration [19-21] simulates deforma-
tions in fluid dynamics. A generic diffusion-type image 
registration model can be constructed using the Tikhonov 
regularization constraint [2,3,17]. Thirion’s [22] demons 
registration algorithm [8,9] can be regarded as an ap-
proximation of the diffusion registration model using 
isotropic filtering. 

We previously implemented a variational diffusion 
registration [2], where the displacement vector field uk (k 
= x, y, z in the Cartesian coordinate system) can be de-
termined by solving the registration equation [2,3,17]. 
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where  is the smooth parameter; S(xk) and T(xk) are the 
source and target image intensities, respectively; and 

k k k kx x u x   . The displacement fields are the solu-
tions of the nonlinear partial differential equations in 
Equation (1), and these equations can be solved numeri-
cally using a multigrid method [2]. 

2.2. Landmark-Based Registration Using  
CSRBF Spline 

CSRBF spline registration requires user intervention to 
establish the correspondences between the same object in 
both source and target images. The main steps in land-
mark based registration algorithm consist of identifying 
pairs of corresponding landmarks in images, computing 
the appropriate transformation parameters, and then in-
terpolating transformation fields for positions not on the 
landmarks. 

The properties of radial basis functions (RBFs) are 
well defined and have proven to be efficient for interpo-
lation [23]. Researchers have proposed using many dif-
ferent RBFs for landmark-based image registration with 
or without compact support[13]. The main disadvantage 
of RBFs without compact support is that the resultant 
transformation acts as a global function so that a single 
landmark pair would affect entire image region, a typical 
example is thin-plate spline (TPS). The transformations 
generated by CSRBF are localized, and the impacts of 
landmarks on a certain location are inversely propor-
tional to the distances to the landmarks.  In our imple-
mentation, we selected the Wendland  function [23] as 
the RBF with the spatial-support parameter  for local 
registration: 
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This function is positively defined in a 3D space and 
has C2 continuity (second derivative continuity). An RBF 
is based on a scalar radius r and is symmetric around a 
control point. The smaller the value of , the more local 
the confinement of for at the landmark control points. To 
handle large deformations using CSRBF spline registra-
tion, a large  value may be needed [13]. Therefore, se-
lection of this  parameter must be a compromise be-
tween the requirement for local confinement and the ex-
istence of large deformations in certain clinical situa-
tions. 

CSRBF spline registration initially identifies the cor-
responding coordinate locations (control points) in both 
source and target images. The control-point pairs are then 
used to determine a coordinate transformation (mapping) 
between two images. The set of control points in the 
source image can be denoted as  , and the corre-
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sponding control-point set in the target image can be de-
noted as  i . A successful registration should map 
every point in i  to the corresponding i . Trans-
formation of the mapping function can be represented as 
a linear combination of the CSRBFs of the distance be-
tween two control-point sets: 

q
 p  q


1

N

j j
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

 q p  j i ip q c
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         (4) 

where i, j = 1, ···, N, and N is the number of control 
points. For a given set of control points, the transforma-
tion coefficients  are the solutions for this linear 
system:  
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where  and . i i i ij i j

Once the transformation coefficients 
 U q p

i  are obtained 
as depicted in Equation (5), the mapping between any 
points x other than the control points is given as follows: 
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where x' is the corresponding point of x, and 
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is the displacement field for point x. The displacement 
fields generally depend on both the number and spatial 
distribution of control points. For a given set of control- 
point pairs, the displacement fields depend on the value 
of the compact support parameter . Usually, a small  
value makes the transformation more local to the control 
points, and the deformation of the object is relatively 
small. In certain clinical situations, a large  value is 
required to handle large deformations in a small region. 
When a large  value is used, the CSRBF spline trans-
formation may influence the outer regions away from the 
area defined by the control points. 

2.3. Multi-Step Registration Using CSRBF Spline 

With large deformations, landmark-based registration 
may produce “cross-over” of the grid, as shown in Fig-
ure 5(c). Although a large support size can be used for 
regions away from the region of interest may lead to un-
realistic displacement fields such as that caused by bone 
deformation as shown in Figure 4 (c)-(d). Joshi and 
Miller [24] mathematically proved the existence of dif-
feomorphism in a set of landmark correspondences with 
large deformations and derived an iterative algorithm. 

However, we argue that strict diffeomorphism may be 
overconstrained in many situations. Moreover, as a 
clinical solution for adaptive radiation therapy, our goal 
is to avoid “cross-over” in deformation with an afford-
able computational cost rather than solve a strict topol-
ogy- preserve map. Therefore, we implemented a heuris-
tic divide-and-conquer procedure to handle large defor-
mation across patient anatomy while maintaining the 
locality of the transformation. 

After selection of the control-point pairs, the distances 
between the corresponding points roughly represent the 
deformation of the subject from the source image to the 
target image. Using one-step registration would necessi-
tate a large compact support parameter  for large de-
formation, which could violate the locality [13] of the 
transformation. In the present study, we implemented a 
multi-step CSRBF splines. We could artificially reduce 
the distances between the source and target control points 
by creating intermediate “virtual” control points between 
them as illustrated in Figure 1. The intermediate virtual 
control points are coordinates of points between source 
and target control points; they are not actual points iden-
tified in the images. The main reason for using these in-
termediate virtual control points is to reduce the dis-
tances between the source and intermediate points, mak-
ing the transformation more local and topologically pre-
served when using Equation (4). At the end of this 
multi-step CSRBF registration process, the final control 
points are the same as the landmark points identified by 
the user. 

The multi-step registration initially registers the source 
control points (real points) to the virtual control points  

 

 

Figure 1. 2D representation of a multi-step CSRBF spline 
registration using two intermediate virtual control points 
(blue and yellow circles with crossed marks). The red open 
circles with the solid curve represent the source image, and 
the solid black dots are linked landmarks on the target im-
age (dashed curve). 
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 T


1i , which are closest to the source control points. 
Next, the previous virtual control point set 1i  is used 
as the source set and registered to the next virtual control 
point set 2i . This procedure is repeated until the final 
step, which registers the last set of virtual control points 

ni  to the target control point set 

T

 T

  T i . The number 
of registration steps is n+1. In each step of the registra-
tion process, the same compact support parameter value 
 is used. The transformation coefficients 

q

 i  are ob-
tained for each step by repeatedly solving Equation (5), 
and these coefficients are used sequentially to calculate 
the displacement fields of every point using Equation (6) 
in the region of interest. The final displacement field 
between the source and target images is the cumulative 
displacement field obtained in the multiple steps. 

c

2.4. The Hybrid Registration Algorithm 

The image intensity-based deformable registration algo-
rithm [2,9] works well for many clinical applications 
when the image quality is good and source and target 
images are relatively similar. The hybrid registration 
algorithm is designed for situations when the image qual-
ity and / or source and target similarity are inadequate for 
successful registration using the image intensity-based 
algorithm alone. Therefore, prior to the use of the hybrid 
registration, we first registered the image pair using in-
tensity-based diffusion registration algorithm. We used 
the hybrid registration only when the diffusion registra-
tion could not produce satisfactory results. 

As illustrated in the flowchart in Figure 2, the hybrid 
registration method includes four essential steps: 1) reg-
istering the entire region of interest using image inten-
sity-based diffusion registration, 2) manually identifying 
control-point pairs in regions in which the previous reg-
istration results were considered inadequate, 3) using the 
multi-step CSRBF spline registration algorithm to regis-
ter the local region of the image according to the pre- 
defined control-point pairs, and 4) combining the displace- 
ment fields from multi-step CSRBF spline registration 
with that those obtained from the diffusion registration. 

 

 
Figure 2. Diagram of the proposed hybrid deformable im-
age registration approach. 

The combination of two displacement fields should 
satisfy the smooth constraints for the two registration 
methods, and the local registration should not affect 
global registration of the entire region. In our implemen-
tation, we first used a spline function to connect all of the 
landmark points to calculate a closed 3D volume. We 
marked the interior of this 3D volume as the “in-field” 
volume, where the displacement field was determined 
solely using the CSRBF spline registration method. We 
then expanded the 3D surface of this in-field volume to 
create a “transition zone” with the width of the expansion 
equal to the compact support parameter . Within the 
transition zone, the displacement field was deter-
mined according to the weighted average of both of the 
displacement fields calculated using the intensity-based 
method 

 u x

 u xi  and the landmark-based method  lu x  
at each position: 

          1i lw w  u x x u x x u x
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    (7) 

where the weighting function can be determined 
using a linear function of Euclidean distance transforma-
tion  D x [25,26] between the point of interest x and 
the 3D surface of the in-field volume: 

   w D ax x              (8) 

where the compact support parameter a normalizes the 
weighting function to a value within [0,1]. This is illus-
trated in the two-dimensional (2D) diagram in Figure 3. 
This implementation allows for CSRBF spline registra-
tion in the local region specified by the control points, 
whereas the image intensity-based diffusion registration 
controls the region away from the control points with a 
smooth transition in the transition zone. 
 

 

Figure 3. A 2D diagram showing the combination of land-
mark-based and image intensity-based registration. The 
peripheral landmark points form an in-field area (shaded) 
in which the displacement field was determined using the 
landmark-based registration method only. A transition zone 
is identified by expanding the in-field area using the regis-
tration parameter . In the transition zone, the displace-
ment field is computed based on the weighted average of the 
displacement fields with both methods. In the “out-field” 
area, the displacement field was determined solely using the 
intensity-based registration method. 

Copyright © 2012 SciRes.                                                                           IJMPCERO 
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2.5. Patient Data 

Computed tomography (CT) images for four patients 
with prostate cancer, two patients with lung cancer, and 
one patient with head and neck cancer were used to test 
the accuracy and efficiency of the hybrid deformable 
image registration method. For the prostate cancer pa-
tients, daily (target) CT images were acquired using a 
CT-on-rails system (EXaCT; Varian Medical Systems, 
Palo Alto, CA). For the lung cancer patients, four-di- 
mensional (4D) CT images were used to test the registra-
tion of tumor sliding along chest wall. The 4D CT data 
were reconstructed using CT scans acquired synchro-
nously with the respiratory signals representing 3D CT 
data sets at various breathing phases (total, 10 phases). In 
4D CT images, the 0% phase CT images (denoted by T0) 
and 50% phase CT images (denoted by T5), correspond-
ing to the end of inspiration and expiration scans, respec-
tively, and the largest range of tumor motion owing to 
respiration appears in the CT images in these two phases. 

2.6. Validation Method 

We used the results of the deformable image registration 
to determine whether this transformation can correctly 
auto-delineate the daily target volume. In this procedure 
the manually drawn contours in the source CT image 
were transformed to the contour in target CT image using 
the displacement field calculated from deformable image 
registration. The deformed contours in the target image 
automatically segmented the anatomic structures in the 
target image. Precise registration led to the deformed 
contours correctly fitting the corresponding structures in 
the target image. Therefore, the deformed contours fa-
cilitated evaluation of the image registration algorithm. 
The deformable image registration methods were imple-
mented using the C++ programming language. All tests 
were run on an Intel Pentium IV (2.8 GHz)-equipped 
personal computer. 

3. Results 

3.1. Single-step vs Multi-Step CSRBF Spline 
Registration 

In the multi-step CSRBF registration algorithm, the num- 
ber of steps is specified by the user and depends mainly 
on the distances between source and target control points. 
Our experience showed that a four-step procedure is rea-
sonable for challenging cases with very large deforma-
tions. 

Figure 4 shows the differences in one-, two-, three- 
and four-step registration using an artificial cuboid in the 
prostate cancer CT images. We identified 18 control- 
point pairs on the edges of the rectangle denoting the 
cuboid in one particular slice. This figure demonstrates  

 

 

Figure 4. Deformed images using the one-step and 
multi-step CSRBF spline methods. (a) A large artificial 
square in the source image; (b) A small square in the target 
image; (c) Deformed image using the one-step method (a = 
65, pelvic bones deformed); (d) Deformed image using the 
two-step method (a = 52); (e) Deformed image using the 
three-step method (a = 45); (f) Deformed image using the 
four-step method (a = 40). 
 
that the four-step algorithm achieves the best locality of 
transformation, as it deforms the cuboid correctly while 
minimizing the influence on the surrounding tissues. In 
one-step registration, the algorithm can deform the cu-
boid as well as the pelvic bones. In this example, differ-
ent  parameters are used for different registration ap-
proaches. Among these four approaches, the one-step 
approach requires a maximum  value, while the 
four-step approach uses the smallest one. This is consis-
tent with a single control-point pair study performed by 
Fornefett et al. [13] They showed that to achieve a given 
displacement , the minimum compact support parame-
ter  should satisfy  > 3.66 for 3D cases. Although 
this relationship is not exactly applicable for multiple 
control points, it can serve as a guideline for tuning  
parameter. In multi-step registration, because the dis-
placement  is accumulatively achieved in a few steps 
and only a portion of it is achieved in each step, a smaller 
parameter  than that in the single-step algorithm can be 
used.  

Figure 5 shows the displacement field obtained using 
one-step registration versus four-step registration with 
four landmark point pairs and the same compact support 
parameter . The four-step registration produced more 
reasonable mapping of the transformation, whereas the 
one-step registration produced unrealistic mapping. Using 

Copyright © 2012 SciRes.                                                                           IJMPCERO 
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Figure 5. A 2D depiction of deformable registration using 
the one-step and multi-step CSRBF spline methods. (a) 
Four control points shown on the source image; (b) The 
corresponding matched control points shown on the target 
image. Points Ai match to Bi, in which i = 1, 2, 3, and 4; (c) 
The displacement field in the one-step method, which shows 
that the resultant displacement field does not have the de-
sired one-to-one mapping; (d) The displacement field in the 
multi-step method, which is more reasonable than that in 
the one-step method. 

 
the multi-step method allows for selection of as small a 
parameter  as possible to maintain the locality of the 
transformation. 

Figure 6 shows transverse slices of the CSRBF spline 
registration results for a pair of CT images of a prostate 
tumor using the one-step and multi-step methods, respec-
tively. To illustrate the differences in these two registra-
tion approaches, we selected an identical set of control 
points around the boundary of the prostate and rectum, 
which is shown in Figure 6(a) (on the source image) and 
Figure 6(b) (on the target image). The smallest compact 
parameter  used in the one- and four-step approaches 
was 130 and 32, respectively. The deformed images 
(Figures 6(c) and 6(d)) show that one-step CSRBF spline 
registration greatly influenced the region close to the area 
specified by the control points, whereas the four-step 
registration had produced more local transformation. The 
deformed contours also show that the multi-step CSRBF 
spline registration (Figure 6(f)) matched the anatomy 
better than the one-step method did (Figure 6(e)). The 
multi-step method handled a large deformation with good 
locality of transformation in this case. We achieved 
similar results with other prostate cancer cases. 

3.2. Prostate Cancer Cases 

The goal of deformable image registration in our study 
was to auto-delineate the anatomic structures by mapping 
the manual contours in the treatment planning CT image 
to the daily CT image. The deformed contours achieved 
using the three registration approaches (image inten-
sity-based diffusion, landmark-based CSRBF spline, and 

 

Figure 6. One-step CSRBFs spline registration versus multi- 
step CSRBFs spline registration for CT images of prostate 
patient.Blue and green contours stand for prostate and 
rectum respectively. (a), (b) Control points were selected 
around the boundary of prostate and rectum; (c) Deformed 
image using 1-step method, a = 120; (d) Deformed image 
using 4-step method, a = 50; (e) Deformed contours using 
the 1-step CSRBFs spline registration; (f) Deformed con-
tours using the 4-step CSRBFs spline registration. The con-
tours are better matched in (f) than in (e), especially for the 
pelvis bones. The results show that the multi-step approach 
is more accurate in mapping contours for this case. 
 
hybrid) are shown in Figure 7. The deformed contours 
achieved using only the diffusion registration (Figure 
7(b)) did not correctly map the structures of the bladder 
or prostate owing to the low soft-tissue contrast between 
the two organs. The deformed contours achieved for the 
bladder and prostate using the multi-step CSRBF spline 
registration correctly mapped the structures of the blad-
der, prostate, and seminal vesicles, but the deformed 
contour of the rectum was not a good match for the 
anatomy (Figure 7(c)). The deformed contours resulted 
from a combination of the intensity diffusion and CSRBF 
spline approaches, thereby achieving good matches for 
these anatomical structures (Figure 7(d)). In this exam-
ple, the registration error for the image intensity-based 
method resulted mainly from correspondence ambiguity 
arising from the low intensity contrast between the 
boundaries of the bladder and prostate. Applying CSRBF 
spline registration to this local ambiguous region reduced 
this registration error. We obtained similar results for the 
three other prostate cancer cases. The registration volume 
was 423 × 251 × 53 (voxels), and we used 13 control 
points. The CPU times were 136.0, 9.1, and 152.2 sec-
onds for the diffusion, CSRBF, and our hybrid method, 
respectively. 

Copyright © 2012 SciRes.                                                                           IJMPCERO 
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Figure 7. Contour mapping using a displacement field ob-
tained with three deformable image registration approaches.  
(a) The original reference contours overlaid on the planning 
CT image, where Blue, red, orange and green contours 
stand for bladder, prostate, seminal vesicle and rectum, 
respectively; (b) Deformed contours created using diffu-
sion-based deformable image registration alone; (c) De-
formed contours created using CSRBF spline registration 
alone for the prostate and bladder only. Note that the de-
formed contours for the rectum were not accurate because 
the rectum was not used and was outside the region of 
compact support; (d) Deformed contours created using the 
hybrid registration method combining (b) and (c). 
 
3.3. 4D CT of Lung Cancer Cases 

In this experiment, we will demonstrate the application 
of our hybrid algorithm in handling the motion disconti-
nuity along tissue interface. We used a lung cancer case 
with a 4D CT image data set in which lung tumors had 
large superior-inferior motion relative to the nearby, rela-
tively stationary chest wall. We manually delineated the 
contours of the tumor and normal structures in the refer-
ence phase (T5). The peak-to-peak tumor movement 
from phase T5 to phase T0 was 2.5 cm. Although we 
were able to track the motion of structures using the im-
age intensity-based diffusion registration method, the 
smoothing constraint achieved using this method pre-
vented the tumor from sliding along the chest wall. This 
can be observed in the images shown in middle column 
in Figure 8, which show a “dragging effect” in the de-
formed contour (indicated by green contour) with use of 
the diffusion method alone. Owing to the smoothing re-
quirement in these automatic image registration methods, 
the tissue cannot slide freely against a stationary check 
wall. However, using the CSRBF method, we were able 
to constraint the registration based on contours defined 
by human intervention. The result of the CSRBF correction 
with the hybrid method is shown in the right column of 

 

Figure 8. Auto-segmentation of a lung tumor using the dif-
fusion and hybrid registration methods. The sagittal view is 
shown in the upper row, whereas the coronal view is shown 
in the bottom row. The left column contains the refer-
ence-phase CT scans (T5; end-of-expiration phase) with 
manual contours overlaid. The middle column images are 
T0 scans (end-of-inspiration phase) with contours deformed 
using the diffusion registration method. We observed a drag 
in the superior GTV, which attached to the chest wall. The 
images in the right column show the deformed contours 
created using the hybrid registration method. The de-
formed contour matches the GTV correctly. 
 
Figure 8, indicating a good agreement with the reference 
tumor boundary (gross tumor volume [GTV]) in the left 
column of Figure 8. The registration volume in this case 
was 350 × 239 × 111 in voxels and we used 14 control 
points. The CPU times were 266.6 s for the diffusion 
method, 20.4 s for the CSRBF method, and 304.3 s for 
the hybrid method. 

4. Discussion 

In this study, we proposed the use of a hybrid deformable 
image registration approach that combines automatic 
image intensity-based deformable image registration with 
a local deformation registration method using a compact 
support spline. We also implemented a multi-step CSRBF 
registration method that improved the handling of large 
deformations while preserving the locality of transforma-
tion. Our results have demonstrated that the hybrid 
method improved the effectiveness of deformable image 
registration in handling many of the challenging clinical 
applications with moderated human intervention. In our 
cases, identification of these pairs in source and target 
images using our in-house software program took about 
5 to 10 minutes. 

For landmark-based registration, a basic assumption is 
that a set of corresponding landmarks can be established 
across the source and target image. Landmarks can be 
points, lines, surfaces, or volumes; in this investigation, 
however, we only considered point-based landmarks in 
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this study. These corresponding points are often consid-
ered to be control points, and the goal of the registration 
process is to find a transformation between two images 
using the information from the corresponding landmarks 
[24,27]. Bookstein [28] proposed a landmark-based ap-
proach to nonrigid image registration that used TPS in-
terpolation. Rohr et al. [29] further developed this tech-
nique and incorporated the elastic constraints and orien-
tations information into landmark-based registration [30]. 
The TPS algorithm is also a general RBF-based spline 
algorithm [13,31,32]. In TPS registration, each control 
point has a global influence on the transformation, and 
dealing with local deformations, which is important as 
demonstrated in our study, is difficult. Many investiga-
tors have proposed using CSRBF splines for deformable 
image registration [13,31,32], which can handle local as 
well as global deformation issues. Very recently, inves-
tigators proposed using a Gaussian elastic body spline 
(GEBS) deformable-image registration algorithm [33,34]. 
The GEBS algorithm also can handle local as well as 
global deformations via a compact support parameter 
similar to that in CSRBF splines. Furthermore, research-
ers considered the CSRBF spline algorithm to be more 
computationally efficient than the GEBS algorithm [34]. 

The image intensity-based deformable registration al-
gorithms have gained popularity in medical imaging ap-
plications [2,3,8-10,21]. Diffusion registrations are a 
constrained optimization method, and the optimal solu-
tion can be achieved by the optimization of an image 
similarity measure. The advantages of diffusion registra-
tion over landmark based registration methods are that it 
is fully automatic. The implicit assumption as a result is 
that the correspondences can be determined by image 
features in both source and target image images. How-
ever, similarity measures may not be reliable if the in-
herent image contrast and / or intensity levels are insuffi-
cient or nonexistent, or inaccurate (due to image artifacts) 
and thus unable to identify the same object in both im-
ages [12]. For practical reasons, human intervention is 
necessary to constraint registration in the areas of interest. 
This was the main reason we devised the hybrid registra-
tion approach for clinical applications. 

Our results showed that our proposed hybrid registra-
tion approach is applicable to a variety of typical im-
age-guided radiotherapy situations, such as low-contrast 
images of the prostate, dental imaging artifacts, and the 
sliding tumor problem in lung cancer cases described 
above. As discussed in section 2.2, the registration result 
depends on the number and spatial distribution of control 
points. To achieve accurate registration, defining the 
control-point pairs near the boundaries of target struc- 
tures is crucial. Landmark-based registration can become 
computationally expensive if the number of control 
points increases. The proposed hybrid registration ap- 

proach provides a convenient compromise for reducing 
the requirement of a large number of control points by 
using global, automatic intensity-based registration. 

5. Conclusion 

In this study, we investigated our proposed hybrid 
deformable image registration approach that combines 
multi-step CSRBF spline registration of local image 
regions with global intensity based registration. We 
demonstrated that this hybrid algorithm could improve 
the registration results with minimal human intervention. 
In this approach, we used the landmark-based CSRBF 
spline algorithm to adjust the local deformations. We 
also implemented a multi-step strategy to improve the 
ability of the CSRBF algorithm to handle large 
deformations while preserving the locality of the 
transformation. Our proposed hybrid approach improves 
the robustness and practicality of deformable image 
registration for image-guided clinical applications. 
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