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ABSTRACT

This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLW) equation
which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in plasmas and (2+1)
dimensional Davey-Stewartson (DS) equation which is governing the dynamics of weakly nonlinear modulation of a
lattice wave packet in a multidimensional lattice. By using extended mapping method technique, we have shown that
the 2DRLW-2DDS equations can be reduced to the elliptic-like equation. Then, the extended mapping method is used
to obtain a series of solutions including the single and the combined non degenerative Jacobi elliptic function solutions

and their degenerative solutions to the above mentioned class of nonlinear partial differential equations (NLPDEs).

Keywords: Exact Solitary Solutions; Extended Mapping Method; Two Dimension Regularized Long Wave
and Davey-Stewartson Equations; Jacobi Elliptic Functions

1. Introduction

In the recent years, seeking exact solutions of nonlinear
partial differential equations (NLPDESs) is of great sig-
nificance, since the nonlinear complex physical phe-
nomena related to the NLPDEs are involved in many
fields from physics (plasma physics, optical fibers, solid
state physics, nonlinear optics and so on), fluid mechan-
ics, biology, chemistry kinetics, geochemistry and engi-
neering. As mathematical models of the phenomena, the
investigation of exact solutions of NLPDEs will help one
to understand the mechanism that governs these physical
models or to better provide knowledge of the physical
problem and possible applications. To this aim, a vast
variety of powerful and direct methods for finding the
exact significant solutions of the NLPDEs through it is
rather difficult have been derived. Some of the most im-
portant methods are Hirota’s dependent variable trans-
formation [1], the Bécklund transformations (BTs) [2],
the inverse scattering transformation [3], Painlevé ex-
pansions [4], Jacobi elliptic function expansion method
[5-7], the homogenous balance method [8], the linearized
transformation method [9-11], the F-expansion method
[12,13], Fan-sub-equation method, extended and modi-
fied extended Fan-sub equation method [14-18], the
tanh-function method and extended tanh-function method
[19-21], the tanh-sech method [22], the sine-cosine me-

Copyright © 2012 SciRes.

thod [23,24], variational iteration method [25], homotopy
perturbation method [26], the (G'/G)-expansion method
[27-29] and several ansatz methods [30-34].

The Frobenius integrable decompositions (FIDs) and
rational function transformations (RFTs) are used to con-
struct exact solutions to NLPDEs with BTs and auto BTs
[35-40]. Recently, Ma et al. [37] presented Frobenius
integrable decompositions (FIDs) for two classes of
nonlinear evolution equations (NEEs) with logarithmic
derivative BTs in soliton theory. The discussed NEEs are
transformed into systems of Frobenius integrable ODEs
with cubic nonlinearity. You ef al. [41] obtained two
classes of PDEs with variable coefficients possessing
FIDs, including the KdV and the potential KdV equation,
the Boussinesq equation, and the generalized BBM equa-
tion. The RFTs method is very suitable for an easier and
more effective handling of the solution process of nonli-
near equations, unifying the existing solution methods
mentioned above. Its key point is to find rational solu-
tions to variable-coefficient ODEs transformed from
given NLPDEs, together with an auto-BT.

The main aim of this paper is to find exact solitary so-
lutions of (2+1) dimensional regularized long wave
(2DRLW) and (2+1) Davey-Stewartson (DS) equations.
The paper is organized as follows: This introduction is
presented in Section 1. In Section 2 we give a description
of the extended mapping method and we apply this me-
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thod to the (2+1) regularized long wave equation and the
Davey-Stewartson equation. In Section 3, some conclu-
sions are given.

2. The Extended Mapping Method
We are given a NLPDE for ¢(&,7) in the form

F(¢:¢r=¢§:¢§§a¢ﬂ=¢r ""):O' (1)

Introducing the similarity variable ¢ =k(&-wr7),
then the function ¢ satisfies the following ordinary dif-
ferential equation (ODE)

H(¢’¢c’¢4’¢c¢’¢::4""):0- (2)

By virtue of the extended mapping method we assume
that the solution of Equation (2) in the form

#()=a+ 3 (0 1(0)+b17(£))
L y 3)
3 ar (O A (€F(€),

where N in Equation (3) is a positive integer that can
be determined by balancing the nonlinear term(s) with
the highest derivative term in Equation (2) and a, q,, b,
¢, and d, are constants to be determined. The function
/(&) satisfies the nonlinear ODE

2
L] wrar@rare. @
where ¢,,q, and ¢, are constants. Substituting Eq-
uation (3) with Equation (4) into the ODE Equation (2)
and setting the coefficients of the different powers of
(&) to zero yields a set of algebraic equations for a,,
a, b, ¢, d and k.Solving the algebraic equations
by use of Maple or Mathematica, we have a,, a,, b,
¢;, d, and k expressed by ¢,,q,,q,. Substituting the
obtained coefficients into Equation (3), then concentra-
tion formulas of travelling wave solutions of the NLPDE
Equation (1) can be obtained. Selecting the values of
4y+9,.9, and the corresponding JEFs f({) from the
table in Appendix and substituting them into the concen-
tration formulas of solutions to obtain the explicit and
exact JEF solutions of Equation (1). Various solutions of
Equation (4) were constructed using JEFs, and these re-
sults were exploited in the design of a procedure for gen-
erating solutions of NLPDEs. The JEFs sn =sn({,m),
end =cn({,m) and dn¢ =dn(¢,m) where
m(0<m<1) is the modulus of the elliptic function, are
double periodic and posses the following properties

sn’ (g.")-i—cn2 ({) =1, dn’ (§)+m2sn2 (g") =1,
A’ =m’en’¢ +(1-m?), (sng) =cn(¢)dn(£),
(cnc:)’ :—sn(cf)dn(é’),
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(dn()l = —mzsn(g)cdn(g).

In addition when m —1, the functions snd, cng
and dn¢{ degenerate as tanh¢, sechd and sechd
respectively, while when m—>0, snd, c¢n{ and
dn{ degenerate as sing, cos¢ and 1, respectively.
So, we can obtain hyperbolic function solutions and
trigonometric function solutions in the limit cases when

m—1 and m — 0. Some more properties of JEFs can
be found in [33].

2.1. (2+1) Regularized Long Wave Equation

Let us first consider the regularized long wave equation:

u,+alux+a2uv+ﬁluux+ﬂ2uuy )
’ 5

_)/1 u)oct _7/2 uyyt = 0
have been reported in [42,43] where the coefficients £,
Br#=0, >0, 1y, o and a, are all constants.
Equation (5) is related to the drift waves in plasma and
the Rossby waves in rotating fluids [44]. To look for trav-
elling wave solution of Equation (2.5), we make transfor-
mation u(x,y,t)=u(¢), E=k(k+ny-wt) and
change Equation (5) into the form

au'+ Buu’ +yk*u" =0, 6)

where o =(-o+lay+a,n), B=(If+p,n), and
y= w(l rty, ) Integrating once with respect to &
and setting the integration constant equal to zero, one has

au-i-guz-i-}/kz "=0. (7

Balancing u”> with u" gives the leading order N =2.
So take the anastz

+c f’(g)+d1f'(‘;)+dzf'(§) ®
’ Q) Q)

where a,, a,, a,, b, b,, ¢,, d, d, and k are
constants and need to be determined, f(¢) is a solu-
tion of Equation (4). Substituting Equation (4) and Equa-
tion (8) into Equation (7) and setting the coefficients of
/(<) to zero, we get a system of nonlinear equations
for a,, a,, a,, b, b,, ¢,, d, d, and k. Solving
this system by use of Mathematica, we obtain:
Case

aO :_g 1.!,_#
B \ICI§+3%Q4
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PR 17 +1 a 1 © Case 3
=T B 2oa T hd =
IB qz +394, (qf +3%Q4) @ =b=d =0,
Case 1 64949
a, = l+q2 ,
\/‘b +60g,+/9,9, +13249,4,
a,=b=c,=d=d,=0, q, -z 1+2#
V> +12444, a,=— 6aq,

2 b
_ daqs 3ag, ﬂ\/ 4 +60q,/4,9, +1324,4,

ﬂ\/qz +12%q4 \/ 922 +12q,9, b, =— 6a g,

BN +604,7/4,9, +1324,4,

l | 1
B (92 +3q0q4) d - 60!\/%
2= s
Case 2 42 +604,\J4.4, +1324,4,
a 9, _ 6“@
a=b=b=d =d,=0, a0=——[1+— , c, =~ ,
Bl N4 +12444, BT +60a,J4,q, +1324.4,
gy =—— 2 ——6a 9s =+ | ! (12)
2= 2 ’ Yy 7
ﬂ\/% +12404, BN +124,4, B (qzz +60,/9.40 +132q4q0)
a 1 2 2 2
k=% |2 —————. (11) If g,=1, q,=—(1+m"), q,=m’, F({)=ns’¢,
B (q2 + 36]0614) this yields the exact solutions of Equation (7) as follows:
2
u(x,y,t):— ad \/(—(1+m2)) +3m? —(1+m2)+3ns2i I a Sl (13)

pctren ) 3 Jorl- (e o

when m — 1, the solitary wave solutions of Equation (5) are obtained as follows:

-o+la, + -
u(x,y,t):_w J7 -2+ 3coth?| |[LCLHAIDN) oy iy ], (14)
7B+ fon) 4nT(n I +7.m)
We have represented this solution for a set of parame- When m — 0, the triangular periodic solutions of
ter values in Figure 1(a). Equation (5) are obtained as follows:
-o+la, +na —o+lo +a
u(x,y,t):—w 3csc’ #(1x+ny—wt> . (15)
(B1+ p,n) 4a)(7/11 +y,n )
We have represented this solution for a set of parame- and when m —1, this yields the solitary solutions of
ter values in Figure 1(b). Equation (5) as follows:

If ¢g,=1, q2:—(1+m2), g, =m", F(§)=sn§

(xy.t)=— (otla+na)l) ol \f(zxmy wt)| | +3coth \/7(lx+ny a)t) (16)
7 (Bl+pyn)

We have represented this solution for a set of parameter values in Figure 1(c).
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If g =1, g =1-2m*, q.=1. F(c)="1"S
9 9, 94 (é/) 1+end

(~o+la +na,)

tanh{\/f(lx—i—ny— a)t):|

and when m —1, this yields the solitary solutions of
Equation (5) as follows:

6sechw(;x+ny_m)}

2

y (%,3,1) == 2(Bi+ fon)

We have represented this solution for a set of parame-
ter values in Figure 1(d).

If ¢g,=1, qzz—(1+m2), g, =m", F(g”):sné’

- . (17)

+
1+sech{\/;(1x+ny—a)t)} 1+sech{\/g(lx+ny—a)t)}
7 e

and when m —1, this yields the solitary solutions of
Equation (5) as follows:

us(w,,):_w (2+12coth2 B\/E(mny—m)D. (18)
y

4(ﬁll+ﬁ2n)

We have represented this solution for a set of parame-
ter values in Figure 1(e).

2.2. The Davey Stewartson Equation

The dimensionless form of the DSE in (2+1) dimensions,
with power law nonlinearity [45]. The DS model is ex-
actly integrable in shallow water and almost integrable in
deep water. Furthermore, the model has easily identifi-
able coherent structures and waves, including solitons,
unstable rogue-wave type modes, Stokes waves and the
velocity field contains vortices,

iut+%ozz<un+oz2 uyy)+ﬂ|u|2u—uv=0, (192)

v, -a® u, —2ﬂ( |u|2u)

Here, in Equations (19a) and (19b), ©# and v are the

=0. (19b)

xx

(Q—%a“ (1+12)J¢+k2a2 (p2 +0:2nz)gzﬁ"+,lf¢53 —¢v+ik(—a)+oz3 (p2 +aln))¢' =0,

2

" _ 2,BP2 2
v (5)_p2—n20{2 (¢ ) : (21b)
If we set
a)=a3(p2+aln), (22)
then Equation (21a) reduce to
1 4 2 kzaz 2 2.2 "
Q-——a”(1+] +——(p +a
( 2 ( )j¢ 2(p ")¢. (23)

+B¢ —pv=0

Integrating Equation (21b) twice, and we take the con-
stant of integration equal zero, we have
2 2
G e g (24)

—-na
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dependent variables while x, y and ¢ are the inde-
pendent variables. The first two of the independent vari-
ables are the spatial variables while t represents time. In
Equations (19a) and (19b), u is a complex valued func-
tion while v is a real valued function. Also, «,f are
all constant coefficients. For solving the Equations (19a)
and (19b) with the extended mapping method, using the
wave variables

u(x,y,t):ei'g ((f), v(x,y,t):v(f),
Qzax+ly—Qt,§=k(px+ny—a)t),

(20a)

(20b)

where both ¢(¢&) and v(&) are real functions, o, I,
p, n, Q and o are constants and & is a constant
determine later. Substituting Equations (20a) and (20b)
into Equations (19a) and (19b), we have the following
ODE for ¢(&) and v(&)

(21a)

Substituting Equation (24) into Equation (23) yields

(Q—%a“ (1+lz)j¢+L;2(p2 +a2n2)¢”

25 (25
p
O o O
k2A¢"+B¢+C¢3=O, (26)
where
A:a—2(p2+a2n2), B:(Q—la“(nzz)j
2 2
and
28p°
C=p-—LL .
B pz_nzaz
AM
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A —

y

=N\

Figure 1. The solitary wave solution represented by Equations (14)-(18) for various values ® = 0.5, a;, =-1,a,=-2,1=0.9, m
=2,by=-3,b,=-2,t=20, c; =1, c; = 1.1 for Figures 1(a)-(e) respectively.

Balancing ¢ with ¢" gives the leading order
N =1. So take the anastz

6= ara 1 (§)+ s 2L L)

(&) 1)

where a,, a,, b, d, and k are constants and need

27)

Copyright © 2012 SciRes.

to be determined, f({) is a solution of Equation (4).
Substituting Equations (4) and (27) into Equation (26)
and setting the coefficients of f'(¢), to zero, we get a
system of nonlinear equations for a,, a;, b, d, and
k . Solving this system by use of Maple, we obtain:

Case

AM
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_ 2B
ay=b =d, =0,a, = /ﬂ,k —+ /—B. (28) - qO -8 31)
q,C q,4 %q4 6\/ 9044 )

Case 1 Case 4
a=a=d=0b= 22D s |ZB (g9 a,=0, a =% [———H—r
7, C 9,4 610614
Case 2 b=+ ( -Byg, ) (32)
_ Cl 4> +64904,
ay=a,=b =0,d = /—B,k=il /23. (30)
4, C 2\ g, 4 P -B it | 2B
1= = == :
Case 3 \IC(612+6 qoq4) \/A(qz+6 610614)
2Bgq, If qozmz—l, q2:2—m2, q,=-1, F(é’):dné’,

ay=d,=0,a == we can obtain one Jacobian elliptic function solution of

C(qz ~ 6340 ) Equation (26) as follows:

20+a* (1+1 | | 2040 (147
u(x,y,1)= ( )2 elexstr=adl gy : (1) 1. (33)
(- 222 (2= e (5" )
p -na
when m — 1, the solitary solutions of Equations (25) and (24) are obtained as follows:
-2Q+a* (1+12) o —2Q+a4(1+12)
(x,3,1) = > | PV (px+ny-owt)||. (34)
28 p LY e YA R
ﬁ_z 2 2 (2m)2a(p+an)
p-na
We have represented this solution for a set of parameter values in Figure 2(a).
182 2Q-at(1+1° 2Q+at(1+1°
v(x,y,t)=—— ﬁlz 5 ( . ) sech 1 ( ) (px+ny-owi)||. (35)
p —na B 28 p <2—m2)70!2(p2+a2n2)
pz _nta? 2
m2 =2 m? snl this yields the solitary wave solutions of Equations (25)
Ifg=" ¢= o T F(¢)= L+ dng’ and (24) are obtained as follows:

tanh /Z—B(px+ny—a)t)
-B i[ax+ly-Qt] A
u, (x,3,1)= ok

(36)
1+sech{, /Zf(px+ny—a)t)}
We have represented this solution for a set of parameter values in Figure 2(b).
2
tanh| , /2—3 (px+ny—ot)
28p* B A4
v (x,p,0)=- 37

2 2 2 o~
-na” C
P l+sech{,/2AB(px+ny—wt)}

Copyright © 2012 SciRes. AM
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F({)=sn{ +icng , this yields the solitary wave solu-
tions of Equations (25) and (24) are obtained as follows:

u, (x,y,1) =i, fz?B el goe h{ /% (px+ny— a)t)} (38)

We have represented this solution for a set of parameter values in Figure 2(c).

2
28p° 2B [-B
vz(x,y,t)z%—(sec 7(px+ny—wt)j . 39)

p —-na C

If g,=m>, q,= —(mz +1) ., q,=1, F({)=ns¢, this yields the solitary wave solutions of Equations (25) and (24)
are obtained as follows:

u3(x,y,t): ’%e[[a,r+ly—gll[tanh|: f% (px+ny—wt)}+coth{1/%(prrny—a)t)D. (40)

We have represented this solution for a set of parameter values in Figure 2(d).

2
___2Bp° B |8 _ |5 _
v (x,y,t)— e 4C[tanh{ Y (px+ny a)t) +coth Y (px+ny a)t) . (41)

If ¢,=1, ¢q,= —(m2 + 1) , g,=m’, F({)=sn{, this yields the solitary wave solutions of Equations (25) and (24)

are obtained as follows:

u4(xay9t)

2 B
sech —(px+ny—a)t)
B faxiy-ai B B 24 (42)
= [— " tanh| ,[— (px+ny—at) |+coth| ,|— (px+ny—or) |+ )
4C 24 24 175
tanh ﬂ(px+ny—a)t)

We have represented this solution for a set of parameter values in Figure 2(e).

2 B
) X \/? i F sech {\/;(px+ny—a)t)} 43)
=———>——| tan ﬂ(px-i-ny—a)t) + cot! ﬂ(px+ny—a)t) + .

v} (X,y,l‘)
2ﬂp2 B
p-n‘a’ 4C

3. Conclusion

In the current article, the solitary wave solutions of the
two dimensional regularized long-wave equation in
plasma and rotating flows simulated by using extended
mapping method, and we hope these solitary waves are
helpful to understand the nonlinear phenomena described
by the resonant Davey-Stewartson equation in the fields
like capillarity fluids. We have presented the extended
mapping method to construct more general exact solu-

Copyright © 2012 SciRes.

2

tanh’ {‘ /% (px+ny— a)t)}

tions of NLPDEs with the help Maple and Mathematica.
This method provides a powerful mathematical tool to
obtain more general exact solutions of a great many
NLPDEs in mathematical physics. Applying this method
to the 2DRLW and DS equations and we have success-
fully obtained many new exact travelling wave solutions.
Through our solutions for some partial differential equa-
tions non-linear, we found lack of interest in these two
methods by the specialists with the knowledge that they
give an solutions more realistic than many ways, espe-

AM
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1.
[u(xy)l

Figure 2. The solitary wave solution represented by Equations (34), (36), (38), (40) and (42) for various valuesa=1,=2,/=
0.9,n=2,Q=3;p=0.5,¢=7, for Figures 2(a), 2(b), 2(c), 2(d), 2(e) respectively.

cially as they deal with the equations of non-linear coef-
ficients fixed and transactions variable, which explain the
phenomena, physical and in the various sciences. In my
view this lack of interest due to the ease of the above-
mentioned methods.
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Appendix
Relation between values of (¢, .9, , g, ) and corresponding £ (&) in ODE (f')2 =q,+¢, /() +q, ().

4 4, a F(<)
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—-m? 2 sné, cdl =—=
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