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ABSTRACT 

This paper investigates the solitary wave solutions of the (2+1)-dimensional regularized long-wave (2DRLW) equation 
which is arising in the investigation of the Rossby waves in rotating flows and the drift waves in plasmas and (2+1) 
dimensional Davey-Stewartson (DS) equation which is governing the dynamics of weakly nonlinear modulation of a 
lattice wave packet in a multidimensional lattice. By using extended mapping method technique, we have shown that 
the 2DRLW-2DDS equations can be reduced to the elliptic-like equation. Then, the extended mapping method is used 
to obtain a series of solutions including the single and the combined non degenerative Jacobi elliptic function solutions 
and their degenerative solutions to the above mentioned class of nonlinear partial differential equations (NLPDEs). 
 
Keywords: Exact Solitary Solutions; Extended Mapping Method; Two Dimension Regularized Long Wave 

and Davey-Stewartson Equations; Jacobi Elliptic Functions 

1. Introduction 

In the recent years, seeking exact solutions of nonlinear 
partial differential equations (NLPDEs) is of great sig-
nificance, since the nonlinear complex physical phe-
nomena related to the NLPDEs are involved in many 
fields from physics (plasma physics, optical fibers, solid 
state physics, nonlinear optics and so on), fluid mechan-
ics, biology, chemistry kinetics, geochemistry and engi-
neering. As mathematical models of the phenomena, the 
investigation of exact solutions of NLPDEs will help one 
to understand the mechanism that governs these physical 
models or to better provide knowledge of the physical 
problem and possible applications. To this aim, a vast 
variety of powerful and direct methods for finding the 
exact significant solutions of the NLPDEs through it is 
rather difficult have been derived. Some of the most im-
portant methods are Hirota’s dependent variable trans-
formation [1], the Bäcklund transformations (BTs) [2], 
the inverse scattering transformation [3], Painlevé ex-
pansions [4], Jacobi elliptic function expansion method 
[5-7], the homogenous balance method [8], the linearized 
transformation method [9-11], the F-expansion method 
[12,13], Fan-sub-equation method, extended and modi-
fied extended Fan-sub equation method [14-18], the 
tanh-function method and extended tanh-function method 
[19-21], the tanh-sech method [22], the sine-cosine me-  

thod [23,24], variational iteration method [25], homotopy 
perturbation method [26], the G G  -expansion method 
[27-29] and several ansatz methods [30-34]. 

The Frobenius integrable decompositions (FIDs) and 
rational function transformations (RFTs) are used to con-
struct exact solutions to NLPDEs with BTs and auto BTs 
[35-40]. Recently, Ma et al. [37] presented Frobenius 
integrable decompositions (FIDs) for two classes of 
nonlinear evolution equations (NEEs) with logarithmic 
derivative BTs in soliton theory. The discussed NEEs are 
transformed into systems of Frobenius integrable ODEs 
with cubic nonlinearity. You et al. [41] obtained two 
classes of PDEs with variable coefficients possessing 
FIDs, including the KdV and the potential KdV equation, 
the Boussinesq equation, and the generalized BBM equa-
tion. The RFTs method is very suitable for an easier and 
more effective handling of the solution process of nonli-
near equations, unifying the existing solution methods 
mentioned above. Its key point is to find rational solu-
tions to variable-coefficient ODEs transformed from 
given NLPDEs, together with an auto-BT. 

The main aim of this paper is to find exact solitary so-
lutions of (2+1) dimensional regularized long wave 
(2DRLW) and (2+1) Davey-Stewartson (DS) equations. 
The paper is organized as follows: This introduction is 
presented in Section 1. In Section 2 we give a description 
of the extended mapping method and we apply this me-
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thod to the (2+1) regularized long wave equation and the 
Davey-Stewartson equation. In Section 3, some conclu-
sions are given. 

2. The Extended Mapping Method 

We are given a NLPDE for  ,    in the form 

 , , , , , , 0.F                       (1) 

Introducing the similarity variable  k    , 
then the function   satisfies the following ordinary dif- 
ferential equation (ODE) 

 , , , , , 0.H                      (2) 

By virtue of the extended mapping method we assume 
that the solution of Equation (2) in the form 
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where  in Equation (3) is a positive integer that can 
be determined by balancing the nonlinear term(s) with 
the highest derivative term in Equation (2) and a, i , i , 

 and i  are constants to be determined. The function 

N

d
a b
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f    satisfies the nonlinear ODE 
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where 0 2  and 4  are constants. Substituting Eq-
uation (3) with Equation (4) into the ODE Equation (2) 
and setting the coefficients of the different powers of 

,q q



q

if   to zero yields a set of algebraic equations for 0 , 

i , i , i , i  and . Solving the algebraic equations 
by use of Maple or Mathematica, we have 0 , i , i , 

i , i  and  expressed by 0 2 4 . Substituting the 
obtained coefficients into Equation (3), then concentra-
tion formulas of travelling wave solutions of the NLPDE 
Equation (1) can be obtained. Selecting the values of 

0 2 4  and the corresponding JEFs 

a

b
a b

c d

, ,q q

c d

k

q

k
a

 

a
, ,q q q

f   from the 
table in Appendix and substituting them into the concen-
tration formulas of solutions to obtain the explicit and 
exact JEF solutions of Equation (1). Various solutions of 
Equation (4) were constructed using JEFs, and these re-
sults were exploited in the design of a procedure for gen-
erating solutions of NLPDEs. The JEFs  , ,sn s  n m  

 and  ,cn m cn   , mdn  where  dn 
0m m  1  is the modulus of the elliptic function, are 

double periodic and posses the following properties  

   2 2 1,sn cn  
    2 2 2 1,dn m sn  
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In addition when 1m  , the ,sn  cn  functions 
and dn  degenerate nh ,as ta   sec h  and ecs h , 
respectively, while when 0m  , , sn  cn  and 
dn  degenerate as sin ,  cos  and 1, respectively. 
So, we can obtain hyperbolic nction solutions and 
trigonometric function solutions in the limit cases when 

1m   and 0m  . Some more properties of JEFs can 
be found in [33]. 

2.1. (2+1) Regul
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ha ere the coefficients β1, 

Let us first consider the regularized long wave equati

1 2 1 2t x y x yu u u u u u u      
        (5)

2 0,   1 0,   γ2, 1  and 2  are all constants. 
Equation (5) is related to the drift waves in plasma and 
the Rossby waves in rotating fluids [44]. To look for trav-
elling wave solution of Equation (2.5), we make transfor-
mation    , , ,u x y t u    k lx ny t     and 
change Equ in form 

2u u u k u    

ation (5) to the 

0,                (6) 
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where , , , ,  and  are 0a , 
ts 

1a , 
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2a 1b
 b

2b
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2c , 1d
ined, 

2d


k
constan an need to e f   is a solu-
tion of Equation (4). Substituting Equatio 4) and Equa-
tion (8) into Equation (7) and setting the coefficients of 

n (

 if  , to zero, we get a system of nonlinear equations 
for , 1a , 2a , 1b , 2b , 2c , 1d , 2d  and k . Solving 
this tem by use of Mathematica, we obtain: 
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when , the solitary wave solutions of Equation (5) are obtained as follows: 1m 
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We have represented this solution for a set of parame-
ter values in Figure 1(a). 

When , the triangular periodic solutions of 
Equation (5) are obtained as follo

0m 
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We have represented this solution for a set of parame-
ter values in Figure 1(b). 

If , , , 0 1q   2
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and when , this yields the solitary solutions of 
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We have represented this solution for a set of parameter values in Figure 1(c).   

     (16) 
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Equation (5) as follows: 
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We have represented this solution for a set of parame-
ter values in Figure 1(d). 

If , , , 
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2.2. The Davey Stewartson Equation 

The dimensionless form of the DSE in (2+1) dimensions, 
with power law nonlinearity [45]. The DS model is ex-
actly integrable in shallow water and almost integrable in 
de

nd waves, including solitons, 
unstable rogue-wave type modes, Stokes waves and the 

We have represented this solution for a set of parame-
ter values in Figure 1(e). 

ep water. Furthermore, the model has easily identifi-
able coherent structures a

velocity field contains vortices, 
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(a)                                         (b) 

    
(c)                                         (d) 

 
(e) 

Figure 1. The solitary wave solution represented by Equations (14)-(18) for various values ω = 0.5, a1 = −1, a2 = −2, l = 0.9, m 
= 2, b1 = −3, b2 = −2, t = 20, c1 = 1, c2 = 1.1 for Figures 1(a)-(e) respectively. 
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w , the solitary solutions of Equations (25) and (24) are obtained as follows: hen m 1
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We have represented this solution for a set of parameter values in Figure 2(a). 
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We have represented this solution for a set of parameter values in Figure 2(b). 
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We have represented this solution for a set of parameter values in Figure 2(c). 
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e have represented this solution for a set of parameter values in Figure 2(d). W
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We have represented this solution for a set of parameter values in Figure 2(e). 
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In the current article, the solitary wave solutions of the 
two dimensional regularized long-wave equation in 
plasma and rotating flows simulated by using extended 
mapping method, and we hope these solitary waves are 
helpful to understand the nonlinear phenomena described 
by the resonant Davey-Stewartson equation in the fields 
like capillarity fluids. We have presented the extended 
mapping method to construct more general exact solu-

tions of NLPDEs with the help Maple and Mathematica. 
This method provides a powerful mathematical tool to 
obtain more general exact solutions of a great many 
NLPDEs in mathematical physics. Applying this method 
to the 2DRLW and DS equations and we have success-
fully obtained many new exact travelling wave s
Through our solutions for some partial differential equa-
tions non-linear, we found lack of interest in these two 
methods by the specialists with the knowledge that they 
give an solutions more realistic than many ways, espe-  



3. Conclusion 

olutions. 
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(a)                                         (b) 

    
(c)                                         (d) 

 
(e) 

Figure 2. The solitary wave solution represented by Equations (34), (36), (38), (40) and (42) for various values α = 1, β = 2, l = 
0.9, n = 2, Ω = 3; p = 0.5, t = 7, for Figures 2(a), 2(b), 2(c), 2(d), 2(e) respectively. 
 
cially as they deal with the equations of non-linear coef-
ficients fixed and transactions variable, which explain the
phenomena, physical and in the var
view this lack of interest due to the ease of the above- 
mentioned methods. 
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