
Applied Mathematics, 2012, 3, 857-863 
http://dx.doi.org/10.4236/am.2012.38127 Published Online August 2012 (http://www.SciRP.org/journal/am) 

Operator Equation and Application of Variation  
Iterative Method 

Ning Chen, Jiqian Chen 
School of Science, Southwest University of Science and Technology, Mianyang, China 

Email: chenning783@163.com 
 

Received June 8, 2012; revised July 8, 2012; accepted July 15, 2012 

ABSTRACT 

In this paper, we study some semi-closed 1-set-contractive operators A and investigate the boundary conditions under 
which the topological degrees of 1-set contractive fields, deg  , ,I A p   are equal to 1. Correspondingly, we can 

obtain some new fixed point theorems for 1-set-contractive operators which extend and improve many famous theorems 
such as the Leray-Schauder theorem, and operator equation, etc. Lemma 2.1 generalizes the famous theorem. The cal- 
culation of topological degrees and index are important things, which combine the existence of solution of for integra- 
tion and differential equation and or approximation by iteration technique. So, we apply the effective modification of 
He’s variation iteration method to solve some nonlinear and linear equations are proceed to examine some a class of 
integral-differential equations, to illustrate the effectiveness and convenience of this method. 
 
Keywords: Topology Degrees and Index; 1-Set-Contract Operators; Modified Variation Iteration Method;  

Integral-Differential Equation 

1. Introduction 

In recent years, the fixed point theory and application has 
rapidly development. 

That topological degree theory and fixed point index 
theory play an important role in the study of fixed points 
for various classes of nonlinear operators in Banach 
spaces (see [1-6]). We begin recall theorem A and lemma 
1.1 [3]. Then, several new fixed point theorems are ob- 
tained in Section 2, and the common solutions of the sys- 
tem of operator equations in Section 3. We also extend 
some examples for search solution of integral equation 
and integral-differential equation in Section 4 and Sec-
tion 5 by variation iterative method. In last part, we com- 
pare some figures, by numerical test and note that simple 
case of Schrodinger equation. The main results are Theo-
rem 2.2, Theorem 3.4-3.5, Example 3, Example 6, etc. 

2. Several Fixed Point Theorems 

Let  be a real Banach space,  a bounded open 
subset of  and 

E 
E   the zero element of  .E

If :A E  is a completely continuous operator, we 
have some well known theorems as follows (see [3,4]). 

First, we need following some definitions and conclu- 
sion (see [3]). For convenience, we first recall theorem A. 

Theorem A (see Theorem 1.1 in [3]) Suppose that A  
has no fixed point on  and one of the following 

conditions is satisfied, 

,

1) (Leray-Schauder) , Ax x   , for and 1;   
2) (Rothe) Ax x , for all  ;x
3) (Petryshyn) Let , Ax Ax x    , for all  

;x  
4) (Altman) 

2 2 2
Ax x Ax x   , for all .x  

then  deg , , 1I A    , and hence A  has at least one 
fixed point in  . 

Lemma 2.1 (see Corollary 2.1 [3]) Let  be a real 
Banach Space, 

E
  is a bounded open subset of  and E

.   
If :A E is a semi-closed 1-set-contractive opera- 

tor such that satisfies the L-S boundary condition 

,Ax tx  for all x  and       (2.1) 1,t 

then  deg , , 1I A    , and so A  has a fixed point 
in .  

Remark This lemma 2.1 generalizes the famous L-S 
theorem to the case of semi-closed 1-set-contractive op- 
erators. 

First, we state following some extend conclusion (see 
theorem [5]). 

Theorem 2.2 Let , ,E A  be the same as in lemma 
2.1. Moreover, if there exists 1, 0, 0     , - 
positive integer such that 

n

( ) ( )
4 2 ,

for all .

n n n n
Ax x Ax x Ax x

             


(2.2) 

x
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Then  if  deg , , 1I A    A  has no fixed points 
on  and so  A  has a fixed point in  . 

Proof. By lemma 2.1, we can prove theorem 2.2. Sup-
pose that A  has no fixed point on . 

Then assume it is not true, there exists 0 0, 1x    
such that 0 0 0Ax x . It is easy to see that 0 1.   

Now, consider the function defined by 

     ( ) ( )
4 2

n n
f t t t

            1,

1

,

 

for any  1.t 
Since 

     
  

( )

( ) 1

4

2 0

n

n

f t n n t

n n t

  

  

  

  

  

  

    

    
 

and by formal differential,  f t  is a strictly increasing 
function in   and so 1, ,    1f t f  for . 
Thus 

1t 

     ( ) ( )
4 2 1 2

for any 1.

n n n nt t t

t

                 



1,t 
 

Consequently, noting that 0 0,x   0 1  , we have 

 

( ) ( )

0 0 0 0 0

( )( )

0

( )

0 0 0 0

4 4

2 1

2 ,

n n

nn

n n n

Ax x x x

x

Ax x Ax x

   

    

     





 

  

  

  

    

  

)

  

 

which contradicts (2.2), and so the condition (L S  is 
satisfied. Therefore, it follows from lemma 2.1 that the 
conclusions of theorem 2.2 hold. 

Theorem 2.3 Let  be the same as in lemma 
2.1. Moreover, if there exists 

, ,E  A
1, 0, 0     ,  

positive integer such that 
,m n

  ( )

( )

1

, for all .

n n n

n

Ax m x Ax mx Ax

x x

     

  

  

 

   

 
  (2.3) 

Then  if  deg , , 1,I A    A  has no fixed points 
on  and so  A  has a fixed point in  . 

Proof. Similar proof of that theorem 2.2. 
Now, we consider the function defined by 

     ( ) ( )
1 1

n n
f t t m t m

              ,  

for any  and . 1,t    0f t 
So,  
 f t  is a strictly increasing function in  1, ,  and 
   1f t f  for . We have 1t 

    
 

( ) ( )
1 1

1,

n n

n n

t m t m

t m t

  

  

   



    

  



 

for any . 1t 
Consequently, noting that 0 0,x   0 1  , we have 

  ( )

0 0 0 0

( )

0

1
n n n

n

Ax m x Ax mx Ax

x

  
0

  

  

  

 

   


 

which contradicts (2.3). Therefore, it follows from le- 
mma 2.1 that the conclusions of theorem 2.3 hold. 

Corollary 2.4 If 

  ( )
1 ,

n n
Ax m x Ax mx Ax

   n       
  (2.4) 

then (2.3) holds. By theorem 2.3, A  has a fixed point in 
 . 

We get easy theorem 2.5 in bellow. So, extend (vi) of 
theorem 2.6 in [3], omit the similar proof. 

Theorem 2.5 Let , ,E A  be the same as in lemma 
2.1. Moreover, if there exists 1, 1    and - 
positive integer such that  

,m n

( )
, for all .

n n n
Ax Ax mx x x

         (2.5) 

Then  deg , , 1I A    , if A  has no fixed points 
on   and so A  has at least one fixed point in  . 
(Let 1,m   that is theorem 2.4 in [5]). 

3. Operator Equations 

We will extend Lemma 2 and Theorem 2, adopt same 
notation and method in [7] in following form. 

Let  be a real Banach space, and -posi- 
tive integer. 

E 1,p m

Lemma 3.1 When  the following holds: 1, 1t p 

    1 1 1 1
mp mpmpm t t t      .  

Proof. Let       1 1 1 1
mp mpmpf t mt m t t       , 

similar the proof of lemma 2 in [7], we easy get 
  0.f t   In fact, by derivative of it, we have 

       
 

    

11

1

1 11

1 1

1 ,

1 1 1

mpmp

mp

mp mpmp

f t m mp t m mp t

mp t

mp t m t t





 

    

 

.       

 

Since  

 
  

 

   

11

1

1 1

1 1

1

1 1

1 1

1 1 1

1 1 1 1
1 1

1 1 1 1

2
0.

1

mpmp

mp

mp mp

mp mp

t t

m t

t t

m t t

m t m t

m





 

 

 

  

                 

                

  


 

We obtain that 
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    11 1 1
mp mpmpt t m t

       1
1 ,

0

 

that is, 

    1 11 1 1 1
mp mpmpmp t m t t

         .  

Thus,  Therefore,   0f t   f t
0,

 is a strictly mo- 
notone increasing function in  .When  we 
have  and 

 1t 
   1 ,f t f  1 2 0,mp f m   that is 
.  f t 0

Hence, 

     1
1 1 1

mp mpmpt t m t
     1,  

where  We complete the proof of this lemma 
3.1. 

1, 1.t p 

Theorem 3.2 Let  be a bounded open convex sub- 
set in  and 

D
;D,E    Suppose that :A D E  is a 

semi-closed 1-set-contradictive operator, and m, n-posi-
tive integer such that 

 1
mp mp mp mp

m Ax x Ax x Ax x      ,

.

 

for every  

, 1x D p                 (3.1) 

Then the operator equation Ax x  has  solution 
in . 

a
D

Proof. By (3.1), we know that Ax x  has no solu-
tion in , that is D x Ax , for every .x D  We shall 
prove 

,x tAx  for every  for every  0,1 ,t .x D   (3.2) 

In fact, suppose that (3.2) is not true that is there exists 
a and an  0 0,1 ,t  0x D  such that 0 0 0 ,x t Ax  that 
is 1

0 0 0Ax t x . 
By (3.1), we obtain  

  1 1
0 0 0 0 0

41
0 0 0

1

,

mp mp

mp

m t x x t x x

t x x

 



   

 
 

for every  0

This is because 
, 1x D p  .

0 ;x D  hence 0 0,x   then we  

have       1 1
0 0 01 1 1

mp mpm t t t     
1

1.

,

mp 

Let  as  we have   0

That is    then this 
is a contradiction to Lemma 3.1. 

,t t  0 0,1 ,t 
 1 1

mp
m t  

1.t 
 1

mp
t1 mpt 

Thus, 

,x tAx  for every  for every 0,1 ,t .x D   (3.3) 

From (3.2) and (3.3), we know that .x tAx  By Ref 
[6], we obtain that  , , 1.i A D E   Then this operator 
equation Ax x  has a solution in  .D

Theorem 3.4 Let  be a bounded open convex sub- 
set in and 

D
;D,E    Suppose that , :A B D E  are 

semi-closed. 
1-set-contradictive operator, and m, n-positive integer 

such that 

 1

, for every , 1.

mp mp mp

mp

m Ax x Ax x Ax

Ax Bx x D p

    

   
    (3.4) 

Then the operator equation ,Ax x Bx x   has  
common solution in  (omit the proof of this theorem). 

a
D

Theorem 3.5 Let Same as assume theorem 3.1. Sup- 
pose that , , :A B C D E  are semi-closed 1-set-contra- 
dictive operator, and m, n-positive integer, substitute (3.5) 
for inequality bellow  

 1

, , 1.

mp mp mp

mp

m Ax x Ax x Ax

Ax Bx Cx x D p

    

    
 

Then the operator equation ,Ax x Bx Cx x    has 
 common solution in  (omit this proof). a D

4. Solution of Integral Equation 

Recently, the variational iteration method (VIM) has 
been favorably applied to some various kinds of nonlin- 
ear problems, for example, fractional differential equa- 
tions, nonlinear differential equations, nonlinear thermo- 
elasticity, nonlinear wave equations. 

In this section, we apply the variation iteration method 
(simple writing VIM) to Integral equations bellow (see 
[8,9]). To illustrate the basic idea of the method, we con-
sider: 

     .L u t N u t g t          

The basic character of the method is to construct func-
tional for the system, which reads: 

       1 0
d

x

n n n nu x u x s Lu Lu Nu g s       s  

Which can be identified optimally via variation theory, 
 is the nth approximate solution, and nu nu  denotes a 

restricted variation, i.e., 0.nu   There is a iterative 
formula:  

       1 , d
b

n na
u x f x k x t u t t    ,

d

 

of this equation 

       ,
b

a
u x f x k x t u t t            (*) 

Theorem 4.1 (see theorem 3.1 [8]) Consider the itera- 
tion scheme    0 ,u x f x and 

       1 , d
b

n na
u x f x k x t u t t    .  

Now, for 0,1,2, ,n    to construct a sequence of 
successive iterations that for the  for solution of 
integral equation (*). 

  nu t 
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In addition, we assume that  

 2 2, d d ,
b b

a a
k x t x t B     

and  then if    
2

, ,a bf x L 1 ,B   the above iteration 
converges in the norm of  to the solution of inte- 
gral equation (*). 

 
2

,a bL

Corollary 4.2 If      1 2, ,k x t k x t k x t  , ,  and 

 2 2, d d ,
b b

a a
k x t x t B     

then assume  if    
2

, ,a bf x L 1 ,B   the above iter- 
ation converges in the norm of  to the solution of 
integral equation (*). 

 
2

,a bL

Example 1 Consider that integral equation  

     1

0
du x x x x xt u t t              (4.1) 

where , and 0)0( u

   0 0 1,0u x x x x         1

n

 

From that 

     1

10
d .nu x x x x xt u t t         

We have 
1 1

2 2
l

 
 
     

1

3

0

 

     1

1 0
d

,

u x x x x xt u t t

x x x xl

 

 





   

   

  

     1

2 0
d

1 .
3

u x x x x xt u t t

x x x lx

 

 





   

      
 

 1

 

From theorem 4.1 and simple computation, we obtain 
again that 

   1 12 2 2

0 0

1
d d d d ,

9

b b

a a
xt x t xt x t B         

and by theorem 4.1 if 3,   then iterative  

     1

1 0
dnu x x x x xt u t        n t  

is convergent. 
Then inductively, we have  

     1

1 0

2

d

1
3 3 3

n

n

u x x x x xt u t t

x x x

lx

 

 



  

    

  

                
       



 .

n




 

The solution of integral Equation (4.1) by calculating 
as follows. 

   

       
11 1

lim

2 2 3 3 3

n
n

u x u x x x x

x

 

.   



 

   

     
 

Example 2 We consider that integral equation  

     14

0
d ,u x x x xt t u t t            (4.2) 

   4
0 0 1u x x x  .     

From (*), we have that 

     14
1 0

dn nu x x x xt t u t      t  

In fact, 
1 12 2

0 0

2

( , ) d ( ) d d

1 1 1 7

9 3 3 9

b b

a a
k x t Ex t xt t x t

B

 

      

   
 

and by Corollary 4.2, then if 3 7 ,   iterative se- 
quence is convergent the solution of Equation (4.2). 

5. Some Effective Modification 

In this section, we apply the effective modification method 
of He’s VIM to solve some integral-differential equa-
tions. 

In [10] by the variation iteration method (VIM) simu- 
late the system of this form 

 .Lu Ru Nu g x    

To illustrate its basic idea of the method .we consider 
the following general nonlinear system 

  ,Lu Ru Nu g x    

Lu  the highest derivative and is assumed easily in-
vertible,  is a linear differential operator of order less 
than  represents the nonlinear terms, and 

R
,L N g  is the 

source term. Applying the inverse operator 1
xL  to both 

sides of Equation (1), and we obtain  

   1 1 .x xu f L Ru L Nu     

The variation iteration method (VIM) proposed by 
Ji-Huan He (see [5,10] has recently been intensively 
studied by scientists and engineers. the references cited 
therein) is one of the methods which have received much 
concern .It is based on the Lagrange multiplier and it 
merits of simplicity and easy execution. Unlike the tradi-
tional numerical methods. Along the direction and tech-
nique in [5], we may get more examples bellow. 

Example 3 Consider the following integral-differential 
equation  

   1(5)

0

4
d ,

3
xu x e x xtu t t           (5.1) 
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where In similar 
example1, we easy have it. 

       0 1, 0 2, 0 1, 0 1u u u u      .

According to the method, we divide f  into two parts 
defined by  

     

   

0 0 0

6 6
1

, ,

4 1
.

3 6! 540

x xf x x e u x f x x e

f x x x

    

   
 

Taking     61 540xf x x e x   , then we have 

      16 1
1 00

1 540 d

,

x
x

x

u x x e x L xtf t t

x e

   

 

  

where  and the proc-
esses: 

1

0 0 0 0 0
( ) ( )d d d d d ,

x x x x x

xL t t t t t       

      16 1
1 0

1 540 d , 1.x
n x nu x x e x L xtu t t n
       

Thus,  1 ,x
nu x x e    then   xu x x e   is the 

exact solution of (5.1) by only one iteration leads to a 
solution. 

Example 4 (similar example 3 in [5]) Consider the 
following nonlinear Fredholm integral equation  

 
   

 

1 1

2 20 0

1

20

9π 3 2
d

12 3 2

1
d .

31 ( ) 3

u x x t
u t u t

t

u t

   
 

 
  

 

 


    (5.2) 

where from that arctan1 π 4,  arctan 3 π 3.  

       0 0 1 0, 3π 4 , ,u x f x x f x f f f      1  

by iterative method: 

     

  

1 1

1 2 20 0

1

20

9π 3 2
d

12 3 2

1
, 1.

31 3

n
n n

n

u x x t
u t u t

t
d x n

u t

    
 

   
 

 

 
 

Clearly,  is evident exact solution of (5.2). xxu )(

6. Some Notes for Schrodinger Equations 

The quantum mechanics theory and application in more 
field are widely important meaning. 

Along the direction and technique in [11] and [12], we 
may get more examples. 

As we all know the solution of initial problem for 
Schrodinger equation bellow  

 
   

2 , , , 0,

,0 , .

n
t

n

u ia u f x t x R t

u x x x R

     


 
       (6.1) 

Assume that real part and imaginary part of 

   , , ,x f x t  are real analytical function for ,nx R  
then this solution of the problem may express in form: 

 

 
      

2

0
0

,

, d
!

k

t kk k k
x

k

u x t

ia
t x t f x

k
.  





      
  (*) 

Now, the authors consider again one-dimension Sch- 
rodinger equation as application form: 

      0, ,xx x f x x x R             (6.3) 

   2m f x E V
h

  x .               (6.4) 

where look in (6.3), that  x  be the part in space for 
wave function  ,x t


E

, the  in (6.4) be the poten-
tial function h  be arrange plank constant,  be the 
practical mass,  express energy. 

V x
m

The Equation (6.3) for with extensive equation, by cal-
culating and search the general solution that 

      1 2sin cos x C x f x C x f x      (6.5) 

So, by (6.3) and with power of (6.4), we consider that 
two case: 

1) (see [13,14]) The infinite deep power trap  

     2 2 2 2 22 , π 2 , 0,1, 2, .   nV x x E h m n n   

2) The shake Power  

     2 2 , 0.5 , 0,1, 2, .nV x x E n h n      

We take parameters 1 21, 1.m h C C      
Then 

 
2 2 2 2 2 2

2
22

2
2 2

2 π π

2 12

π , 0,1, 2, .
2

m h x n x
f x n

mh

x
n n


 

2
    

 
 

   
 





 

Furthermore, from (6.5), we obtain analytic solution 
for  x  and  .x  So, we have that 

    
  

2 2

2 2

sin π 0.5

cos π 0.5 , 0,1, .

x x n x

x n x n

  

   
   (6.61) 

   
 

2

2

sin 2 1

cos 2 1 , 0,1,2, .

x x n x

x n x n

   

    
    (6.62) 

See Figures 1 and 2 below. 
Therefore, by using of mathematical software with 

Matlab (see [14]), we may proceed numerical imitate, to 
get approximate solution, see Figures 3 and 4. 
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Fig 1,   En=(n*phi)2,m=h=w=1,n=0,1,2,3,4.
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Figure 1. The φ(x) is the space form of wave function φ(x.t) 
for (6.3) under action of shake V(x) = 0.5x2, by φ0, φ1, ···, φ4 
express for 0-level, 1-level,···, 4-level wave function respec-
tively. 
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Fig 2  En=(n+0.5),m=h=w=1,n=0,1,2,3,4.
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Figure 2. The ϕ(x) is the space form of wave function ϕ(x,t) 
for (6.3) under action of shake power V(x) = 0.5x2, by φ0, 
φ1, ···, φ4 express for 0-level, 1-level,···, 4-level wave func-
tion respectively. 
 

In fact, according to the finite difference principle, a 
one-dimensional Schrodinger equation can be converted 
into a set of nodal liner equations expressed in a matrix 
equation after the space is divided into a series of dis-
crete nodes with an equal interval. The matrix left divi-
sion command offered in the MATLAB software can be 
used to derive the function approximation of each un-
known nodal function. 

7. Concluding Remarks 

In this Letter, we consider operator equations and apply  
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Fig 3. Schrodinger-EQ:d2y/dx2+f(x)y=0,En=(n*pi)2,
N=100,Alfa=1,h=1,m=1,n=3

V=x2/2

Numer-solution
Y(2)=0.7

Y(-2)=0.7

 

Figure 3. The φ(x) is numerical solution by action of (6.3) 
under the shake power V(x) = 0.5x2 and in boundary value 
condition φ(–2) = φ(2) = 0.7, the φ3(x) express 3-level (here 
step length = 0.04, the energy En = ((nπ)2, n = 3). 
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Fig 4. Schrodinger-EQ:d2y/dx2+f(x)y=0,En=(n+0.5),
N=100,Alfa=1,h=1,m=1,n=3

V=x2/2

Numer-solution
Y(2)=0.7

Y(-2)=0.7

 

Figure 4. The φ(x) is numerical solution by action of (6.3) 
under the shake power V(x) = 0.5x2 and in boundary value 
condition φ(–2) = φ(2) = 0.7, the φ3(x) express 3-level (here 
step length=0.04, the energy En = ((nπ)2, n = 3). 
 
the variation iteration method to integral-differential equ- 
ations, and extend some results in [3,8,10]. The obtained 
solution shows the method is also a very convenient and 
effective for various integral-differential equations, only 
one iteration leads to exact solutions. Recently, the im-
pulsive differential delay equations is also a very inter-
esting topic, and we may see [10] etc. 

In our future work, we may try to do some research in 
this field and may be could obtain some better results. 

8. Acknowledgements 

This work is supported by the Natural Science Founda-

Copyright © 2012 SciRes.                                                                                  AM 



N. CHEN, J. Q. CHEN 

Copyright © 2012 SciRes.                                                                                  AM 

863

tion (No. 11ZB192) of Sichuan Education Bureau and 
the key program of Science and Technology Foundation 
(No. 11ZD1007) of Southwest University of Science and 
Technology. 

The author thanks the Editor kindest suggestions, and 
thanks the referee for his comments. 

REFERENCES 
[1] D. Guo and V. Lashmikantham, “Nonlinear Problems in 

abstract Cones,” Academic Press, Inc., Boston, New York, 
1988. 

[2] Y. J. Cui, F. Wang and Y. M. Zou, “Computation for the 
Fixed Index and Its Applications,” Nonlinear Analysis, 
Vol. 71, No. 1-2, 2009, pp. 219-226.  
doi:10.1016/j.na.2008.10.041 

[3] S. Y. Xu, “New Fixed Point Theorems for 1-Set-Con- 
tractive Operators in Banach Spaces,” Nonlinear Analysis, 
Vol. 67, No. 3, 2007, pp. 938-944.  
doi:10.1016/j.na.2006.06.051 

[4] N. Van Luong and N. X. Thuan, “Coupled Fixed Points 
in Partial Ordered Metric Spaces and Application,” 
Nonlinear Analysis, Vol. 74, No. 3, 2011, pp. 983-992. 
doi:10.1016/j.na.2010.09.055 

[5] N. Chen, and J. Q. Chen, “New Fixed Point Theorems for 
1-Set-Contractive Operators in Banach Spaces,” Nonlin-
ear Analysis, Vol. 6, No. 3, 2011, pp. 147-162.  

[6] G. Z. Li, “The Fixed Point Index and the Fixed Point 
Theorems of 1-Set-Contrac-Tive Mappings,” Proceedings 
of the American Mathematical Society, Vol. 104, No. 4, 
1988, pp. 1163-1170. 
doi:10.1090/S0002-9939-1988-0969052-9 

[7] C. X. Zhu and Z. B. Xu, “Inequality and Solution of an 
Operator Equation,” Applied Mathematics Letters, Vol. 
21, No. 6, 2008, pp. 607-611. 
doi:10.1016/j.aml.2007.07.013 

[8] R. Saadati, M. Dehghan, S. M. Vaezpour and M. Saravi, 
“The Convergence of He’s Variational Iteration for Solv-
ing Integral Equations,” Computers & Mathematics with 
Applications, Vol. 58, No. 11-12, 2009, pp. 2167-2171. 
doi:10.1016/j.camwa.2009.03.008 

[9] Y. F. Xu, “The Variational Iteration Method for Autono-
mous Ordinary Differential Equations with Fractional 
Order,” Journal of Hubei University Nationalities (Nature 
Science Edition), Vol. 29, No. 3, 2011, pp. 245-249. 

[10] G. B. Asghar and S. N. Jafar, “An Effective Modification 
of He’s Variational Iteration Method,” Nonlinear Analy-
sis: Real World Application, Vol. 10, No. 5, 2009, pp. 
2828-2833. doi:10.1016/j.nonrwa.2008.08.008 

[11] J. H. He, “Variational Iteration Approach to Schrodinger 
Equation,” Acta Mathematica Scienca, Vol. 21A, 2001, 
pp. 577-583.  

[12] S .Q. Wang and J. H. He, “Variational Iterative Method 
for Solving Integro-Differential Equations,” Physics Let-
ters A, Vol. 367, No. 3, 2007, pp. 188-191. 
doi:10.1016/j.physleta.2007.02.049 

[13] Z. Z. Zhang and S. R. Lu, “Numerical Solution of Sch- 
rodinger Equation,” Journal of Shanxi Daton Universeity, 
Vol. 26, No. 2, 2010, pp. 22-24. 

[14] Y. F. Wang and L. B. Tang, “Direct Solution of One-Di- 
mensional Schrodinger Equation through Finite Differ-
ence and MATLAB Matrix Computation,” INFRARED 
(MONTHLY), Vol. 31, No. 3, 2010, pp. 42-46. 

 

http://dx.doi.org/10.1016/j.na.2008.10.041
http://dx.doi.org/10.1016/j.na.2006.06.051
http://dx.doi.org/10.1016/j.na.2010.09.055
http://dx.doi.org/10.1090/S0002-9939-1988-0969052-9
http://dx.doi.org/10.1016/j.aml.2007.07.013
http://dx.doi.org/10.1016/j.camwa.2009.03.008
http://dx.doi.org/10.1016/j.nonrwa.2008.08.008
http://dx.doi.org/10.1016/j.physleta.2007.02.049

