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ABSTRACT 

In this paper, we present the numerical solution for the optimal control problem of monodomain model with Rogers- 
modified FitzHugh-Nagumo ion kinetic. The monodomain model, which is a well-known mathematical model for 
simulation of cardiac electrical activity, appears as the constraint in our problem. Our control objective is to dampen the 
excitation wavefront of the transmembrane potential in the observation domain using optimal applied current. Various 
conjugate gradient methods have been applied by researchers for solving this type of optimal control problem. For the 
present paper, we adopt the modified Fletcher-Reeves method and modified Dai-Yuan method for computing the opti-
mal applied current. Numerical results show that the excitation wavefront is successfully dampened out by the optimal 
applied current when the modified Fletcher-Reeves method is used. However, this is not the case when the modified 
Dai-Yuan method is employed. Numerical results indicate that the modified Dai-Yuan method failed to converge to the 
optimal solution when the Armijo line search is used. 
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1. Introduction 

Sudden cardiac death is a leading cause of death among 
adults in most countries. In the United States, sudden 
cardiac death episodes affect 450,000 people each year 
[1]. In Singapore, about 23% of approximately 16,000 
deaths that occur every year are reported as cardiac death 
[2]. Also, a recent study in China indicates that sudden 
cardiac death takes the lives of over 544,000 people an-
nually [3]. Sudden cardiac death occurs when the elec-
trical system of the heart malfunctions, causing an ir-
regular heart rhythm. This irregular heart rhythm cause 
the heart muscle to quiver and the heart is no longer able 
to pump blood to the body and brain. Consequently, 
death can occurs within minutes unless the normal heart 
rhythm is restored through defibrillation. Nowadays, the 
implantable cardioverter defibrillator (ICD) is increas-
ingly being used by patients who are at significant risk of 
sudden cardiac death. If any life-threatening arrhythmia 
is detected by ICD, an energy electrical shock will be 
delivered to the heart to restore normal heart rhythm.  

The optimal control approach to the defibrillation pro- 
cess was first proposed by Nagaiah et al. [4], with the 
objective to determine the minimal applied current which 
can help in the defibrillation process. More specifically, 
the control objective is to dampen the excitation wave-

front of the transmembrane potential in the observation 
domain using optimal applied current. The monodomain 
model was employed by Nagaiah et al. [4] to represent 
the electrical behavior of the cardiac tissue. The mono- 
domain model consists of a parabolic partial differential 
equation (PDE) coupled to a system of nonlinear ordi-
nary differential equations (ODEs), which is a well- 
known mathematical model for simulation of cardiac 
electrical activity [5-7]. Consequently, the optimization 
problem of defibrillation process can be generally known 
as optimal control problem of monodomain model. 

In the literature, the nonlinear conjugate gradient me- 
thods have been frequently applied by researchers for 
solving the optimal control problem of the monodomain 
model. Nagaiah et al. [4] employed the Polak-Ribière- 
Polyak (PRP) method [8,9], the Hager-Zhang (HZ) me- 
thod [10] and the Dai-Yuan (DY) method [11] to solve 
the optimal control problem of this monodomain model. 
Later, Ng and Rohanin [12] utilized the modified version 
of the DY method as proposed by Zhang [13] to solve the 
optimal control problem of monodomain model. On the 
other hand, the Hestenes-Stiefel (HS) method [14] has 
been applied by Ainseba et al. [15] for solving the optimal 
control problem of tridomain model. For the present pa-
per, we present the numerical solution for the optimal  
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control problem of monodomain model using two modi-
fied conjugate gradient methods, namely modified Flet- 
cher-Reeves (MFR) method [16] and modified Dai-Yuan 
(MDY) method [17]. 

This paper is organized as follows: In Section 2, we 
present the optimal control problem of monodomain 
model with Rogers-modified FitzHugh-Nagumo ion ki-
netic. In Section 3, we discuss the optimize-then-discre- 
tize approach used to discretize the optimal control prob-
lem. In Section 4, we present the optimization procedure 
for solving the discretized optimal control problem. Next, 
the numerical experiment results are given in Section 5. 
Lastly, we conclude our paper in Section 6. 

2. Optimal Control Problem of Monodomain 
Model 

In this section, we present the optimal control problem of 
monodomain model with Rogers-modified FitzHugh- 
Nagumo ion kinetic. Let  be the computational 
domain with Lipschitz boundary , o  be the 
observation domain and  be the control domain. 
We further set 
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The optimal control problem of monodomain model is 
therefore given by 

   
 

 
 
 

22

0

0

0

1
min ,  d d d

2

s.t.   0, in 

       0, in 

       0, on 

        ,  0 , on 

        ,  0 , on 

o c

T

e o e

m ion

cJ V I V I t

V
D V C I I H

t
w

f H
t

D V H

V x V

w x w



 



 
  


      




 

   

 

 

   

 (1) 

where  
1

   and   
1 1iD D I eI

 

 
 

                 (2) 

  1 2, 1 1ion
th p

V V
I V w c V c wV

V V

  
        

         (3) 

  3 4,
p

V
f V w c c w

V

 
 

 
                       (4) 

Here   is the regularization parameter, T  is the 
final simulation time,   is the outer normal to  , i  
is the intracellular conductivity tensor, 

D
  is the sur-

face-to-volume ratio of the cell membrane, m  is the 
membrane capacitance, 

C
  is the constant scalar used to 

relate the intracellular and extracellular conductivity ten-
sors, pV  is the plateau potential, th  is the threshold po- 
tential,  are positive parameters, 

V

1 2 3 4, , ,c cc c  ,ionI V w  

is the current density flowing through the ionic channels, 
 ,f V w  is the prescribed vector-value function,  
 ,V x t  is the transmembrane potential,  ,eI x t

 ,w x t
 is the 

extracellular current density stimulus and  is the 
ionic current variable. Note that Equations (3) and (4) are 
obtained from the Rogers-modified FitzHugh-Nagumo 
model [18]. 



For the optimal control problem defined in Equation 
(1), eI  is the control variable while  and  are the 
state variables. The control variable e

V w
I  is chosen such 

that it is nontrivial only on c , and extended by zero on 
\ c  . Furthermore, eI  is chosen in the best possible 

way to achieve the control objective, i.e. to dampen out 
the excitation wavefront of transmembrane potential  
in the observation domain 
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problem of monodomain model, i.e.  

    ,e eV I w Ie . This allows us to rewrite the 
cost functional in Equation (1) as 
C I 

 

  d de c t

t

2 2

0

1
d

2 o c

e

T

e o

J I

V I I
 

     

ˆ

    (5) 

where Equation (5) is known as the reduced cost func-
tional. 

3. Discretization of Optimal Control 
Problem 

In the present paper, a classical approach is used to dis-
cretize the optimal control problem of monodomain 
model, i.e. the optimize-then-discretize approach. Let’s 
introduce the Lagrange multipliers  and  ,p x  ,q x t , 
which arealso known as the adjoint variables, the La-
grange functional  is therefore defined as L
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The first-order necessary conditions for optimality are 
stated by requiring stationarity of Equation (6) with re-
spect to , resulting in , , , , eV w p q I
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where   denotes the partial derivative with respect to * 
and 



o
 denotes the transmembrane potential in oV  . 

We further obtain the terminal and boundary conditions 
as follows 
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By utilizing the initial and boundary conditions in 
Equation (1) as well as Equations (7)-(13), the state and 
adjoint systems can be formed as follows 

 

 
   0 0

, in  

, in       

0, on       

,  0 and   ,  0 , on  

m ion

V
C D V I I

t

w
f H

t

D V H

V x V w x w

 



       
  


    


  

H



       (14) 

     

   

 
   

, in 

, in     

0, on       

,  0 and ,  0, on       

m ion oVV

ion ww

p
C D p I p f q V

t

q
I p f q H

t

D p H

p x T q x T

 





        H  
    


    


   

 (15) 

where Equation (14) is known as the state system while 
Equation (15) is known as the adjoint system. Also, from 
Equation (11), we can define the reduced gradient as 
follows 
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In order to compute the reduced gradient, we require 
solving the state system in Equation (14) forward in time, 
and then the adjoint system in Equation (15) backward in 
time. 

Recall that the monodomain model consists of a para-
bolic PDE coupled to a system of nonlinear ODEs. Thus, 
the operator splitting technique [20] is applied to Equa-
tions (14) and (15) for decomposing the systems into 
sub-systems that are much easier to solve numerically. 
Consequently, the state system becomes 
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and the adjoint system becomes 
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For the discretization procedure, the linear PDEs in 
Equations (17) and (18) are discretized with Galerkin 
finite element method in space and Crank-Nicolson me- 
thod in time while the nonlinear ODEs in Equations (17) 
and (18) are discretized with forward Euler method in 
time. Thus, the discretized state system is given as 
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On the other hand,the discretized adjoint system is 
given as 
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where  is the mass matrix,  is the stiffness ma-
trix, 

M

1t
K

  and 2t  are the local time-steps. Once the 
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state and adjoint systems have been discretized as shown 
in Equations (19) and (20), the optimization algorithms 
can be applied for solving the discretized optimal control 
problem. 

4. Optimization Procedure 

To solve the discretized optimal control problem of 
monodomain model, the modified Fletcher-Reeves (MFR) 
method [16] and modified Dai-Yuan (MDY) method [17] 
are used. Starting from an initial guess , the control 
variable is updated using the following recurrence 

0
eI
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where  is the step-length and  is the search 
direction defined by 

0k  kd

 
 
 

 
1

1
* *2

ˆ ,                                                 if 0

ˆ
ˆ1 ,

ˆ

k

Tk k k

k k k k

k

J

J
J k

J
 




 

           
   

e

e

e

e

I

d I d
I d

I
if 0

k

(22) 

where   stands for the Euclidean norm of vectors and 

*  is the conjugate gradient update parameter. The 
conjugate gradient update parameters for the MFR and 
MDY methods are given as 
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Recall that the FR and DY methods are descent meth-
ods with their descent properties depend on the line 
search, e.g. the Wolfe line search. On the other hand, the 
search directions for the MFR and MDY methods satisfy 
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which is independent of any line search used. As a result, 
the MFR and MDY methods possess an advantageover 
the FR and DY methods since the Armijo line search can 
be used. Unlike the Wolfe line search, the Armijo line 
search only required us to solve the discretized state sys-
tem in Equation (19). Consequently, the computational 
demand for solving the optimal control problem of mo- 
nodomain model is reduced. Given an initial step-length 
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For the stopping criteria, we consider the following 
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The optimization algorithm for solving the discretized 
optimal control problem is therefore given as follows. 

Optimization Algorithm 

Step 0. Provide an initial guess  and set 0
eI 0k  . 

Step 1. Solve the discretized state system in Equation 
(19). 

Step 2. Evaluate the reduced cost functional  ˆ kJ eI . 
Step 3. Use the result obtained in Step 1 to solve the 

discretized adjoint system in Equation (20). 
Step 4. Update the reduced gradient 
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Step 7. Compute  using Equation (22). kd
Step 8. Compute step-length k  that satisfies condi-

tion in Equation (26). 
Step 9. Update 1k

eI  using Equation (21). Set k = k+ 1 
and go to Step 1. 

5. Numerical Experiments 

In this paper, the numerical experiments are carried out 
on a computational domain     20,1 0,1 1 cm   
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The parameters that are used in our numerical experi-
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Now, we present the experiment results for the optimal 
control problem of monodomain model using the MFR 
and MDY methods. The minimum values of the reduced 
cost functional  ˆ kJ eI  along the optimization process 
are depicted in Figure 2. Note that the logarithmic scale 
is used in Figure 2 for clear presentation on how the 
minimum values of the reduced cost functional are de-
creased during the optimization process. 

 

As shown in Figure 2, the MDY method failed to con-
verge to the optimal solution and stopped at iteration 14th. 
This result indicates that the global convergence of the 
MDY method is not guaranteed if the Armijo line search 
is used. 

On the other hand, the MFR method successfully lo-
cated the optimal solution by taking 618 iterations. This 
result shows that the MFR method is very efficient in 
real computations even if the Armijo line search is 
adopted. By comparing the results obtained by these two 
methods, we conclude that the MFR method outperforms 
the MDY method if the Armijo line search is considered. 

Figure 1. Computational domain  and its sub-domains. 
 

Table 1. Parameters used in numerical experiments. 

Parameter Value Units 

  310  1cm  

mC  310  2mF cm  
l

iD  33 10  1S cm  
t

iD  43.1525 10  1S cm  

thV  11.3 10  mV  

pV  210  mV  

1c  1.5 2mS cm  

2c  4.4 2mS cm  

3c  21.2 10  1ms  

4c  1 dimensionless 

  410  dimensionless 

  17.062 10  dimensionless 

The norm of the reduced gradient for the MFR and 
MDY methods are illustrated in Figure 3. As shown in 
the figure, the gradient for the MDY method keeps in-
creasing from the beginning of the optimization process 
and finally stopped at iteration 14th. In contrast, the gra-
dient for the MFR method starts decreasing from the be-
ginning and finally approaches zero at the end of optimi-
zation iteration. 

Figure 4 illustrates the uncontrolled solution at times 
0.2 ms, 1 ms and 2 ms. The uncontrolled solution is ob-
tained where no current is applied to the computational 
domain. Observe that the uncontrolled wavefront spreads 

 

 

Figure 2. Minimum values of reduced cost functional  Ĵ  for 2 ms simulation time. 
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Figure 3. Norm of reduced gradient  Ĵ  for 2 ms simulation time. 

 

     
(a)                                        (b) 

 
(c) 

Figure 4. The uncontrolled solutions  V  at (a) 0.2 ms; (b) 1 ms; and (c) 2 ms. 

 
from the excitation domain to the computational domain 
during the time interval from 0 ms to 2 ms. This implies 
that the excitation wavefront will continue to spread to 
the whole computational domain if no current is applied.  

Figure 5 shows the controlled solutions at times 0.2 

ms, 1 ms and 2 ms using the MFR method. As shown in 
the figure, the excitation wavefront is successfully dam- 
pened out by the optimal applied current . Moreover, 
the excitation wavefront is almost completely dampened 
out at time 1 ms. 

opt
eI
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(a)                                        (b) 

 
(c) 

Figure 5. The controlled solutions  optV  at (a) 0.2 ms; (b) 1 ms; and (c) 2 ms using the MFR method. 

 

   
(a)                                        (b) 

 
(c) 

Figure 6. The controlled solutions  at (a) 0.2 ms; (b) 1 ms; and (c) 2 ms using the MDY method.  optV 
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Next, the controlled solutions at times 0.2 ms, 1 ms 

and 2 ms using the MDY method are shown in Figure 6. 
Observe that the excitation wavefront is unable to be 
dampened out by the applied current, and the excitation 
wavefront continue to spread to the computational do-
main. This phenomenon happens because the MDY me- 
thod failed to converge to the optimal solution  
during the optimization process. 

opt
eI

6. Conclusion 

In this paper, we have presented the numerical experi-
ment results for the optimal control problem of mono- 
domain model using the modified Fletcher-Reeves me- 
thod and modified Dai-Yuan method. Our experiment 
results show that the excitation wavefront is successfully 
dampened out by the optimal applied current when the 
modified Fletcher-Reeves method is used. However, 
when the modified Dai-Yuan method is employed, the 
excitation wavefront is not dampened out but continue to 
spread to the computational domain. We therefore con-
clude that the modified Fletcher-Reeves method outper-
forms the modified Dai-Yuan method when Armijo line 
search is used, and is suitable for solving the optimal 
control problem of monodomain model. 
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