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ABSTRACT 

The eccentric connectivity index based on degree and eccentricity of the vertices of a graph is a widely used graph in-
variant in mathematics. In this paper we present the explicit generalized expressions for the eccentric connectivity index 
and polynomial of the thorn graphs, and then consider some particular cases. 
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1. Introduction 

A topological index, based on degree and eccentricity of 
a vertex of a graph, known as eccentric connectivity in-
dex, first appeared for structure-property and structure- 
activity studies of molecular graphs [1] and shown to 
give a high degree of predictability of pharmaceutical 
properties. Now for any simple connected graph G = 

 with n vertices and m edges, the distance 
between the vertices vi and vj of , is equal to the 
length that is the number of edges of the shortest path 
connecting vi and vj [2]. Also for a given vertex vi of 

 its eccentricity  is the largest distance 
from vi to any other vertices of G [3-5]. The radius and 
diameter of the graph are respectively the smallest and 
largest eccentricity among all the vertices of G where as 
the average eccentricity of a graph is denoted by 

 and is defined as 

    ,V G E G
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Analogues to Zagreb indices of a graph Vukičević and 
Graovac [6] introduced the Zagreb eccentricity indices 

 and  by replacing degree of the vertices 
by its eccentricity. The eccentric connectivity index of a 
graph G was proposed by Sharma, Goswami and Madan 
[1] and is defined as 

 1E G  2E G
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n
c

G i G i
i

G d v v 


  , 

where  is the degree i.e. number of first neigh-
bor of vi of . Compare to other topological indices 

as the eccentric connectivity index has been found to 
have a low degeneracy [7], it subject to a large number of 
chemical [3,4,7-9] and mathematical studies [10,11]. Si- 
milar to other topological polynomials the eccentric 
connectivity polynomial of a graph G is defined as [11] 

 G id v
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ECP G x d v x
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so that, the connection between the eccentric connec-
tivity polynomial and the eccentric connectivity index is 
given by 

   ,1c G ECP G   , 

where  ,ECP G x  is the first derivative of  ,ECP G x . 
The concept of thorn graphs was proposed by Gutman 

[2] and different applications have been studied by many 
others. Let  1 2, , , np p p

1 1, 2,i

 be an n-tuple on positive 
integers then the thorn graph  of 
the parent graph G on n vertices 1 2  is formed 
by attaching pi ( ),

 * *
1 2, , , nG G p p p 

, , , nv v v
n   new vertices of degree 

one to each vertex vi of G. Various topological indices 
and polynomials such as wiener number [12,13], terminal 
Wiener index [14], modified Wiener index [15], altered 
Wiener index [16], Hosoya polynomial [17], Zagreb 
polynomial [18] and so on of the general and some par-
ticular thorn graphs and trees has already been studied. 

In this paper we present the expressions of the eccen-
tric connectivity index and polynomials of thorn graph in 
terms of its underlying parent graph and consider some 
special cases for which the number of thorns that is pen-
dant edges attached to any vertex of the parent graph is a 
linear function of its degree and eccentricity. 
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2. Main Results 

Theorem 1 For any simple connected graph G the 
 and  are related as  c G  *c G 

v



     *
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          (1) 

where G* is the thorn graph of G with parameters pi 

, .  1 1, 2,i n 
V GProof Let  and  be the vertex set of G 

and its thorn graph G* respectively, so that 
  *V G

   1 2, , , nV G v v v   

and 

   *
1 2 nV G V G V V V     , 

where Vi are the set of degree one vertices attached to the 
vertices vi in G* and ,i jV V i j  

ijv
. Let the vertices of 

the set Vi are denoted by  for j = 1, 2,···, pi and I =  

1, 2,···, n. Thus  *V G n T   where, .Then  
1

n

i
i

T


  p

n
the degree of the vertices vi in G* are given by 
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. Similarly the 
eccentricity of the vertices vi ,  in G* are 
given by i G iG

, for  and the 
eccentricity of the vertices vij are given by  

G
, for  and 
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Then the eccentric connectivity index of G* is given by 
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Now since 
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we get the desired result (1). 
Theorem 2 For any simple connected graph G, ec-

centric connectivity polynomial  and  
 are related as 
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Proof Since G* is the thorn graph obtained from G by 
attaching pi new pendent vertices to the vertex vi of G 
( ), just analogues to Theorem 1 the eccentric 

connectivity polynomial of G* is given by 
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and 
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we get the desired result. 
Corollary 1 Let G* is the thorn graph of G, with pa-

rameters 1 np p   , then 

1)      2 3 2G G m nt ece G     *c c  
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where  ece G  is the average eccentricity of G. 
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get the result as desired. 
2) Using the inequality between the arithmetic and 

geometric mean we have 
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Then  and hence 

from (2) the desired result follows. 
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Corollary 2 If the parameter pi  is equal to the 
degree of the corresponding ith vertex, then 

 1
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where m is the number of edges of G.  
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desired result is obtained. 

2) Similarly, as in this case , 

from (2) the required result follows. 
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Corollary 3 Let   be any integer so that  G id v  , 
1,2, ,i n   and if G* is the thorn graph of G with pa-

rameters  i Gp d  iv , then 
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Hence from (1) the desired result is obtained. 
2) Since in this case as, applying (3) 
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we get the desired result from (2). 
Corollary 4 If the parameter pi  is equal to the 

eccentricity of the corresponding ith vertex, then 
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where  and  1E G 1 ,ZE G x  are Zagreb eccentricity 
index and polynomial of G. 
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is the first derivative of  1 ,ZE G x . 
Corollary 5 Let τ be any integer so that  v  G i , 

 and if G* is the thorn graph of G with pa-
rameters , then 
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from (1) the desired result follows. 
2) Similarly in this case since  
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the desired result follows from (2). 

Corollary 6 If G* is the thorn graph obtained from G 
with parameters  i G ip ad v b 

1ip 
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2) Again to find eccentric connectivity polynomial for 
this case we have 
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Hence from (2) the desired result follows. 
Note that the Corollary 1, 2 and 3 can be obtained 

from above assuming a = 0, b = t; a = 1, b = 0 and 
1a   , b  . 

Corollary 7 If G* is the thorn graph obtained from G 
with parameters  i G ip a v b 
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the desired result follows from (1). 
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the desired result follows from (2). 
Note that the Corollary 1, 4 and 5 can be obtained 

from Corollary 7 assuming a = 0, b = t; a = 1, b = 0 and 
1a   , b  . 
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Proof 1) In this case, since 
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