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ABSTRACT 

In this paper, a modified FPGA scheme for the convolutional encoder and Viterbi decoder based on the IEEE 802.11a 
standards of WLAN is presented in OFDM baseband processing systems. The proposed design supports a generic, ro-
bust and configurable Viterbi decoder with constraint length of 7, code rate of 1/2 and decoding depth of 36 symbols. 
The Viterbi decoder uses full-parallel structure to improve computational speed for the add-compare-select (ACS) 
modules, adopts optimal data storage mechanism to avoid overflow and employs three distributed RAM blocks to com-
plete cyclic trace-back. It includes the core parts, for example, the state path measure computation, the preservation and 
transfer of the survivor path and trace-back decoding, etc. Compared to the general Viterbi decoder, this design can ef-
fectively decrease the 10% of chip logic elements, reduce 5% of power consumption, and increase the encoder and de-
coder working performance in the hardware implementation. Lastly, relevant simulation results using Verilog HDL 
language are verified based on a Xinlinx Virtex-II FPGA by ISE 7.1i. It is shown that the Viterbi decoder is capable of 
decoding (2, 1, 7) convolutional codes accurately with a throughput of 80 Mbps. 
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1. Introduction 

The wireless local area network (WLAN) is considered 
as one of the most effective wideband access ways be-
tween electronic devices. The IEEE 802.11a standard [1] 
for WLAN is based on Orthogonal Frequency Division 
Multiplexing (OFDM), supporting multiple transmission 
modes, providing data rate up to 54 Mbps in the 5 GHz 
band. In order to overcome frequency selective weak-
nesses from distortion channels in the above-mentioned 
OFDM-WLAN systems, strong Forward Error Correction 
(FEC) technologies which have been widely utilized in 
digital communication applications especially such as the 
Viterbi Algorithm (VA) are employed. The VA was first 
introduced as an available scheme for decoding convolu-
tional codes in 1967 [2]. Later, the convolutional codes 
and VA laid a significant influence in combating with the 
channel distortion effects such as multipath fading and 
intersymbol interference. Shaking changes have been 
made on FPGA technologies over the recent years. Com-
plex real-time signal processing tasks can yet be fulfilled 
owing to high clock speeds and huge gate densities pro-
vided by FPGA. Many efficient structures of Viterbi de-  

coder are researched to decrease the survivor path mem-
ory since it can dominate the chip area. Some designs can 
reduce the memory size significantly [3]. But they cannot 
be commercialized because of wiring area. Most com-
mercial products [4] still use the classical two-pointer 
trace-back scheme [5] and demand memory of size 
4*K*N bits (K is the constraint length, N is the number 
of states). An alternative scheme using dual-port memory 
is proposed recently [6]. The memory requirement is 
halved while the number of trace-back multiplexers (N to 
1) increase one to three. 

Convolutional codes are a kind of non-block codes 
whose performances are superior to block codes in the 
same coding efficiency situation [7]. Their coding scheme 
makes information elements have correlations by means 
of exclusive-or operation, resulting in the increase of 
transmission redundancy. Based on these correlations, 
the VA can be used for decoding and error correction in 
the receiving end. The complexity of software and hard-
ware implementation for VA are growing exponentially 
with the increase of the m (m is the number of shift reg-
isters); Therefore, careful design has to be made to real-
ize such a practical decoder. With the FPGA technology 
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development the VA operation problem has been solved 
to a great extent. This makes the Viterbi the most exten-
sive, robust and capable decoding algorithm when the 
value of m is less than or equal to 10. Without a doubt, the 
primary purpose of any decoder design might be to de-
crease the FPGA area, reduces the power consumption 
and improve the decoding performance. The Virtex-II 
family is a platform FPGA developed for high perform-
ance from low-density to high-density designs which are 
optimized for high speed with low power consumption. 
The device XC2V2000 of this family can excellently 
meet the performance and stability requirements of the 
encoder and decoder according to the experiments. The 
designs are described using Verilog HDL for the hard-
ware implementation on the above FPGA and it can be 
configurable. 

The remainders of this paper are organized as follows. 
In Section 2, The analysis and FPGA design of (2, 1, 7) 
convolutional encoder are presented. Section 3 shows the 
algorithm and the Viterbi decoder architecture. In Sec-
tion 4, the implementation results analyses are provided 
based on a Xinlinx virtex2 FPGA by ISE 7.1i. The paper 
is concluded in Section 5. 

2. Convolutional Encoder Analysis and 
Design 

Convolutional Encoder Analysis and 
Architecture 

Convolution codes are better codes of error controlling 
performance. Convolutional encoder outputs are not only 
associated with the encode elements at present, but also 
affected by several ones before. (n, k, m) is used for de-
scribing convolutional codes, where k are the input en-
code elements, n are the output encode elements and m 
are the shift register numbers of convolution encoder. 
Usually, the value of n and k is smaller and k is less than 
n, but the number of shift registers takes larger value.  

In WLAN standards the convolutional codes are de-
fined by given generator polynomials with constraint 
length of 7 and code rate of 1/2, resulting in 64 trellis  

states. The given generator polynomials codes are G1 = 
133(OCT) and G2 = 171(OCT), equally  

 
1 0 2 3 5 6

1011011 133 OCT

G x x x x x    

 
            (1) 


2 0 1 2 3 6

1111001 171 OCT

G x x x x x    

  
            (2) 

Figure 1 indicates the block diagram of (2, 1, 7) con-
volutional encoder. The (2, 1, 7) convolutional encoder 
consists of six shift registers and two exclusive-or gates. 
When starting coding, all these registers are reset for 
initialization. Every shift register is equivalent to a flip 
flop. These six flip flops are connected in series to com-
plete shifting and updating operation under the action of 
the clock pulse. The exclusive-or gates are used for 
modular-2 adders to obtain the coding data. With every 
clock pulse the encoder outputs two bits according to the 
generator polynomials whenever one binary bit is input-
ted. The output is not only relevant with the current input 
binary bit, but also influenced by the inputs six clock 
pulses before. 

3. The Viterbi Decoder 

3.1. Viterbi Algorithm 

Viterbi is known as a maximum likelihood decoding al-
gorithm of convolutional codes for estimating and 
searching the most likely survivor path in the trellis ac-
cording to the receiving sequences, meanwhile the error 
during transmission can be corrected. This algorithm is 
based on calculating the hamming distance for each 
branch and the path that is most likely through the trellis 
will maximize that metric [8]. For binary encoders, the 
corresponding trellis is composed of L + 1 sections with 

K 12   nodes each, where L is the length of the message to 
be decoded in bits and K is the constraint length of the 
code. While the entire trellis must be considered for op-
timal sequence detection, practical realizations will work 
only on a section of the complete trellis with Ltb  
stages, where is called trace-back length [9]. 

 

Reg RegRegRegRegReg
input

133(OCT)               output0

171(OCT)             output1

exclusive-or 
gate

exclusive-or 
gate

 

Figure 1. (2, 1, 7) convolutional encoder for OFDM-WLAN.  
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3.2. The Architecture of the Viterbi Decoder  

In this paper, hamming distance computation module, 
ACS module, survivor path storage and management 
module, trace-back module, timing controller module 
and minimum value choice module are included for the 
Viterbi decoder. 

However, there are two remarkable problems before 
the design. One is the choice of decoding depth; the other 
is the survivor path storage. In general, the VA starts to 
trace-back until the survivor path is to zero, and then 
finds a best path. But this would not only increase de-
coding delay, and will cause the problem of much bigger 
storage capacity. Despite the growing decoding depth 
can improve the decoding accuracy, according to former 
experiences the system performance has no significant 
influence when decoding depth is five times as much to 
10 times of the registration numbers [9]. Based on the 
802.11a decoding depth is set to thirty six. Convolutional 
decoder has sixty four states, it needs to store the sixty 
four survivor paths and keep the corresponding path 
lengths. Therefore, the capacity of each RAM block 
should be set to sixty four storage units, the size of each 
storage unit equals to decoding depth. 

The whole hardware architecture is shown in Figure 2. 
The proposed Viterbi decoder works as follows: 

Step 1, two parallel binary bits are inputted into the 
Viterbi decoder with every clock pulse, and then the 
hamming distance computation module begins to work 
when the input enabling signal is valid. It calculates sixty 
four groups of hamming distance. Each group consists of 
two because each current state can be reached by two 
possible paths. 

Step 2, the ACS modules begin to work. Cumulative 

hamming distance one clock before is added to hamming 
distance of the new branch path correspondingly. After 
adding operation each current state gets two new cumu-
lative hamming distances, and then the ACS module 
compares the size of the two cumulative distances and 
selects the smaller one as a survivor. The path of the sur-
vivor represents survived path. The smaller cumulative 
hamming distance becomes the benchmark for the next 
computation. Survivor paths of all the sixty four states 
are stored in RAM blocks. 

Step 3, sixty four survivor paths are stored in the RAM 
blocks and each of them equals to decoding depth when 
the decoding depth is reached, then sixty four cumulative 
hamming distances are inputted into the minimum value 
choice module. This module outputs the minimum value 
to trace-back module, then the trace-back module reads 
survivor values from the paths storage RAM blocks ac-
cording to survivor path values. The outputs of the back-
tracking module are the Viterbi decoding results. 

3.2.1. The Hamming Distance Computation Module 
This module compares the received codes with the ex-
pected codes of the current state and calculates the ham-
ming distance between them. The hamming distance 
computation schematic diagram is shown in Figure 3. 

Table 1 gives the algorithm expressions for the ham-
ming distance calculation of two received codes under 
the four possible values of the excepted codes, where 
data_in1 and data_in2 stand for the two-bit inputs in the 
trellis. 

3.2.2. ACS Module 
This module is the core part of the Viterbi decoder to 
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Figure 2. The hardware architecture of Viterbi decoder. 
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Figure 3. Hamming distance computation schematic diagram.  
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Table 1. Hamming distance calculation. 

Excepted codes Hamming distance of received codes 

00 data_in1+data_in2 

01 data_in1-data_in2 

10 -data_in1+data_in2 

11 -data_in1-data_in2 

 
complete addition, comparison and selecting function. 
There are sixty four states in the decoder; each state uses 
an ACS module. So the decoder needs sixty four ACS 
modules. Parallel processing is used for this module. This 
design cannot only improve the computational speed, but 
also reduce the system delay. The most important is rela-
tively simple hardware implementation. In addition, a 
counter with thirty six counting cycles is designed to start 
the ACS module and measure time. With more and more 
input bits, cumulative hamming distance is also on the 
rise. This brings trouble to memory storage. In order to 
prevent overflow, cumulative hamming distance is mov- 
ed two bits wide rightwards. Before decoding, in order to 
guarantee the all-zero state is the first choice, the cumu-
lative hamming distance of all-zero state is initialized to 
zero, while the rest take higher values. Eight is set in 
other states. The hardware architecture of the ACS mod-
ule is shown in Figure 4. 

3.2.3. Survivor Path Storage and Management  
Module 

This module is used for storing and managing survivor  

path values of the ACS modules. Three RAM blocks 
work by turns. The following is a detailed description. 

Step 1, the first RAM block is written to survivor paths 
for sixty six clock periods which equals to decoding 
depth, and then it begins to trace-back and decode. 

Step 2, the second RAM block begins to be written to 
survivor paths like the first one. After another decoding 
depth the second one begins to trace-back and the third 
one begins to be written to survivor paths. 

Step 3, when the third RAM block is full, it begins to 
trace-back. At this time the first RAM block is free, 
therefore, the survivor paths can be written to it again. 

In this study, decoding and trace-back is performed at 
the same time. Three RAM blocks are used for this mod-
ule because the write operation and read operation are 
not the same start and end. When the decoding depth is 
reached in the first RAM block, sixty four cumulative 
hamming distances of all the states are inputted to the 
minimum value choice module; this module needs thirty 
three clock periods to finish the work. In this period the 
second one is being written. The first RAM block just 
starts decoding when the second one is full. If the first 
one that should be written is not free when the write op-
eration of the second one is over, the third RAM block 
should be provided for the new write operation. There-
fore, two RAM blocks cannot be used by turns. The 
working process of RAM blocks is showed in Figure 5. 

3.2.4. Minimum Value Choice Module 
This module compares the size of sixty four cumulative 
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Figure 4. The hardware architecture of the ACS module. 
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Figure 5. The working process of RAM blocks.  
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hamming distances when the decoding depth is reached. 
Its aim is to obtain the minimum value and the initial 
state of trace-back. The working time of the minimum 
value choice module cannot be greater than the decoding 
depth; otherwise the decoding errors will occur. This 
module consists of two same comparison units; the first 
comparison unit compares the size of the former thirty 
two cumulative hamming distances, the second one 
compares the size of the remaining thirty two cumulative 
hamming distances. Finally the result of the first com-
parison unit is compared with the second one, and then 
the minimum value is achieved. The whole process needs 
thirty three clock cycles, which is less than the decode 
depth. 

However, the delay with thirty three clock cycles is 
made due to using two parallel comparators. More com-
parators can be designed for reducing delay, while the 
more resources and area will be occupied. The design 
should be carefully weighed between the delay and re-
source consumption. 

3.2.5. Trace-Back Module 
There are two algorithms of survivor paths storage and 
management for decoding. One is register-exchange al-
gorithm; the other is trace-back. The principles and 
hardware implementation of the register-exchange algo-
rithm [10,11] are more easily. Compared with trace-back, 
this algorithm has one obvious advantage that is the 
smaller output delay. But it brings two mortal flaws, one 
is lots of power consumption when the memory contents 
of each state are always read and written for updating 
survivor paths with every clock pulse, the other is too 
complex internal connection relationships to restrict the 
FPGA design. So it is rarely used in practical applica-
tions. Trace-back is a classic algorithm and widely used, 
and uses memories to store survivor paths of each state. 
The former trace-back point is determined by the best 
initial state and the corresponding survivor paths every 
clock. The trace-back is completed after thirty six clock 
periods. The hardware structure of the algorithm is sim-
ple to manage and control for FPGA. 

As shown in Figure 6, from the K moment to K + 1 
moment, there are two optional paths to reach the state 
000000 and they originate from the state 000000 and 
000001. There is a difference between the lowest orders 
of the two states; the lowest order stands for the input bit 
of the Viterbi encoder five clock pulses before, the rest 
bits represent others from different moments. The top 
digit of the state 000000 is the survivor value at the K + 1 
moment. It indicates the input bit in the K + 1 moment, 
in other words, also the decoded value. All these survivor 
values constitute the only survivor path. A counter with 
thirty six count cycles is designed for recording the 
trace-back time to determine the trace-back end. Survivor  

3

2 1

State 00000 0

State 00000 1

Eliminated path

In K+1 momentIn K moment

State 0 00000

Survivor value

Survivor path 

 

Figure 6. Trace-back schematic diagram. 
 
paths are extracted for updating the next trace-back point 
according to the current one. The Viterbi decoder begins 
to output when the counter counts to the decoding depth. 
In addition, the decoding sequences of trace-back are 
opposite to the practical ones, so adjustments should be 
made during outputting. 

4. Implementation Results Analysis 

4.1. Simulation Scenarios 

The Xilinx ISE is a comprehensive and powerful FPGA 
design environment. The ISE 7.1i simulation tools are 
used for the logic synthesis aims to map the design to the 
FPGA target technology. Xilinx Virtex-II, XC2V2000, 
with speed grade –4 and Verilog HDL code has been 
selected to realize this scheme. The test-bench file is 
written to provide the clock frequency, related timing 
settings, control signals and code sequences for both the 
encoder and the decoder. One hundred and eight random 
binary bits which equal to total memory capacity are 
given to the (2, 1, 7) convolutional encoder. In order to 
validate the error correction performance of the Viterbi 
decoder, one error is placed deliberately every ten bits in 
the simulation results of convolutional encoder, then the 
convolutional codes after appending errors are consid-
ered as the Viterbi encoder inputs for verification. The 
bit error rate is much higher than the actual system to 
reflect the design superiority. 

4.2. Results Analysis 

The simulation results of (2, 1, 7) convolutional encoder 
for OFDM-WLAN are shown in Figure 7. During de-
coding, first, ACS modules works for thirty six clock pe-
riods, second, minimum value choice module works for 
thirty three clock periods to obtain the initial state of 
trace-back, third, the trace-back module begins to work for 
thirty six clock periods. Finally, decoding results begin to 
be outputted next clock pulse after sequence adjustments. 
From the above, we can draw the conclusion that the 
Viterbi decoder outputs are delayed for one hundred and 
six clock periods. Figure 8 makes clear that the decoder 
an correct all the errors and meet timing requirements.  c    
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Figure 7. Simulation waveforms of convolutional decoder for OFDM-WLAN, 10-bit erros are corrected. 
 

 

Figure 8. Simulation waveforms of convolutional decoder for OFDM-WLAN, 10-bit errors are corrected. 
 

Table 2. System configurations. 

System configurations 

Parameters Value 

Hard-input word width 1 bit 

Number of input bits for coding 108 

Peak data rate (viterbi output) 80 Mbps 

Convolutional codes rate 1/2 

Constraint length 7 

Number of ACS modules 64 (full-parallel) 

Decoding depth (trace-back depth) 36 

 
Table 3. Device utilization summary. 

Device utilization summary 

family Xinlinx virtex2 

device XC2V2000 fg676 

Number of slices 316 out of 10752 2.94%

Number of slices Flip Flops 295 out of 21504 1.37%

Number of 4 input Luts 510 out of 21504 2.37%

Number of boned IOBs 8 out of 456 1.8% 

Number of GCLKs: 1 out of 16 6.25%

 
Table 4. The power consumption reports. 

Power report 

Conventional Modified
Total estimated power consumption 

62 mw 59 mw 

Estimated junction temperature 27˚C 

Otherwise, Tables 2 and 3 show the system configura-
tions and device utilization, the power consumption re-
ports are given in Table 4. 

In addition, there are some disorders in the decoding 
process if the input bits are not integer times of decoding 
depth. But decoding depth can be modified to solve this 
problem; therefore, the decoding depth should be set ac-
cording to the actual situation. 

5. Conclusion 

In this paper, a (2, 1, 7) convolutional encoder is pro-
posed for FPGA design and implementation, and then an 
adaptive, low-power, parallel Viterbi decoder with a 
constraint length of 7 and a code rate of 1/2 is presented. 
The designs are functionally verified in Xinlinx ISE 7.1 
environments. The synthesis results show that the FPGA 
implementation can run with frequency up to 80 MHz. 
Compared to the solutions with generic decoder, the 
proposed scheme uses significantly less logic resources 
on the FPGA. The design takes about 2.94% of the total 
chip logic elements. The maximum operating frequency 
is 80 MHz that is found adequate to our applications. 
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