
Wireless Engineering and Technology, 2012, 3, 125-131
http://dx.doi.org/10.4236/wet.2012.33019 Published Online July 2012 (http://www.SciRP.org/journal/wet)

125

FPGA Design and Implementation of a Convolutional
Encoder and a Viterbi Decoder Based on 802.11a for
OFDM

Yan Sun, Zhizhong Ding

Department of Communication Engineering, Hefei University of Technology, Hefei, China.
Email: sunyan2058@sina.com, zzding@mail.ustc.edu.cn

Received March 5th, 2012; revised April 1st, 2012; accepted April 9th, 2012

ABSTRACT

In this paper, a modified FPGA scheme for the convolutional encoder and Viterbi decoder based on the IEEE 802.11a
standards of WLAN is presented in OFDM baseband processing systems. The proposed design supports a generic, ro-
bust and configurable Viterbi decoder with constraint length of 7, code rate of 1/2 and decoding depth of 36 symbols.
The Viterbi decoder uses full-parallel structure to improve computational speed for the add-compare-select (ACS)
modules, adopts optimal data storage mechanism to avoid overflow and employs three distributed RAM blocks to com-
plete cyclic trace-back. It includes the core parts, for example, the state path measure computation, the preservation and
transfer of the survivor path and trace-back decoding, etc. Compared to the general Viterbi decoder, this design can ef-
fectively decrease the 10% of chip logic elements, reduce 5% of power consumption, and increase the encoder and de-
coder working performance in the hardware implementation. Lastly, relevant simulation results using Verilog HDL
language are verified based on a Xinlinx Virtex-II FPGA by ISE 7.1i. It is shown that the Viterbi decoder is capable of
decoding (2, 1, 7) convolutional codes accurately with a throughput of 80 Mbps.

Keywords: FPGA; Convolutional Encoder; Viterbi Decoder; IEEE 802.11a; OFDM

1. Introduction

The wireless local area network (WLAN) is considered
as one of the most effective wideband access ways be-
tween electronic devices. The IEEE 802.11a standard [1]
for WLAN is based on Orthogonal Frequency Division
Multiplexing (OFDM), supporting multiple transmission
modes, providing data rate up to 54 Mbps in the 5 GHz
band. In order to overcome frequency selective weak-
nesses from distortion channels in the above-mentioned
OFDM-WLAN systems, strong Forward Error Correction
(FEC) technologies which have been widely utilized in
digital communication applications especially such as the
Viterbi Algorithm (VA) are employed. The VA was first
introduced as an available scheme for decoding convolu-
tional codes in 1967 [2]. Later, the convolutional codes
and VA laid a significant influence in combating with the
channel distortion effects such as multipath fading and
intersymbol interference. Shaking changes have been
made on FPGA technologies over the recent years. Com-
plex real-time signal processing tasks can yet be fulfilled
owing to high clock speeds and huge gate densities pro-
vided by FPGA. Many efficient structures of Viterbi de-

coder are researched to decrease the survivor path mem-
ory since it can dominate the chip area. Some designs can
reduce the memory size significantly [3]. But they cannot
be commercialized because of wiring area. Most com-
mercial products [4] still use the classical two-pointer
trace-back scheme [5] and demand memory of size
4*K*N bits (K is the constraint length, N is the number
of states). An alternative scheme using dual-port memory
is proposed recently [6]. The memory requirement is
halved while the number of trace-back multiplexers (N to
1) increase one to three.

Convolutional codes are a kind of non-block codes
whose performances are superior to block codes in the
same coding efficiency situation [7]. Their coding scheme
makes information elements have correlations by means
of exclusive-or operation, resulting in the increase of
transmission redundancy. Based on these correlations,
the VA can be used for decoding and error correction in
the receiving end. The complexity of software and hard-
ware implementation for VA are growing exponentially
with the increase of the m (m is the number of shift reg-
isters); Therefore, careful design has to be made to real-
ize such a practical decoder. With the FPGA technology

Copyright © 2012 SciRes. WET

FPGA Design and Implementation of a Convolutional Encoder and a Viterbi Decoder Based on 802.11a for OFDM 126

development the VA operation problem has been solved
to a great extent. This makes the Viterbi the most exten-
sive, robust and capable decoding algorithm when the
value of m is less than or equal to 10. Without a doubt, the
primary purpose of any decoder design might be to de-
crease the FPGA area, reduces the power consumption
and improve the decoding performance. The Virtex-II
family is a platform FPGA developed for high perform-
ance from low-density to high-density designs which are
optimized for high speed with low power consumption.
The device XC2V2000 of this family can excellently
meet the performance and stability requirements of the
encoder and decoder according to the experiments. The
designs are described using Verilog HDL for the hard-
ware implementation on the above FPGA and it can be
configurable.

The remainders of this paper are organized as follows.
In Section 2, The analysis and FPGA design of (2, 1, 7)
convolutional encoder are presented. Section 3 shows the
algorithm and the Viterbi decoder architecture. In Sec-
tion 4, the implementation results analyses are provided
based on a Xinlinx virtex2 FPGA by ISE 7.1i. The paper
is concluded in Section 5.

2. Convolutional Encoder Analysis and
Design

Convolutional Encoder Analysis and
Architecture

Convolution codes are better codes of error controlling
performance. Convolutional encoder outputs are not only
associated with the encode elements at present, but also
affected by several ones before. (n, k, m) is used for de-
scribing convolutional codes, where k are the input en-
code elements, n are the output encode elements and m
are the shift register numbers of convolution encoder.
Usually, the value of n and k is smaller and k is less than
n, but the number of shift registers takes larger value.

In WLAN standards the convolutional codes are de-
fined by given generator polynomials with constraint
length of 7 and code rate of 1/2, resulting in 64 trellis

states. The given generator polynomials codes are G1 =
133(OCT) and G2 = 171(OCT), equally

1 0 2 3 5 6

1011011 133 OCT

G x x x x x

 (1)

2 0 1 2 3 6

1111001 171 OCT

G x x x x x

 (2)

Figure 1 indicates the block diagram of (2, 1, 7) con-
volutional encoder. The (2, 1, 7) convolutional encoder
consists of six shift registers and two exclusive-or gates.
When starting coding, all these registers are reset for
initialization. Every shift register is equivalent to a flip
flop. These six flip flops are connected in series to com-
plete shifting and updating operation under the action of
the clock pulse. The exclusive-or gates are used for
modular-2 adders to obtain the coding data. With every
clock pulse the encoder outputs two bits according to the
generator polynomials whenever one binary bit is input-
ted. The output is not only relevant with the current input
binary bit, but also influenced by the inputs six clock
pulses before.

3. The Viterbi Decoder

3.1. Viterbi Algorithm

Viterbi is known as a maximum likelihood decoding al-
gorithm of convolutional codes for estimating and
searching the most likely survivor path in the trellis ac-
cording to the receiving sequences, meanwhile the error
during transmission can be corrected. This algorithm is
based on calculating the hamming distance for each
branch and the path that is most likely through the trellis
will maximize that metric [8]. For binary encoders, the
corresponding trellis is composed of L + 1 sections with

K 12 nodes each, where L is the length of the message to
be decoded in bits and K is the constraint length of the
code. While the entire trellis must be considered for op-
timal sequence detection, practical realizations will work
only on a section of the complete trellis with Ltb
stages, where is called trace-back length [9].

Reg RegRegRegRegReg
input

133(OCT) output0

171(OCT) output1

exclusive-or
gate

exclusive-or
gate

Figure 1. (2, 1, 7) convolutional encoder for OFDM-WLAN.

Copyright © 2012 SciRes. WET

FPGA Design and Implementation of a Convolutional Encoder and a Viterbi Decoder Based on 802.11a for OFDM 127

3.2. The Architecture of the Viterbi Decoder

In this paper, hamming distance computation module,
ACS module, survivor path storage and management
module, trace-back module, timing controller module
and minimum value choice module are included for the
Viterbi decoder.

However, there are two remarkable problems before
the design. One is the choice of decoding depth; the other
is the survivor path storage. In general, the VA starts to
trace-back until the survivor path is to zero, and then
finds a best path. But this would not only increase de-
coding delay, and will cause the problem of much bigger
storage capacity. Despite the growing decoding depth
can improve the decoding accuracy, according to former
experiences the system performance has no significant
influence when decoding depth is five times as much to
10 times of the registration numbers [9]. Based on the
802.11a decoding depth is set to thirty six. Convolutional
decoder has sixty four states, it needs to store the sixty
four survivor paths and keep the corresponding path
lengths. Therefore, the capacity of each RAM block
should be set to sixty four storage units, the size of each
storage unit equals to decoding depth.

The whole hardware architecture is shown in Figure 2.
The proposed Viterbi decoder works as follows:

Step 1, two parallel binary bits are inputted into the
Viterbi decoder with every clock pulse, and then the
hamming distance computation module begins to work
when the input enabling signal is valid. It calculates sixty
four groups of hamming distance. Each group consists of
two because each current state can be reached by two
possible paths.

Step 2, the ACS modules begin to work. Cumulative

hamming distance one clock before is added to hamming
distance of the new branch path correspondingly. After
adding operation each current state gets two new cumu-
lative hamming distances, and then the ACS module
compares the size of the two cumulative distances and
selects the smaller one as a survivor. The path of the sur-
vivor represents survived path. The smaller cumulative
hamming distance becomes the benchmark for the next
computation. Survivor paths of all the sixty four states
are stored in RAM blocks.

Step 3, sixty four survivor paths are stored in the RAM
blocks and each of them equals to decoding depth when
the decoding depth is reached, then sixty four cumulative
hamming distances are inputted into the minimum value
choice module. This module outputs the minimum value
to trace-back module, then the trace-back module reads
survivor values from the paths storage RAM blocks ac-
cording to survivor path values. The outputs of the back-
tracking module are the Viterbi decoding results.

3.2.1. The Hamming Distance Computation Module
This module compares the received codes with the ex-
pected codes of the current state and calculates the ham-
ming distance between them. The hamming distance
computation schematic diagram is shown in Figure 3.

Table 1 gives the algorithm expressions for the ham-
ming distance calculation of two received codes under
the four possible values of the excepted codes, where
data_in1 and data_in2 stand for the two-bit inputs in the
trellis.

3.2.2. ACS Module
This module is the core part of the Viterbi decoder to

Hamming
distance
computation

Add_
compare_
select Unit

Path_
memory

RAM

Minimum
value
choice

Traceback

Convolution
codes

ctrl
Survivor

path

Survivor path

data
address

Decoding
output

 Output
Enable

ctrl

ctrl

Minimum value

Timing
controller

clk
 Input

Enable

ctrl

Figure 2. The hardware architecture of Viterbi decoder.

modular-
2

adder

Expected codes

Received codes

Two bits
Count the
number of

1 in the
two bits

Hamming distance

Figure 3. Hamming distance computation schematic diagram.

Copyright © 2012 SciRes. WET

FPGA Design and Implementation of a Convolutional Encoder and a Viterbi Decoder Based on 802.11a for OFDM 128

Table 1. Hamming distance calculation.

Excepted codes Hamming distance of received codes

00 data_in1+data_in2

01 data_in1-data_in2

10 -data_in1+data_in2

11 -data_in1-data_in2

complete addition, comparison and selecting function.
There are sixty four states in the decoder; each state uses
an ACS module. So the decoder needs sixty four ACS
modules. Parallel processing is used for this module. This
design cannot only improve the computational speed, but
also reduce the system delay. The most important is rela-
tively simple hardware implementation. In addition, a
counter with thirty six counting cycles is designed to start
the ACS module and measure time. With more and more
input bits, cumulative hamming distance is also on the
rise. This brings trouble to memory storage. In order to
prevent overflow, cumulative hamming distance is mov-
ed two bits wide rightwards. Before decoding, in order to
guarantee the all-zero state is the first choice, the cumu-
lative hamming distance of all-zero state is initialized to
zero, while the rest take higher values. Eight is set in
other states. The hardware architecture of the ACS mod-
ule is shown in Figure 4.

3.2.3. Survivor Path Storage and Management
Module

This module is used for storing and managing survivor

path values of the ACS modules. Three RAM blocks
work by turns. The following is a detailed description.

Step 1, the first RAM block is written to survivor paths
for sixty six clock periods which equals to decoding
depth, and then it begins to trace-back and decode.

Step 2, the second RAM block begins to be written to
survivor paths like the first one. After another decoding
depth the second one begins to trace-back and the third
one begins to be written to survivor paths.

Step 3, when the third RAM block is full, it begins to
trace-back. At this time the first RAM block is free,
therefore, the survivor paths can be written to it again.

In this study, decoding and trace-back is performed at
the same time. Three RAM blocks are used for this mod-
ule because the write operation and read operation are
not the same start and end. When the decoding depth is
reached in the first RAM block, sixty four cumulative
hamming distances of all the states are inputted to the
minimum value choice module; this module needs thirty
three clock periods to finish the work. In this period the
second one is being written. The first RAM block just
starts decoding when the second one is full. If the first
one that should be written is not free when the write op-
eration of the second one is over, the third RAM block
should be provided for the new write operation. There-
fore, two RAM blocks cannot be used by turns. The
working process of RAM blocks is showed in Figure 5.

3.2.4. Minimum Value Choice Module
This module compares the size of sixty four cumulative

adder

adder

New cumulative
 hamming distance 1

New cumulative
 hamming distance 2

comparer

Possible branch
distance 1

Possible branch
distance 2

Survivor path

The smaller new cumulative
 hamming distance

Cumulative hamming
distance 1

Cumulative hamming
 distance 2

Figure 4. The hardware architecture of the ACS module.

 RAM 1
(36*64 bits)

RAM 2
(36*64 bits)

RAM 3
(36*64 bits)

write operation
write operation

write operation

trace-back and decodingwrite operation
trace-back and decoding

trace-back and decoding

Figure 5. The working process of RAM blocks.

Copyright © 2012 SciRes. WET

FPGA Design and Implementation of a Convolutional Encoder and a Viterbi Decoder Based on 802.11a for OFDM 129

hamming distances when the decoding depth is reached.
Its aim is to obtain the minimum value and the initial
state of trace-back. The working time of the minimum
value choice module cannot be greater than the decoding
depth; otherwise the decoding errors will occur. This
module consists of two same comparison units; the first
comparison unit compares the size of the former thirty
two cumulative hamming distances, the second one
compares the size of the remaining thirty two cumulative
hamming distances. Finally the result of the first com-
parison unit is compared with the second one, and then
the minimum value is achieved. The whole process needs
thirty three clock cycles, which is less than the decode
depth.

However, the delay with thirty three clock cycles is
made due to using two parallel comparators. More com-
parators can be designed for reducing delay, while the
more resources and area will be occupied. The design
should be carefully weighed between the delay and re-
source consumption.

3.2.5. Trace-Back Module
There are two algorithms of survivor paths storage and
management for decoding. One is register-exchange al-
gorithm; the other is trace-back. The principles and
hardware implementation of the register-exchange algo-
rithm [10,11] are more easily. Compared with trace-back,
this algorithm has one obvious advantage that is the
smaller output delay. But it brings two mortal flaws, one
is lots of power consumption when the memory contents
of each state are always read and written for updating
survivor paths with every clock pulse, the other is too
complex internal connection relationships to restrict the
FPGA design. So it is rarely used in practical applica-
tions. Trace-back is a classic algorithm and widely used,
and uses memories to store survivor paths of each state.
The former trace-back point is determined by the best
initial state and the corresponding survivor paths every
clock. The trace-back is completed after thirty six clock
periods. The hardware structure of the algorithm is sim-
ple to manage and control for FPGA.

As shown in Figure 6, from the K moment to K + 1
moment, there are two optional paths to reach the state
000000 and they originate from the state 000000 and
000001. There is a difference between the lowest orders
of the two states; the lowest order stands for the input bit
of the Viterbi encoder five clock pulses before, the rest
bits represent others from different moments. The top
digit of the state 000000 is the survivor value at the K + 1
moment. It indicates the input bit in the K + 1 moment,
in other words, also the decoded value. All these survivor
values constitute the only survivor path. A counter with
thirty six count cycles is designed for recording the
trace-back time to determine the trace-back end. Survivor

3

2 1

State 00000 0

State 00000 1

Eliminated path

In K+1 momentIn K moment

State 0 00000

Survivor value

Survivor path

Figure 6. Trace-back schematic diagram.

paths are extracted for updating the next trace-back point
according to the current one. The Viterbi decoder begins
to output when the counter counts to the decoding depth.
In addition, the decoding sequences of trace-back are
opposite to the practical ones, so adjustments should be
made during outputting.

4. Implementation Results Analysis

4.1. Simulation Scenarios

The Xilinx ISE is a comprehensive and powerful FPGA
design environment. The ISE 7.1i simulation tools are
used for the logic synthesis aims to map the design to the
FPGA target technology. Xilinx Virtex-II, XC2V2000,
with speed grade –4 and Verilog HDL code has been
selected to realize this scheme. The test-bench file is
written to provide the clock frequency, related timing
settings, control signals and code sequences for both the
encoder and the decoder. One hundred and eight random
binary bits which equal to total memory capacity are
given to the (2, 1, 7) convolutional encoder. In order to
validate the error correction performance of the Viterbi
decoder, one error is placed deliberately every ten bits in
the simulation results of convolutional encoder, then the
convolutional codes after appending errors are consid-
ered as the Viterbi encoder inputs for verification. The
bit error rate is much higher than the actual system to
reflect the design superiority.

4.2. Results Analysis

The simulation results of (2, 1, 7) convolutional encoder
for OFDM-WLAN are shown in Figure 7. During de-
coding, first, ACS modules works for thirty six clock pe-
riods, second, minimum value choice module works for
thirty three clock periods to obtain the initial state of
trace-back, third, the trace-back module begins to work for
thirty six clock periods. Finally, decoding results begin to
be outputted next clock pulse after sequence adjustments.
From the above, we can draw the conclusion that the
Viterbi decoder outputs are delayed for one hundred and
six clock periods. Figure 8 makes clear that the decoder
an correct all the errors and meet timing requirements. c

Copyright © 2012 SciRes. WET

FPGA Design and Implementation of a Convolutional Encoder and a Viterbi Decoder Based on 802.11a for OFDM 130

Figure 7. Simulation waveforms of convolutional decoder for OFDM-WLAN, 10-bit erros are corrected.

Figure 8. Simulation waveforms of convolutional decoder for OFDM-WLAN, 10-bit errors are corrected.

Table 2. System configurations.

System configurations

Parameters Value

Hard-input word width 1 bit

Number of input bits for coding 108

Peak data rate (viterbi output) 80 Mbps

Convolutional codes rate 1/2

Constraint length 7

Number of ACS modules 64 (full-parallel)

Decoding depth (trace-back depth) 36

Table 3. Device utilization summary.

Device utilization summary

family Xinlinx virtex2

device XC2V2000 fg676

Number of slices 316 out of 10752 2.94%

Number of slices Flip Flops 295 out of 21504 1.37%

Number of 4 input Luts 510 out of 21504 2.37%

Number of boned IOBs 8 out of 456 1.8%

Number of GCLKs: 1 out of 16 6.25%

Table 4. The power consumption reports.

Power report

Conventional Modified
Total estimated power consumption

62 mw 59 mw

Estimated junction temperature 27˚C

Otherwise, Tables 2 and 3 show the system configura-
tions and device utilization, the power consumption re-
ports are given in Table 4.

In addition, there are some disorders in the decoding
process if the input bits are not integer times of decoding
depth. But decoding depth can be modified to solve this
problem; therefore, the decoding depth should be set ac-
cording to the actual situation.

5. Conclusion

In this paper, a (2, 1, 7) convolutional encoder is pro-
posed for FPGA design and implementation, and then an
adaptive, low-power, parallel Viterbi decoder with a
constraint length of 7 and a code rate of 1/2 is presented.
The designs are functionally verified in Xinlinx ISE 7.1
environments. The synthesis results show that the FPGA
implementation can run with frequency up to 80 MHz.
Compared to the solutions with generic decoder, the
proposed scheme uses significantly less logic resources
on the FPGA. The design takes about 2.94% of the total
chip logic elements. The maximum operating frequency
is 80 MHz that is found adequate to our applications.

REFERENCES

[1] IEEE Std. 802.11, “Wireless LAN Medium Access Con-
trol (MAC) and Physical Layer (PHY) Specifications:
High Speed Physical Layer in the 5 GHz band,” 1999.

[2] A. J. Viterbi, “Error Bounds for Convolutional Coding
and an Asymptotically Optimum Decoding Algorithm,”
IEEE Transactions on Information Theory, Vol. IT-13,

Copyright © 2012 SciRes. WET

FPGA Design and Implementation of a Convolutional Encoder and a Viterbi Decoder Based on 802.11a for OFDM 131

No. 2, 1967, pp. 260-269. doi:10.1109/TIT.1967.1054010

[3] P. J. black and T. H. Meng, “Hybrid Survivor Path Ar-
chitectures for Viterbi Decoders,” IEEE ICASSP92, Vol.
1, 1993, pp. 433-436.

[4] L. Christopher, et al., “A Fully Integrated Digital De-
modulation and forward Error Correction IC for Digital
Satellite Television,” IEEE Custom Integrated Circuits
Conference, Santa Clara, 1-4 May 1995, pp. 281-284.

[5] G. Feygin, “Architectural Tradeoffs for Survivor Se-
quence Memory Management in Viterbi Decoder,” IEEE
Transactions on Communications, Vol. 41, 1993 pp. 426-
428.

[6] D. A. Luthi, A. Mogre, N. Ben-Efraim and A. Gupta, “A
Single-Chip Concatenated FEC Decoder,” IEEE Custom
Integrated Circuits Conference, IEEE Custom Integrated
Circuits Conference, Santa Clara, 1-4 May 1995.

[7] R. E. Blahut, “Theory and Practice of Error Control
Codes,” Addison-Wesley, New York, 1983.

[8] A. J. Viterbi, “Convolutional Codes and Their Perform-
ance Incommunication Systems,” IEEE Transactions on
Communications, Vol. COM-19, No. 5, 1971, pp. 751-
772. doi:10.1109/TCOM.1971.1090700

[9] S. Haene, A. Burg, D. Perels, P. Luethi, N. Felber and W.
Fichtner, “FPGA Implementation of Viterbi Decoders for
MIMO-BICM,” IEEE Radio and Wireless Conference,
Atlanta, 19-22 September 2004, pp. 734-738.

[10] D. A. El-Dib and M. I. Elmasry, “Modified Register-
Exchange Viterbi Decoder for Low-Power Wireless
Communications,” IEEE Transactions on Circuits and
Systems I, Vol. 51, 2004, pp. 371-378.
doi:10.1109/TCSI.2003.822396

[11] G. Feygin and P. Gulak, “Architectural Tradeoffs for
Survivor Sequence Memory Management in Viterbi De-
coders,” IEEE Transactions on Communications, Vol. 41,
1993, pp. 425-429. doi:10.1109/26.221067

Copyright © 2012 SciRes. WET

http://dx.doi.org/10.1109/TCOM.1971.1090700
http://dx.doi.org/10.1109/TCSI.2003.822396
http://dx.doi.org/10.1109/26.221067

	3.2.1. The Hamming Distance Computation Module
	3.2.2. ACS Module
	3.2.3. Survivor Path Storage and Management Module
	3.2.4. Minimum Value Choice Module
	3.2.5. Trace-Back Module

