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ABSTRACT 

Cone-beam CT (CBCT) scanners are based on volu- 
metric tomography, using a 2D extended digital array 
providing an area detector [1,2]. Compared to tradi- 
tional CT, CBCT has many advantages, such as less 
X-ray beam limitation, and rapid scan time, etc. 
However, in CBCT images the x-ray beam has lower 
mean kilovolt (peak) energy, so the metal artifact is 
more pronounced on. The position of the shadowed 
region in other views can be tracked by projecting the 
3D coordinates of the object. Automatic image seg- 
mentation was used to replace the pixels inside the 
metal object with the boundary pixels. The modified 
projection data, using synthetically Radon Transfor- 
mation, were then used to reconstruct a new back 
projected CBCT image. In this paper, we present a 
method, based on the morphological, area and pixel 
operators, which we applied on the Radon trans- 
formed image, to reduce the metal artifacts in CBCT, 
then we built the Radon back-project images using 
the radon invers transformation. The artifacts effects 
on the 3d-reconstruction is that, the soft tissues ap- 
pears as bones or teeth. For the preprocessing of the 
CBCT images, two methods are used to recognize the 
noisy black areas that the first depends on threshold- 
ing and closing algorithm, and the second depends on 
tracing boundaries after using thresholding algorithm 
too. The intensity of these areas is the lowest in the 
image than other tissues, so we profit this property to 
detect the edges of these areas. These two methods 
are applied on phantom and patient image data. It 
deals with reconstructed CBCT dicom images and 
can effectively reduce such metal artifacts. Due to the 
data of the constructed images are corrupted by these 
metal artifacts, qualitative and quantitative analysis 
of CBCT images is very essential. 
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1. INTRODUCTION 

Cone beam X-ray CT (CBCT) is a relatively recent in- 
stallment in the growing inventory of clinical CT tech- 
nologies [1-3]. Although the first prototype clinical CBCT 
scanner was adapted for angiographic applications in 
1982, the emergence of commercial CBCT scanners was 
delayed for more than a decade. The arrival of marketable 
scanners in the last 10 years has been, in part, facilitated 
by parallel advancements in flat panel detector (FPD) 
technology, improved computing power, and the rela- 
tively low power requirements of the X-ray tubes used in 
CBCT. These advancements have allowed CBCT scan- 
ners to be sufficiently inexpensive and compact for oper- 
ation in office-based head and neck as well as dental 
imaging applications [2,3]. 

Obvious advantages of such a system, which provides 
a shorter examination time, include the reduction of im-
age sharpness caused by the translation of the patient, 
reduced image distortion due to internal patient move-
ments, and increased X-ray tube efficiency. However, its 
main disadvantage, especially with larger FOVs, is a 
limitation in image quality related to noise and contrast 
resolution because of the detection of large amounts of 
scattered radiation [1,3]. 

CBCT metal artifact reduction has a problem that the 
metallic objects in a human body have much higher at- 
tenuation coefficients than that of soft-tissue and produce 
annoying artifacts such as streak and shade artifacts. 
These artifacts significantly degrade the visual quality of 
the image and distort the skeletal structure close to me- 
tallic objects. The two main reasons to produce metal 
artifacts are photon starvation and beam hardening. The 
number of photons which pass through the metallic ob- 
jects is much less than the number of photons passing 
through the non-metallic objects. Due to this photon 
starvation, the signal-to-noise ratio (SNR) becomes low 
in the measured projection data. The noise produces 
streak artifacts in a reconstructed CT image [4-7]. Mean- 
while, the beam hardening effect makes the logarithm of 
the measured X-ray photons nonlinear to the pass length  
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and the corresponding attenuation coefficients of an ob- 
ject. This beam hardening effect becomes more serious 
when the X-ray passes the material having a high at- 
tenuation coefficient and when its path length increases. 

In the case that the X-ray passes through two or more 
metallic objects, the above two conditions are applicable 
and the strong shade artifacts appear in a reconstructed 
CBCT image [7,8]. Little studies have been performed to 
reduce metal artifacts on dicom CBCT images that many 
studies have been performed on the raw projections of 
CBCT. We applied our study on dicom images, because 
we haven’t the technical abilities to acquire raw projec-
tions on our laboratories. We’ll study the problem on 
dicom images which are produced by “Picasso PRO” 
CBCT which is made by VATECH Co., that its FOV 
(Field of view) is 12 cm × 7 cm, Kv is 85 and mA is 4. 

2. METHODS AND MATERIALS 

We read the dicom image using Matlab software and a 
simple of primary image was illustrated in (Figure 1A), 
that the contrast of it was very low, so after applying 
contrast processing, the image became more clear (Fig-
ure 1B). 

2.1. Double Thresholding and Closing Algorithm 

Using Double thresholding to the contrast-adjusted im-
age between 0, 0.1, we acquired the following image 
witch’s illustrated in (Figure 2A), and then we applied 
closing algorithm which performs closing with a struc-
turing element that specifies its neighborhood as follow-
ing (Figure 2B). We could determine noisy black areas 
and other anatomic organs (spine), that there isn’t any 
problem by detecting those other organs because they are 
outside our interesting. 

2.2. Otsu’s Thresholding and Boundaries  
Tracing 

We applied thresholding by Otsu’s method through 
measuring the effectiveness of a threshold computation. 
For this metric, the lower bound of 0 represents a monotone  

 

  
Figure 1. A. Sample of an original dicom CBCT-image; B. After 
contrast enhancement. 

image, and the UPPER bound of 1 represents a two va- 
lued image [6,7], then we applied Trace Boundaries al- 
gorithm which traces boundaries in binary images, where 
nonzero pixels represent objects and 0 pixels represent 
the background [4,8-10]. The result is illustrated in (Fig- 
ure 3) that we could determine noisy black areas and 
other unimportant anatomic organs, so by subtracting 
these areas, we can acquire an image without noisy black 
areas and keep other anatomic organs undamaged. The 
previous two methods are step1 towards enhancement 
CBCT images by reduction of metal artifact. 

2.3. Radon Transformation (RT) 

We developed the following algorithm to reduce the 
metal artifact in CBCT images. The image was processed 
using radon transformation which computes projections 
of an image matrix along specified directions, and com-
putes the line integrals from multiple sources along pa- 
rallel paths, or beams, in a certain direction [5,11-13]. 

The intensity of each pixel in the image will be dis- 
played as carve lines with a value depends on the inten- 
sity level of this pixel, these carves are called “Sino- 
gram”, because the radon transformation of source point 
is a sinusoid, show (Figures 4(b) and 5A). 

Fortunately; the (RT) has a well-defined inverse. In 
order to invert the transform, we need projection data 
spanning 180 degrees. The inverse transformation is used  

 

  
Figure 2. A. After applying double thresholding to the Figure 
2A between 0, 0.1; B. After applying closing algorithm. 

 

 

Figure 3. After applying Otsu’s thresh- 
olding and Boundaries tracing. 
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to reconstruct images from raw projections. In general, 
increasing the number of projections (reducing angular 
step), improves image quality. 

The (RT) of a distribution function (image data) f(x, y) 
is given by: 

     , , δ cos sin d dRT f x y x y x y   



    (1) 

where δ is the Dirac delta function, φ is the angle and ξ is 
the smallest distance to the origin of the coordinate sys-
tem. The Radon transform for a set of parameters (ξ, φ) 
is the line integral through the image f(x, y), where the 
line is positioned corresponding to the value of (ξ, φ) as 
it illustrated in Figure 6. The sinogram RT(ξ, φ) has 
many important mathematical properties as: 

  , , πRT RT                   (2) 

We apply (RT) on the CBCT image towards counter 
clockwise from the horizontal position to the line on which 
the detector array is located, as shown in Figure 5B. 

Then we apply the thresholding on the radon trans- 
formed image. We’ll notice that the noisy data will be  

 

 
(a) 

 
(b) 

Figure 4. (a) Original dicom CBCT-image; (b) 
Radontransformation of image (a). 

removed of each point in the original image in all projec- 
tions angels from 0 to 360 degree. The resulting (RT) 
after applying thresholding is shown in Figure 5A, and 
the reconstructed image of the processed (RT) is shown 
in Figure 5B. 

This task can be reduced by selecting of the threshold 
value T which optimizes a predefined criterion [12,13]. 

Once T is computed, the thresholded image: 
f(x, y), 1 ≤ x ≤ M, 1 ≤ y ≤ N that can be generated by 

assigning the following values: 

   
 0 if ,  

,    
,  otherwise        

I x y T
I x y

I x y

 
 


        (3) 

3. BACKPROJECTION 

Each beam is detected on the side of the body opposite 
from the beam source, and its detected intensity is com- 
pared to its intensity at the source. Most medical imaging  

 

 
(a) 

 
(b) 

Figure 5. (a) After applying thresholding on the 
Radon transformation of the image; (b) Reconstructed 
image of the processed Radon transformation. 
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systems separately reconstruct two-dimensional slices of 
a three-dimensional object. If necessary, these recon- 
structed two-dimensional slices may be combined to cre-
ate a three-dimensional representation of the object being 
imaged. 

To reconstruct an Image we need to define an array of 
projection angles (i.e. φ = 0 to 180 with step of 1 degree) 
then we calculate the transformation of each value of φ 
depending on the corresponding coordinates x as it shown 
in Figure 4(b). Then we return the reconstructed image 
from projections which taken at angles defined by φ us-
ing the reverse radon transformation [14-17], which ma- 
thematically is defined as: 

  π

0
, ( cos cos

inv
x y RT x yf )d           (4) 

Geometrically, the backprojection operation simply 
prop- agates the measured sinogram back into the image 
space along the projection paths, show Figure 7. 
By using the central slice theorem (CST), which re- lates 
with F(νx, νy); the 2D Fourier transform (FT) of f(x, y), and 
RT(υ, φ); the 1D FT of RT(ξ, φ), show Figure 8. Mathe-
matically, the CST is given by: 

  , cos , siRT F n                (5) 

The CST theorem states that the value of the 2D FT of 
f(x, y) along a line at the inclination angle φ is given by  

 

 

Figure 6. Coordinate system for the Radon Transformation. 
 

 

Figure 7. Geometrical interpretation of back- 
projection. 

the 1D FT of RT(ξ, φ); the projection profile of the sino-
gram acquired at angle φ. Hence, with enough projec-
tions, RT(υ, φ) can fill the νx, νy space to generate F(νx, 
νy). In the Fourier space, Equation (2) becomes: 

  , π ,RT RT                  (6) 

To synthesize a parallel projection of angle finds all 
rays such that: 

π

2
cons                   (7) 

For this projections are needed of the angular range: 

max max,                   (8) 

with βmax as maximum fan angle shown in Figure 9(a). 

FOV
max

Focus

arcsin R

R


 
 

 
             (9) 

An object point r can be reconstructed exactly if it 
sees a scan path segment of angular range pi. Thus, an 
image part can be reconstructed without acquiring com- 
plete data of the object (super short scan). Specific algo- 
rithms are needed for reconstruction from a super short- 
scan. 

4. THREE D-RECONSTRUCTION 

There are several approaches to the 3D surface genera- 
 

 

Figure 8. Central slice theorem. 
 

 
(a)                             (b) 

Figure 9. (a) Fan beam Principe; (b) Fan beam field of view 
(black lines) and parallel beam field of view (red lines). 
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tion problem. An early technique [17,18] starts with 
contours of the surface to be constructed and connects 
contours on consecutive slices with triangles. Unfortu- 
nately, if more than one contour of surface exists on a 
slice, ambiguities arise when determining which contours 
to connect [19-21]. Interactive intervention by the user 
can overcome some of these ambiguities [8,10,20,21]; 
however, in a clinical environment, user interaction should 
be kept to a minimum. 

We used an approach to locate the surface in a logical 
cube created from eight pixels; four each from two adja- 
cent slices. There are two primary steps in our approach 
to the surface construction problem, refer to Figure 10. 

First, to locate the surface in the data cube created 
from eight pixels, the first four from slice k while the 
second four from k + 1 slice as it shown in Figure 10. 

We create triangles with locate the surface correspond- 
ing to a specified chosen value and. Then, we calculate 
the norm to the surface at each point of the Triangle, that 
to ensure a quality image a zero and lies outside the surface. 

The surface intersects those cube edges where one 
vertex lies outside the surface, which gets the value (1) 
and the other one lies inside the surface, which get the 
value (0). With this rule, we determine the topology of 
the surface within a cube, finding the location of the in- 
tersection. With this assumption, we determine the to- 
pology of the surface within a cube, finding the location 
of the intersection later [13,14,21,22]. Since there are 
eight vertices in each cube and two slates, inside and 
outside, there are only 28 = 256 ways a surface can inter-
sect the cube. 

By enumerating these 256 cases, we create a table to 
look up surface edge intersections, given the labeling of 
cubes vertices, refer to Figure10. The table contains the 
edges intersected for each case. The final step in march- 
ing cubes, refer to Figure11 calculates a unit normal for 
each triangle vertex. The rendering algorithms use this 
normal to produce the image in Figures 12 and 13. 

 

 

Figure 10. Marching cubes to locate the surface using eight 
pixels, four each from two different slices. 

 

Figure 11. Marching Cube image of CBCT slices. 
 

 

Figure 12. 3D reconstruction isoline of CBCT slices, soft 
tissues is reconstructed as bone structures. 

 

 

Figure 13. 3D reconstruction using isosurface applying linear 
vertical smoothing. 

 
Figure 14 shows the topological marching cube image 

of CBCT-dicom data. 
In Figure 12, a few parts of the soft tissues is recon- 
structed as a bone structures that because the reduction of 
the shadow and brightness in the slides quantitative, de- 
pends on the chosen threshold, was not suitable. Using 
an adaptive threshold value for each slide and applying a 
linear vertical smoothing in z-Direction (distance be- 
tween the slides in z-Direction) in the Dicom cube lead 
to more suitable reduction of the artifacts as it shown in 
Figure 13. The threshold was calculated using the the 
next Equation: 
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     max min
min
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
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where, I(x, y)k-min, I(x, y)k-max the minimal and maximal 
intinsities in the kth slide. 

Value of each voxel is the value of the correlative 
pixel, which is often the gray level of pixel. After ar- 
ranging of parallel slices, rendering techniques will be 
selectively use to perform the volume data. A surface of 
constant density has a zero gradient component along the 
surface tangential direction; consequently, the direction 
of the gradient vector g is normal to the surface. We can 
use this fact to determine surface normal vector n if the 
magnitude of the gradient g  is nonzero. Fortunately, 
at the surface of interest between two tissue types of dif- 
ferent densities, the gradient vector is nonzero. The gra- 
dient vector g is the derivative of the density function. 

5. CONCLUSIONS 

We can recognize noisy black areas in CBCT images 
when metal objects exist in the mouth depending on 
thresholding and closing algorithm, or by depending on 
tracing boundaries after using thresholding algorithm. 
That means that we can process these areas in the future 
by replacement it with right data by profiting of neigh- 
bours in the same image and neighbours in the previous 
and next dicom images. 

These methods are step1 towards enhancement CBCT 
images by reduction of metal artifact. The Marching 
cubes as an algorithm for 3D surface construction, com- 
plements CBCT data by giving 3D views of the anatomy. 
The algorithm uses a case table of edge intersections to 
describe how a surface cuts through each cube in a 3D 
data set. 

Additional realism is achieved by the calculation, from 
the original data, of the normalized gradient. The result- 
ing polygonal structure can be displayed on conventional 

 

 

Figure 14. Cub order. 

graphics display systems. Although these models often 
contain large numbers of triangles, surface cutting and 
connectivity can reduce this number. 

Recently we developed the surface construction algo- 
rithm that generates points rather than triangles and can 
effectively reduce such metal and dark areas artifacts in 
the reconstructed 3D-images based on radon- and radon 
invers-transformation. 
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