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ABSTRACT 

Based on the Timoshenko beam theory and Bernoulli-Fourier method, a single-elastic beam model is developed for 
transverse vibrations of single-walled carbon nanotubes under additional axial load, which includes the effects of the 
elastic medium around them. Explicit expressions are derived for the natural frequencies and transversal responses of 
simply supported single-walled carbon nanotubes. The influence of addition axial load and the properties of elastic me-
dium on the vibrations are discussed. The results showed that the effects of addition axial load on the lower natural fre-
quencies of single-walled carbon nanotubes are sensitive to the lower vibration modes and the stiff elastic medium. The 
lower natural frequencies depend on the axial load; they become smaller with increasing axial load and vary with the 
vibration modes. In addition, except for the first mode, the effects of the axial load on the stiff elastic medium are con-
siderably greater than those on the flexible one. However, the constants of the elastic medium have little effect on the 
first mode. The critical axial buckling stress and strain for simply-supported single-walled carbon nanotubes are also 
obtained. 
 
Keywords: Transverse Vibration; Timoshenko Beam Model; Elastic Media; Single-Walled Carbon Nanotubes;  

Bernoulli-Fourier Method 

1. Introduction 

Carbon nanotubes (CNT) are an exciting new material 
that has potential applications in nanobiological devices 
and nanomechanical systems. Due to their remarkable 
mechanical, physical, and chemical properties, carbon 
nanotubes may be used as fluid conveyers or potential 
reinforcements in nanocomposite materials [1-3]. Since 
experiments at the nanoscale are extremely difficult to 
conduct, theoretical modeling of the mechanical response 
of carbon nanotubes has been carried out [4,5]. These 
modeling approaches generally include atomistic model- 
ing and continuum mechanics modeling. Atomistic mod- 
eling is very time consuming and computationally ex- 
pensive for large-sized atomic systems, so continuum me- 
chanics models have been widely used to study the me- 
chanical behavior of carbon nanotubes [6-10]. Several 
types of continuum-based elasticity theory, which model 
CNT as an elastic cylindrical tube, have been used to 
study the nanomechanics and vibration responses of CNT. 
For example, the Euler-Bernoulli classical beam theory 
and the Timoshenko beam theory have been used to in- 
vestigate the mechanical and structural properties of CNT, 

such as buckling stress and strain [11], wave characteris- 
tics [12], and resonance frequency [13]. Based on a mul- 
tiple-elastic beam model, the vibrational analyses were 
investigated by Yoon et al. [14], which considers inter- 
tube radial displacements and the related internal degrees 
of freedom. Free vibration analysis of multi-walled car- 
bon nanotubes (CNTs) is concerned with the use of the 
Timoshenko beam model by Wang et al. [15], and the 
governing Timoshenko equations are solved for CNTs of 
different length-to-diameter ratios and boundary conditions 
using the differential quadrature (DQ) method. Nonlocal 
elasticity and Timoshenko beam theory are implemented 
to study the vibration response of SWCNT embedded in 
an elastic medium [16]. Influence of the surrounding 
elastic medium on the fundamental frequencies of the 
SWCNT is investigated. The Mode Bernoulli-Fouriers in 
single-walled carbon nanotubes (SWCNTs) were inves- 
tigated analytically and numerically by Shi et al. [17], 
and the analytical results based on a classical thin circu- 
lar cylindrical shell theory for SWCNTs showed that the 
effective thickness prescribed to SWCNTs has strong 
effect on mode Bernoulli-Fourier in SWCNTs. Chen et al.  
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[18] studied the effects of the geometric structure and an 
electric field on the electronic and optical properties of 
quasi-zero-dimensional finite carbon nanotubes by em- 
ploying the tight-binding model coupled with curvature 
effects. Hsu et al. [13] developed a model that analyzes 
the resonant frequency of chiral single-walled carbon 
nanotubes subjected to a thermal vibration by using the 
Timoshenko beam model, including the effect of rotary 
inertia and shear deformation. It was found that the effect 
of axial load on the properties of the transverse vibration 
of carbon tubes is of practical interest. However, the so- 
lution of the vibration response obtained using the mode 
Bernoulli-Fourier method for SWCNT embedded in an 
elastic medium, and modeled as a Timoshenko beam, are 
absent from the literature. 

In this paper, a single-elastic beam model is developed 
for transverse vibrations of the SWCNTs embedded in an 
elastic medium under additional axial load using the Ti- 
moshenko beam theory and the mode Bernoulli-Fourier 
method. Using the proposed single-elastic Timoshenko 
beam model, explicit expressions are derived for natural 
frequencies, and the influence of addition axial load and 
the constants of elastic medium on the properties of vi- 
brations are discussed. In addition, the critical axial buck- 
ling stress and strain for simply supported single-walled 
carbon nanotubes are derived. 

2. Analysis 

SWCNTs embedded in an elastic medium with simple 
supported ends subjected to an additional load are con-
sidered as hollow cylindrical tubes as shown in Figure 1. 
The transverse displacement w of SWCNTs depends on 
time t and the spatial coordinate x. SWCNTs have an 
equivalent bending rigidity EI and shear modulus G, in-
ner diameter d, and thickness tc. The governing equation 
of the Timoshenko beam, including the effect of rotary 
inertia and shear deformation, for SWCNTs is [19,20]: 
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Figure 1. SWCNTs embedded in an elastic medium with a 
constant Ke with simple supported ends. 
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where I and A are the second moment of area and the 
cross-sectional area of the beam, respectively, E and ρ 
are Young’s modulus and the mass density, respectively, 
FT denotes an additional axial force, Ke is an elastic medium 
constant for the Winkler model, K is the shear coefficient 

of carbon nanotubes with a value of 
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μp is Poisson’s ratio. Thus, EI denotes the bending stiff-
ness of the beam, and ρA represents the mass density per 
unit axial length. In addition, we define: 
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The axial stress is assumed to be uniform over the en-
tire cross section. This gives: 
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 (3) 
SWCNTs of length L are considered. Suppose that 

their ends are simply supported. The boundary conditions 
are given by: 
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The homogeneous partial differential equation, (3) and 
the governing boundary conditions, (4) and (5), can be 
solved using the Bernoulli-Fourier method assuming that 
the solutions are in the form: 
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where Tn(t) is the unknown time function, and Xn(x) is 
the known mode shape function for a simply-supported 
single beam, which is expressed as: 
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Substituting Equation (6) into Equation (3) yields: 
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From the above ordinary differential equation, and in-
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troducing dummy variables H, Λn, Fn, and ηn which are 
respectively defined as: 

This is the critical axial buckling strain corresponding 
to the vibration mode n.  
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In order to investigate the influence of additional axial 
load, the factor λ is defined as the ratio between the addi-
tion axial stress and the critical axial buckling stress cor-
responding to the first vibration mode. This gives: 
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Then, the unknown time functions can be expressed 
as: 

 0 0n n n n n x nHT T F T              (10) Moreover, dimensionless parameters α, β, γ, ζ, and ξ 
are respectively defined as: 

The solution of Equation (10) can be given by: 

 

2 2 4

2 2

, , ,

2
, ,e

ni ni

I I I

AL A L
E I

i I II
KG KG AKG

  

   

  

    

 1 ,nj t
n nT t C e i  1

C

          (11) 

,

ni

 (20) 
where ωn denotes the natural frequency of the SWCN, and 
Cn represents the amplitude coefficients of the SWCNTs. 
Substituting Equation (11) into Equation (10), we obtain: Then, the expression of the lower natural frequency 

ωnI and the higher natural frequency ωnII which are ad-
dressed in Equations (14) and (15), respectively, can be 
rewritten as: (see Equations (21) and (22)) 
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when non-trivial solutions exist, the following frequency 
(characteristic) equation can be obtained: Where ΓnI is the lower dimensionless natural fre-

quency, and ΓnII is the higher dimensionless natural fre-
quency. Using trigonometric functions, the solutions of 
Equation (9) can be rewritten as:  
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Then, from characteristic Equation (13), we obtain: 
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    (15) where Ani and Bni (i = I, II) are unknown constants. Then, 
the transverse vibrations of a SWCT under additional 
axial load can be described by:  At a sufficiently large compressive axial force, the 

natural frequency becomes zero and the single-walled 
nanotube transversely buckles. Setting ωn = 0 in Equa-
tion (13), we have: 

       
1

, sin sin cos
II

n ni ni ni ni
n i i

w x t k x A t B t 


 

     (24) 

Using the orthogonality property of mode shape func-
tions, the unknown constants Ani and Bni can be deter-
mined from the assumed initial conditions. In order to 
find the final form of the transverse vibrations, the ini-
tial-value problem is solved. In this case, the classical 
orthogonality condition is applied as: 
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It follows from Equation (16) that the value of the 
buckling stress corresponding to vibration mode n can be 
obtained by: 

 
4

0 0
2( ) orn

x b x b
n n

F EIk

Ak

 



     

0 0

2

0

d sin sin d ,

d 0.5

l l

m n m n mn

l

n

X X x k x k x x δ

X x l





 

 

 


 (25) 

n e      (17) 

Moreover, we obtain: 
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where δmn is the Kronecker delta. Substituting of Equation.
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(24) into the initial conditions of Equation (5) yields: 
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Multiplying the above equations by the eigenfunction 
Xmn, integrating them with respect to x from 0 to L, and 
using the orthogonality condition, we obtain: 
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It follows from the above equations that: 
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We next illustrate the effect of additional axial load on 
the transverse vibration of the SWCN. When the axial 
load is absent, it follows from Equations (14) and (15) 
that: 
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where 0
nI  and 0

nII  respectively denote the lower and 
higher natural frequencies of the SWCNTs without the 
axial load. To examine the influence of the axial load on 
the vibration of the SWCNTs, the results with the axial 
load and those without the axial load are compared. It 
follows that: (see Equations (36) and (37)) 
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3. Results and Discussion 

The main goal of this study is to analyze the transverse 
vibrations of SWCNTs which are modeled as a Ti-
moshenko beam and embedded in an elastic medium. An 
additional axial load is applied to the SWCNTs and its 
effects are investigated. Using Young’s modulus E, shear 
modulus G and the Poisson’s ratio μp, The SWCNTs are 
described as hollow cylindrical tubes with cross-sectional 
area A, length L, inner diameter d, and thickness tc.The 
geometric and material parameters of the nanotubes in 
the analysis are as follows: L = 50 nm, ρ = 2300 kg/m3, d 
= 0.678 nm, tc = 0.066 nm, μp = 0.19, and E = 5.5 Tpa. 
The computations of I, G, and A are based on the me-
chanics of the material [21]. The first three modes of the 
fundamental frequency of SWCNTs under axial loads are 
shown in Figure 2. The results revealed that the lower 
natural frequency is significantly affected by the axial 
load. In other words, the lower natural frequency is more 
important to the transverse vibrations of SWCNTs than 
the higher one.  

The effects of the axial load on the properties of trans-
verse vibration represented by the ratios of ψI and ψII are 
shown in Figure 3. As can be seen, the ratios ψI and ψII  
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Figure 2. Values of the lower natural frequency ωnI and the 
higher natural frequency ωnII under the effect of axial 
loads. 

 

 

Figure 3. Effects of the axial load on the natural frequencies 
ωnI and ωnII with respect to the first three modes. 

 
decrease with increasing axial load. The effect of the 
axial load is related to the vibration modes, especially for 
ψI which is related to the first mode. Consequently, it can 
be concluded that the natural frequency ωI depends on 
the axial load; it become smaller with increasing axial 
load and varies with the vibration modes. 

The elastic medium plays an important role in the 
simulation of SWCNTs. The effects of the axial load for 
SWCNTs embedded in a flexible elastic medium with Ke 

= 0.55 Mpa and in a stiff elastic medium with Ke = 0.55 
Gpa, are shown in Figures 4 and 5, respectively. Figures 
4 and 5 showed that except for the first mode, the effects 
of the axial load on the stiff elastic medium are consid-
erably greater than these on the flexible one. SWCNTs 
embedded in a stiff elastic medium enlarge the buckling 
stress, increasing the effects of the axial load. Figures 4 
and 5 also showed that the properties of the elastic me-
dium have little effect on the first mode. The effects of 
the axial load increase abruptly with the decreasing mode 
number. 

 

 

Figure 4. Effects of the axial load on the lower modes of 
SWCNTs embedded in a flexible elastic medium and in a 
stiff elastic medium. 

 

 

Figure 5. Effects of the axial load on the higher modes of 
SWCNTs embedded in a flexible elastic medium and in a 
stiff elastic medium. 
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4. Conclusion 

Based on the Bernoulli-Euler beam theory, a single-elastic 
Timoshenko beam model and the Bernoulli-Fourier method 
were developed for the free transverse vibrations of 
SWCNTs under additional axial load. The effects of the 
elastic medium are incorporated in the formulation. Us-
ing the proposed single-elastic Timoshenko beam model, 
explicit expressions were derived for natural frequencies 
and transversal responses for simply-supported SWCNTs. 
The influence of additional axial load was also discussed. 
It was concluded that the effects of the axial load on the 
lower natural frequencies of SWCNTs are sensitive to 
the vibration modes and the constants of the elastic me-
dium. The natural frequencies depend on the axial load: 
they become smaller with increasing axial load. However, 
the effects of the axial load increase abruptly with de-
creasing mode number. In addition, the effects of the 
axial load on a stiff elastic medium are considerably greater 
than those on a flexible one. The properties of the elastic 
medium have little effect on the first mode. 
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