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ABSTRACT 

We report model calculations of the time-dependent internal energy and entropy for a single quasi-free massive quan- 
tum particle at a constant temperature. We show that the whole process started from a fully coherent quantum state to 
thermodynamic equilibrium can be understood, based on statistics of diffracted matter waves. As a result of thermal 
interaction between the particle and its surroundings, the motion of the particle shows new feature. 
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1. Introduction 

Recent experiments of absorption of a single photon by a 
single atom [1], nondestructive cooling of a single ion 
using an ultracold atomic bath [2], and the imaging of 
spin direction of a single atom [3] have demonstrated 
intriguing possibilities of controlling and measuring of 
quantum processes on the atomic scale. Among cou- 
plings of such a system with its surrounding, keeping it at 
adequate low temperature is believed to be essential to 
maintaining the quantum coherence. The question ap- 
pears to be important and interesting: To what extent can 
temperature affect the behavior of a quantum system 
containing a single or a few quantum particles? It is 
well-known that statistical mechanics deals with macro- 
scopic systems consisting of large number of micro- 
scopic particles [4]. For a system of N particles at a finite 
temperature, it is generally true that the relative fluctua- 
tions of an extensive quantity vary as 1 N , which gets 
larger and larger as N decreases. If we wish to keep the 
statistical error below one percent then a system would 
have to contain more than about ten thousand particles. 
The obstacle arises if one tries to apply the standard pro- 
cedure of statistical physics in a present-day textbook 
directly to study the temperature dependent behavior of a 
quantum system containing a few quantum particles. For 
an atom confined in a harmonic potential, it could be 
overcome by considering a single particle Hamiltonian 
coupled to a multi-mode quantum thermal bath, where 
relaxation of the particle depends on the coupling modes 
with acceptable fluctuations [5,6]. Another approach is to 
perform statistics directly on the matter wave of a quan- 
tum particle by taking into account the detailed configu-  

ration of diffraction in real space, where the bath acts as 
the heat reservoir at a constant temperature and is large 
enough to cause unacceptable errors [7]. Here we im- 
prove the latter approach and study the thermodynamic 
process of a quasi-free massive quantum particle from a 
coherent single quantum state to thermodynamic equilib- 
rium. We show analytical expressions of the time-de- 
pendent internal energy and entropy. Due to thermal in- 
teraction between the particle and its surroundings, the 
process of decoherence is temperature dependent and its 
translational motion shows new feature.  

2. Model Calculations 

We consider a structureless massive quantum particle 
moving in a space at constant temperature T as shown in 
Figure 1. Although there is no interaction with other 
particles, the particle is quasi-free because a circular ap- 
erture of radius a0 for its matter wave is considered. The 
quantum particle is assumed to be of kinetic energy E0 
initially at the origin and is described by a wave-packet 
sharply peaked at the de Broglie wavelength  

02h mE  , with m being its mass and h the Plank’s  

constant. The wave front propagates along x-axis at 
group velocity Vg = h/(mλ). For simplicity, we assume 
that the radius a0 of the matter wave aperture is large 
compared with the wavelength λ so that the shape and 
linear dimension of the forward-going wave-front re- 
mains unchanged as the wave propagates. It is important 
that every point at the edge of the wave-front generates 
out-going fully spherical waves and the kinetic energy 
associated with the forward-going wave-front follows the 
form [7]. 
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Figure 1. Cross section schematic of a free quantum particle 
passing through a matter wave aperture of radius 0a   . 

The whole space is assumed to be at constant temperature T. 
Arrows in line indicate the wave-front of the mater wave 
pulse. Circles indicate out-going spherical waves diffracted 
at the edge of the wave-front. The expectation value  x t  

for the position of the particle is temperature dependent. 
 

   0 02 x a L expkE x E ,          (1) 

where L is a temperature dependent parameter of dimen-
sion length and is expected to be infinitely large as the 
temperature tends to zero. This is just the energy for the 
source to generate out-going fully spherical waves. We 
define a probability density function for the particle 

     0 0xp 2 x a L2 eEP x a L .        (2) 

There exists a step length d0, so that the energy for 
fully spherical waves generated in d0 is E0PE(nd0)d0 when 
the forward-going plane-wave front is at the position nd0, 
where n is an integer. In principle, the particle may be in 
any of these diffracted states besides the forward-going 
plane-wave state, i.e., the particle itself constitutes auto- 
matically a thermodynamic system as a result of diffrac- 
tion at the edge of its matter-wave front. The probability 
for different energy states is known here and, in general, 
all energy states are not equally likely. If one can distin- 
guish energy states in more detail, a smaller step Δx 
should be used and the degeneracy replaced by d0/Δx. 
Thermal interaction between the particle’s system and 
the surrounding space becomes possible and the space 
here acts as the heat reservoir at constant temperature T.  

The partition function of the particle should take into 
account contributions from forward-going wave-front and 
all spherical waves diffracted at the edge. The partition 
function at a given time is then 
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where the notation β= 1/kBT is used as usual with kB be-
ing the Boltzmann constant. The constant Z0 is defined as 
the non-zero real solution of the transcend equation 

 0 0exp 2 1 0Z Z .             (4)   

With the help of the Lambert W function [8], we ob- 
tain Z0 = −W−1(1/2e1/2) − 1/2 and we use an approximate 
value Z0 = 1.25643 in our numerical calculations. Here 
we have used the correct form of the step length  

 0 0 0 0  instead of the wavelength, and tr = 
t/tc is the time scaled with a temperature dependent char- 
acteristic time defined by 
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(3) 

0 2ct ma L h .                (5) 

The expectation value for the energy of the particle or 
its internal energy is 
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(6) 

The first term comes from all those out-going spheri- 
cal waves diffracted at the edge, and the second term 
from the forward-going wave-front itself as a whole. The 
internal energy of the particle is written as 

1 2 1N N
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depending on the temperature and the particle’s initial 
energy in a complicated form. 

In Figure 2 we plot the numerical results of the inter- 
nal energy for various initial energies and temperatures. 
In general, a quantum particle absorbs or gives out heat 
continuously when its initial energy E0 is less or more 
than kBT/2. At the special point E0 = kBT/2, our numerical 
calculations show that the curve moves downward ini- 
tially and then upward continuously, indicating exchange 
of energy taking place between the particle and its sur- 
rounding space in the whole process. The limiting value  
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ergy in quantum mechanics to a series of possible states. 
Although states representing the forward-going wave- 
front remain coherent, those states diffracted at the edge 
at different time are no longer coherent at finite tem- 
peratures as a result of heat exchange. The process 
breaks down if a collision occurs in a gas.  

 

After a sufficient long time, the probability for the par- 
ticle in the coherent state disappears and the internal en- 
ergy reaches the universal thermodynamic energy in 
equilibrium with the surrounding environment. The time 
needed to reach the limit of internal energy could in 
some sense be viewed as the coherence decay time of a 
quantum particle in a space at a finite temperature. 
Therefore, the present work might be utilized in under- 
standing the temperature dependence for the coherence 
decay time observed recently for individual molecules at 
room temperature [9]. 

Figure 2. Scaled internal energy βU(t) as a function of the 
scaled time t/tc. Values of βE0 are labeled on the curves. 

We now calculate the average value of the particle’s 
position to obtain information of where it is at a given 
time. Although out-going spherical waves diffracted at 
the edge are no longer coherent at finite temperatures, the 
overall probability projected on x-axis in the range –Vgt < 
x < Vgt can be calculated without mathematical difficul- 
ties. The thermodynamic expectation of the particle’s 
position in the x-direction is written as 

 
of the internal energy for the freedom in the x-direction 
is kBT/2, regardless of its initial energy. The limit is al-
ready reached for t/tc > 3 in our numerical calculations 
and the overall decay or increase in internal energy does 
not follow the simple exponential form. Physically, the 
process describes the evolution of the particle starting 
from a fully coherent initial state with well defined en- 

        
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              (8) 

The first term represents contributions from all those out-going spherical waves and the second term from the for-
ward-going wave-front. The explicit result is 

 
     

     
   

     

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

exp

2exp exp exp

exp exp

2exp exp exp

r r r

r r r r

r r

r r r r

t t t
r

t t t t
r r

t t
r r r

t t t t
r r

Ei Z e Ei Z E t e Z e a L
x t

E e t Z Z e E e Z e t Z

Z t Z e t E e t a L

E e t Z Z e E e Z e t Z



 



 

 

   

 

   

          
     

 


     

                (9) 

 
  Figure 3 shows the numerical results of Equation (9) 

for the scaled average position 
with Ei z

–

 being the exponential integral function of 
argument z [10]. Note that the particle, in principle, may 
be found anywhere in the range g g . It is 
interesting that 

V t x V t 
 x t  shows dependences not only on 

the initial energy of the particle, but also on the tem- 
perature and the spatial confinement for its matter 
wave. 

   0x t a L   versus 
the scaled time t/tc for various combinations of tempera- 
ture and initial energy. It increases continuously with 
increasing time, approaching a limit within a time of 
several tc. It is true that a particle with higher initial en- 
ergy reaches the limit at a later time. The limit is 
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Figure 3. Scaled average position    0x t a L   versus 

the scaled time t/tc for various values of βE0. 
 
where C = 0.577216 is the Euler’s constant [10]. If the 
particle could not feel the temperature of the space, we 
would have the relation   0 2x a L  .   

The entropy, measuring the amount of uncertainty of 
the particle, can also be calculated because the probabi- 
lity distribution is known. The uncertainty relation 

2πE t h  

1ip 
ln

 in quantum mechanics tells us that 
waves diffracted at the edge should be indistinguishable 
when the wave-front moves forward within about one 
wavelength. We choose λ as the step length and rewrite 
the probability in discrete form . The entropy is 
calculated using the definition x B i i , which 
is perfectly unambiguous for time-dependent system of 
any size. Under the condition 

S k p p 

g cV t  , we find the time- 
dependent entropy of the particle for the coordinate is 
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(11) 

Here the constant term  ln g c  has been neglec- 
ted. The last term can be understood as the result of ex-
pansion of the particle’s matter-wave. The entropy starts 
from zero and then increase monotonically with increase- 
ing time. As  and 

V t

 U t  x t  reach their limits, the en- 
tropy for each freedom converges to a universal value 
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the particle. The result holds also for a free quantum par- 

erimental observation depends 
on

3. Conclusion 

asi-free massive quantum particle in a 
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