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ABSTRACT 
 
This paper used the equation of the deflected axis of a beam to present procedures for solving 
one-dimensional functions that can be expressed in the form of Poisson equation. The equation 
of the deflected axis of a beam was solved for deflection for GRP composite component by Finite 
Element Method (FEM) using integrated FEM-Galerki approach to derive the finite elements 
equations. The critical stress of GRP structure at the onset of structural instability was computed 
as 14.162 MPa using Euler relation while the maximum bending moment, a subject in the 
equation of the deflected axis of a beam of structure was also estimated with classical relation. 
The equation of the deflected axis of the beam is then solved as a one dimensional Poisson 
equation following FEM-Galerki approach for deriving element equation. The maximum 
optimum deflection a measure of maximum instability occurring around the mid span of element 
of structure was estimated. Also the finite element predicted results were compared with 
analytical results and the finite element results captured the general trend of the analytical 
results.  
 
Keywords: finite element, buckling deflection, GRP, instability, field function. 
 
 
 
1. INTRODUCTION  
  
In many applications, such as machine tools transmissions and large structures, deflection 
considerations may just be as important as the maximum stress induced. Serious misalignments 
and interferences caused by excessive deflection could cause a machine to malfunction long 
before it fractured due to stress [1]. Deflection values are also a useful tool in analyzing average 
strength in structures since the two properties is inversely proportional.  
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The stiffness value of a design takes account of the loading exerted and is given as:  

 Stiffness = 
Force

Deflection  

 
It is useful to note that stiffness is directly proportional to strength and thus may be used to 
compare average stress values of designs. Optimum buckling response model of GRP 
composites has been established experimentally and numerically leading to establishing some 
mechanical properties of GRP composites that gives designers an insight to buckling strength of 
GRP composites [2].  
 
A major objective of this work is to predict optimum buckling deflection by solving the equation 
of the deflected axis of a beam by finite element method. Finite element method has the 
advantage of evaluating deflection at various nodal or mesh points of a composite beam 
highlighting on the critical sections of the beam. The involvement of natural boundary conditions 
in finite element modeling is a panacea for solution of initial value or boundary value problem 
aiding the evaluation of intermediate values [3, 4].  
 
Instability analysis is very important because some structures may fail before reaching their 
elastic limit. These days thin sections are needed to introduce some desired flexibility in 
components. The Finite difference method (FDM) has been used to develop finite difference 
model of failure response of GRP composites to optimize the compressive strength of GRP 
composites in compressive or buckling environment [5]. 
 
The solid mechanics properties of material such as modulus of elasticity, slenderness ratio, 
radius of gyration, moment and moment of inertia of section were reviewed and applied to 
determine the finite element property matrix. During composition of GRP for buckling 
environment, the natural boundary conditions i.e. slopes at beginning and end of beam are 
expected to be less than unity so that the equation of the deflected axis of a beam could be 
applied in modeling [6]. 
  
Buckling has become more of a problem in recent years since the use of high strength material 
requires less material for load support, structures and components have become generally more 
slender and buckle – prone. This trend has continued throughout the technological history. A thin 
walled structure is made from a material whose thickness is mush less than other structural 
dimension as found in plate assemblies, common hot and cold – formed structural sections, tubes 
and cylinders, and many bridge and aerospace structures. 
 
The two fundamental steps in finite element analysis (FEA) are preprocessing and 
postprocessing involving idealization, discretization and solution as presented in Figure 1 and  
Figure 2.  The finite element modeling involves the abstraction of a physical system by creating 
discrete finite sub regions within a continuum to obtain a finite element geometric model. This is 
used to obtain a finite element mathematical or symbolic model by passing approximating or 
curve fitting polynomial/function through the established element nodal points. This procedure is 
well developed in [2, 4]. Disretization in finite element method gives room to identify critical 
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location for point of first failure. Composites in general have random material properties as many 
materials are involved as constituents during the formative stage. 
 
2. THEORETICAL BACKGROUND ON COMPRESSIVE FAILURE OF BEAM. 

 
A horizontal beam situated on the x axis of an xy coordinate system and supported at both ends 
bends under the influence of axial compressive loads as depicted in Figure 1. The deflection 
curve of the beam often called the elastic curve is also shown in Figure 1 

 
 

 

 

   

 

 

  

Figure 1. Beam compressive loading and deflected beam axis. 

 
Following Figure 1, Euler 1774 expressed the minimum buckling model of engineering member 
subjected to axial compression within its materials elastic limit provided that the greatest 
dimension is more than 4 to 6 times its least cross sectional size as  
  

  P = 
Π2EJ

 L         (1)  

The buckling stress, critical stress, following equation (1) is classically expressed as 
 

  Sc = 
Π2E
 ∧2         (2) 

 
Equation (1) was derived by employing the well known equation of deflected axis of a beam 
usually expressed as 

 

EJ 
∂2y
∂x2 = M(x)        (3) 

 
The maximum compressive stress of a beam subject to axial compression is expressed in [6] as 
  

           S =  
P
 A +

Mc
 J        (4)  

where 
E = modulus of elasticity of material 

L 

y 

y 
P x 

P 
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J = moment of inertia of section 
A = area of cross section 
c = dimension representing the position of neutral axis of section 
P = critical load 
L= length of section 
Sc = critical stress 

 
The critical stress of beam under compressive loading is expressed in [7].     
 
Equation (4) shows that when a beam is subjected to axial compression, stress due to axial load 
and stress due to induced moment are set up. The computing model for moment of inertia and 
slenderness ratio of section is expressed in [8] as 
 

         J   = Ak2 = 
bd3

 3    = 
b

 √3           (5) 

and    

          ∧ = 
L
 k  , c =     

depth of section
 2          (6)                  

where 
   ∧ = slenderness ratio. 

k = radius of gyration of section. 
   b = breath of section 
   d = depth of section. 
 
The maximum compressive strength of GRP composites is 50% its tensile strength [9, 10, 11].  
Also reported in [9] is that the tensile strength of GRP composite is about 303 MPa so that the 
compressive strength becomes about 152 MPa. Equation (4) could then be re-expressed as  
 

 152 = 
P
 A +

Mc
 J          (7) 

 
Equation (7) shows that as bending of member decreases the compressive strength becomes due 
to axial compression alone so that the maximum compressive strength becomes due to axial 
compression. Equation (4) becomes, by using the result of [2] by [5] and assumption of [9],  
  

 154 = 
P
 A ± 

Mc
 J         (8) 

 
From Euler 1774, the critical force Pc = P, so that 
  

 
P
 A = 

Pc
 A = 

Π2E
 ∧2         (9) 
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Equation (8) may be re-expressed as  
  

 154 = 
Π2E
 ∧2  ± 

Mc
 J         (10) 

 
The basic properties of materials of structure like modulus of elasticity and moment of inertia of 
section are found by employing the equation of deflected axis of a beam with some 
experimentally derived data expressed as 
  

       EJ  
∂2y
∂x2     =   M(x) 

 
so that by subject of formula 
 

        
∂2y
∂x2  =   

M(x)
 EJ         (11) 

 
By method of weighted residual, equation (11) becomes 
 

             R =  
∂2y
∂x2 -  

M(x)
 EJ        (12) 

 
 
3. METHODOLOGY  
 
Finite elements formulation involves discretizing, choice of approximating polynomial, 
derivation of shape function, interpolation functions, and expression of element equations in 
terms of interpolation functions. The basic steps of FEM are found in [4, 12]. The Galerki 
method was used in deriving element and assembly equations while LU-decomposition is used in 
obtaining solutions. The basic steps used with Galerki method to obtain the finite element results 
involve: 

• Discretization 
• Proposing polynomial interpolation within the element, the number of unknown 

coefficients being equal to the number of nodes defining the topology of the 
element  

• Evaluation of interpolation at each node and equating to the nodal displacement. 
This gives a set of simultaneous linear equations which will be solved to yield the 
unknown polynomial coefficients. 

• Substitution of expression of coefficients into the original interpolation 
(approximation polynomial) and the arrangement of terms to yield an expression 
of the form(shape function) 

 
  u(x) = N1(x)y1 + N2(x)y2 +....................              (13) 
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• Substitution of shape function expression into the governing differential 

equation. 
• Solution of the differential equations following Galerki method and application 

of integration by parts for all nodes 
• Expressing element equations 
• Assembling of elements equations 
• Solution of assembly equations 
• Post processing of results 
 

3.1 Modeling and Computations  
 
The geometrical and mathematical models of function are reduced to finite element algorithms 
and the field function of interest is solved at the designated nodes. 
 
3.1.1 Discretizing composite function into 5 elements 

 
The field function or region is divided into five solution domains. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 2. Finite element discrete model, where n, represent node and e, element: 
 Six nodes-five elements segmentation scheme  
 
3.1.2 Approximation polynomial, shape function and interpolation function 
 
The approximation polynomial is chosen as first order linear polynomial as 
  

Pc Pc 

L=85mm 

    n1               n2             n3              n4              n5            n6       

           e1                 e2           e3             e4            e5              

L 

y 

y 
P x 

P 
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           (14) 
  
and by passing the polynomial through nodes 1 and 2 
 

         (15) 
 

         (16) 
 
By using equation (15) and equation (16) in matrix form, the polynomial coefficients or shape 
constants are solved by Cramer’s rule as follows 
 

 =  

 
So that the determinant of coefficient matrix becomes  
  
   
 
and      ,  

 
The approximation or shape function then becomes by equation (14) 
 

 
       

  

    
By grouping of terms, 
 

 
 

            (17) 

     
                             (18) 
 
Equation (17) or equation (18) is called approximation or shape function while N1, N2 are called 
interpolation functions.  
  
By differentiating functions with respect to x using equation (18) 
                  

             (19) 
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From (4) 
 

   

  
        (20) 

  
               (21) 

      
3.2 Galerki Method for Eelement Equation: The Method of Weighted Residuals (MWR) 
 
By employing the equation of a deflected axis of a beam as  
 

         (22) 

          
By passing equation (18) through equation (22), 
  

          (23) 

        
Since equation (18) does not give the exact value of the function, equation (23) can be expressed 
as  
 

          (24)   

  
MWR suggests that  
 

      (24a) 

 
Wi = linearly independent weighting functions 
 
By finite element procedure, Wi = Ni so that equation (24a) becomes 
 

         (25)   
 
By using equation (15) in the Galerki method equation of equation (25), the one dimensional 
compression equation of equation (22) becomes 
 

              (26) 
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Equation (26) can be expressed as 
 

       (27) 

 
Integration by parts is used to simplify the L.H.S of equation (27) 
 

         (28) 
  
so that by Choosing 
 

  

 

       (29) 

 
By evaluating the terms in equation (29)  
 
For i = 1 
 

      (30) 

 
For i = 2 
 

          (31)  

 
Substituting equation (30) and equation (31) in equation (29) and then in equation (27), 
 
For i = 1 
 

      (32) 

  
For i = 2 
 

       (33) 

  
But x1 = 0, x2 = 17 
By evaluating equation (32) and equation (33) the element 1 equations are established.  
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By putting values in (32) for i =1 
 

     

 
 Also 
 

  ,   so that                                                            

        (34) 

 
Similarly by putting values in equation (33) for i = 2 
 
          (35)  

         
Equation (34) and equation (35) form the system of equations for element 1and may be 
expressed in matrix form as 
 

        (36) 

 
3.3 Geometrical Consideration and Estimation of Important Material Data 
 
Geometrical factors like bending moment, moment of inertia, radius of gyration slenderness ratio 
and critical stress are computed to aid solution of equation (36) and presented in Table 1.  
 
Table 1. Estimation of Important Material Data. 
 
Property Formula Results 
Moment of Inertia, J bd3/3 1.5625 x 10-10 m4   
Area of cross section A bd, b = 30mm, d = 2.5mm 7.5 x10-5m2 
Radius of Gyration, k (J/A) 1/2    1.44mm 

Slenderness Ratio, ∧ L/k, L=85mm 59 
Modulus of Elasticity Experimentally found 5GPa 
Bending moment, M(x) P/A + Mc/J, Smax =154 MPa 17.47975 NM 

Critical Stress Π2E/∧2   14.162 MPa 
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        (37) 

 
3.3.1 Element topology definitions 
 
The element topology assists in the computation and assembly of element equations. 
It takes the form of proper assignment of numbers to element nodes.  
 

Table 2. Node Numbering and Element Topology Definitions. 
 

 
 

 
 
 
 

 

 

 
By applying element topology definition and concept of nodal continuity other elements 
equations are written and assembled. 
 
For element 2 
 

        (38)           

 
For element 3 
 

        (39)     

 
For element 4 
 

        (40)      

 
  

Element 
number e 

Local node 
numbering 

Global node
numbering 

Active degrees o
freedom as 
element e is 
assembled 

1,2 1,2 y1,y2 
1,2 2,3 y2,y3 
1,2 3,4 y3,y4 
1,2 4,5 y4,y5 
1,2 5,6 y5,y6 
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For element 5 
 

        (41)     

 
Where 
   y1  =  Active degree of freedom representing deflection at node 1 
   y2  =  Active degree of freedom representing deflection at node 2 
   y3  =  Active degree of freedom representing deflection at node 3 
   y4  =  Active degree of freedom representing deflection at node 4 
   y5 =  Active degree of freedom representing deflection at node 5 
   y6  =  Active degree of freedom representing deflection at node 6 
   x1  =  first nodal position 
   x2 =  second  nodal position 
   x3  =  third nodal position 
   x4  =  fourth nodal position 
   x5 =  fifth  nodal position 
   x6 =  sixth nodal position 

  
3.4 Assembling and Derivation of Elements Assembly Equation  
 
The respective element equations are established from elements topology descriptions and are 
added randomly into the initialized assembly matrices describing the property matrix, boundary 
influence matrix and external effects matrix as follows. The assembling is done element 
equations after element equations with respect to elements degrees of freedom or variables 
present in the element equations, until the final element equation is assembled to obtain the 
assembly equation as in equation (43) 
 
3.4.1 Initialized assembly zero matrix 
 
The initial matrix to aid assembly of elements matrixes can be expressed as 
 

 =       (42) 

 
By random addition of matrixes of equations ((37) - (41)) into equation (42) the assembly 
equation is obtained after all the 2x2 element matrixes of equations ((37) - (41)) are transformed 
to 6 x 6 matrixes.   
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3.4.2 Transformation of element matrixes 
 
The transformed element matrixes are added to the initialized zero matrix of (42) by random 
matrix addition. The element matrixes are transformed as follows: 
 
For element 1 
 

 =  

 

 
  
For element 2 
 

 =  

 

 
 
For element 3 
 

 =  
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For element 4 
 

 =  

 

 
 
 
For element 5 
 
 

 =  
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So that by the addition of the above transformed matrixes the assembly system is obtained as 
 

 =  

 

         (43) 
 
By substituting the natural boundary conditions y1 = 0, y6 = 0 in equation (43) the following 
system of equations is obtained 
0.0588 y2 =  (x1) + 0.1902      (44)  

-0.1176 y2 – 0.1176y3 = 0.3804     (45)  
0.0588y2 – 0.1176y3 + 0.0588y4 = 0.3804    (46) 
0.0588y4 – 0.1176y4 + 0.0588y5 = 0.3804    (47)  
0.0588y4 – 0.1176y5 = 0.3804     (48)  
0.0588y5 =  (x6) + 0.1902                                                                (49)      

 
Equations (44)-(49) can be expressed in matrix form and solved by LU-Decomposition method 
to obtain, 
 
y2 = - 12.9388mm,   y3 = 19.4082,   y4 = 19.4082,   y5 = - 12.9388mm 
 

 (x1) = - 0.9510,  (x2) = - 0.9510 

 
3.5 Discretizing to 10 Elements  
 
This involves dividing the region into domains or segmentation of the region. 
 
By following similar procedures as in five elements model, and using Figure 3, the following 
nodal deflections are obtained: 
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Figure 3. Finite element Discrete Model: Eleven nodes-ten elements segmentation   
 scheme. 
 
For element 1 
 

        (50) 

 
For element 2 
 

        (51)           

 
For element 3 
 

        (52)     

 
For element 4 
 

        (53)      

   
For element 5 
 

        (54)     

85mm 

    n1   n2    n3     n4      n5     n6       n7     n8     n9     n10   n11

        e1       e2     e3    e4      e5    e6     e7   e8    e 9    e10    
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For element 6 
 

        (55) 

 
 
For element 7 
 

        (56)           

 
For element 8 
 

        (57)     

 
For element 9 
 

       (58)      

    
For element 10 
 

       (59)     

 
The ten elements equations are assembled and solved to obtain the following results: 
y2 = - 7.221813mm, y3  =  - 12.83242mm,y4  = - 16.83659mm,y5  = - 19.23774mm 
y6  =  - 20.03789mm, y7  =  - 19.23774mm,y8  = - 16.83659mm,y9  = - 12.83242mm  
y10  = - 7.221813mm,x1 =  (x1) = - 0.9443852, x11 =  (x11) = - .9443852  

 
3.6 Analytical Computations of Element Nodal Deflection 
  
Classical reports of [6, 7] gave the analytical equation of deflected axis of beam as 
 

                          ya = a 
Sinπx

 L                                                         (60) 

where 
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ya = Deflection at a point, 
x = position of reference = length of beam, 
a = maximum deflection 

 
By using, a = y6= -20.0379mm estimated by FEM, L= 85mm 
x = various nodal positions as in Figure 2 in equation (60) the analytical solutions are computed 
and presented as in Table 4 
  

Table  4. Computations for Maximum Deflection.  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Excel graphic package was used with Table 4 data to produce the graphics of Figure 4 and 
presented below. 
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 Figure 4a. Graphical Depiction of FEM Results. 
 

Nodes X(mm) FEM Analytical 

y (mm) ya(mm) 

0.000 0.000 0.000
8.500 -7.22 -5.590

17.000 -12.83 -10.737
25.500 -16.83 -15.03
34.000 -19.23 -18.13
42.500 -20.03 -19.79
34.000 -19.23 -18.13
25.500 -16.83 -15.03
17.000 -12.83 -10.737

8.500 -7.22 -5.590
0.000 0.000 0.000
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Analytica results
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 Figure 4b. Graphical Depiction of Analytical Results. 
 
 

  

Analytical and FEM results 
compared
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 Figure 4c. Graphical Depiction of Analytical and FEM Results. 
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 Figure 4d. Graphical Depiction of Position of Optimum Deflection. 
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4. DISCUSSIONS ON RESULTS  
 
Both results of FEM with five elements and FEM with 10 elements capture the general trend of 
analytical solution (see Figure 4a-d). Also the result of  FEM with five and ten elements show 
that as more elements are introduced better result that capture the general trend is obtained but 
the computational efforts are maximized. 
        
Establishment of elements equations of FEM by Galerki approximations is a worthy method 
since the results of assemblage equations are unique and capture the general trend of analytical 
solution (see Figure 4c and d). The graphics of Figures show that the optima for both solutions 
occurred at the middle of the section with optimum deflection of about 20mm. The graphics also 
show parabolic response of deflection of a stressed composite beam whose governing equation 
could be represented as  
  

             
∂2y
∂x2      = f(x)                              (61) 

 
This is analogous to one- dimensional Poisson equation relation. The finite element method used 
Galerki approach to derive elements equations. These equations were assembled and solved by 
LU-decomposition to obtain deflections at various nodes of composite. Classical relation was 
also used to estimate the deflection. The maximum deflection was estimated to be -20.0379mm 
by FEM. 
  
In many applications, such as machine tools transmissions and large structures, deflection 
considerations may just be as important as the maximum stress induced. Serious misalignments 
and interferences caused by excessive deflection could cause a machine to malfunction long 
before it fractured due to stress. Deflection values are also a useful tool in analyzing average 
strength in structures since the two properties is inversely proportional.  
  
The stiffness value of a design takes account of the loading exerted and are given as  
 

 Stiffness = 
Force

Deflection                                                                      (62)   

 
It is useful to note that stiffness is directly proportional to strength and thus may be used to 
compare average stress values of designs. Also the values of deflection of Table 4 show that the 
stiffness and strength of the beam decreases towards the mid span of the beam.  
 
5. CONCLUSION 
  
Establishment of elements equations of FEM by FEM-Galerki approximations is a worthy 
method since the results of assemblage equations are unique and  captured the general trend of 
analytical solution. Both analytic and FEM results show parabolic response of a deflected beam 
with optimum around mid span of the beam and optimum maximum deflection of 20mm. The 
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maximum deflection, a measure of optimum instability for GRP composites is therefore 
evaluated by this study as 20mm.  
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