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ABSTRACT 

This paper develops a closed-form solution to an extended Black-Scholes (EBS) pricing formula which admits an im- 
plied drift parameter alongside the standard implied volatility. The market volatility smiles for vanilla call options on 
the S&P 500 index are recreated fitting the best volatility-drift combination in this new EBS. Using a likelihood ratio 
test, the implied drift parameter is seen to be quite significant in explaining volatility smiles. The implied drift parame- 
ter is sufficiently small to be undetectable via historical pricing analysis, suggesting that drift is best considered as an 
implied parameter rather than a historically-fit one. An overview of option-pricing models is provided as background. 
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1. Introduction 

An often reiterated view of modern finance states that the 
Black-Scholes (BS) option pricing formula “accurately 
reflects” options prices, but this view forgives a free pa- 
rameter (volatility) which accommodates a considerable 
degree of variations in option prices. Not only does im- 
plied volatility vary over time, but also at any point in 
time over related options, that is a group of options 
whose characteristic differ only by strike price. All other 
characteristic (underlying security, maturity) are identical. 
This definition does not assume that they use the same 
volatility for pricing, but it is generally assumed that the 
same interest rate is applicable. This variation, referred to 
as the volatility smile or smirk (or sneer), reflects the 
greater sin, since variation over time could easily be as- 
cribed to changing conditions in the market environment, 
but variations at any particular instance cannot [1]. This 
paper addresses these latter variations by offering a slight 
modification to the BS formula which reflects most of 
the volatility smile. A (small) drift parameter is added, 
and a closed-form solution, quite similar to BS, is de-
rived. Using a likelihood ratio test, this new drift pa-
rameter is determined to be significant over a sample 
series of financial data. Furthermore, we argue that this 
change may explain volatility smiles. To place this model 
in the proper context, the paper starts with background 
concerning the volatility smile and the general classes of 
models used to explain these smiles.  

An option is a financial contract between a seller (or 
writer) and a buyer, in which a buyer, in exchange for a 
premium, acquires the right (but not the obligation) to 
buy (for a call option) or sell (for a put option) a specific 
amount of an underlying commodity at a specified price 
(the strike price, S) during a specified period of time. 
This paper focuses on call options. In our notation, w 
represents the value (or price) of the option at a point in 
time. At maturity, this value represents the final settle- 
ment that the writer pays the seller, 

 maturity max ,0w x  S , 

where x is the ending value of the underlying commodity. 
Only European options are considered, in which there is 
no possibility of exercise before maturity.  

The basic option pricing formula was developed in a 
series of papers [2-4] (leading to a Nobel Prize for Scho- 
les and Merton in 1997). This model is the Black-Scholes 
(BS) option pricing formula. Black and Scholes devel- 
oped a partial differential equation (PDE) relating w (the 
option price), r (the interest rate), t (time to maturity of 
the option), x (the price of the underlying security at the 
current time), and price volatility, v:  
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The volatility, v, is expressed as a fraction of the un- 
derlying security (in this paper v is used for volatility 
rather than the more typically used σ, since the latter will 
be used to represent model variance from observed prices  *Corresponding author. 
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below). The coefficient of 
2

2

w

x




 directly implies a log-  

normal probability distribution for the price of the un- 
derlying security at maturity. Alternatively, Bouchaud 
and Potters [5] show that the coefficient of the second 
derivative term in (1) can arise from different assump- 
tions. Initially, the BS option pricing model was viewed 
to price options without reference to the distribution of 
the future price of the underlying, except for the free 
volatility parameter. Currently, it is acknowledged that 
the option price depends on the assumed or implicit dis- 
tribution of underlying prices.  

Recent research has been motivated, in large part, by 
the volatility smile (or smirk or sneer) effect, which 
arises from efforts to explain current prices. Given all the 
parameters for an option, except volatility, and given a 
market price for the option, the pricing formula can be 
inverted to give the implied volatility arising from the 
market price. If we calculated the implied volatility for a 
series of options that only differ by strike, we can see 
how volatility varies with respect to strike. Stereotypical 
examples are shown in Figure 1. If the profile is sym- 
metric, it is referred to as a “smile”, while asymmetric 
profiles are “smirks” or “sneers”.  

In the original theory, option prices were viewed as a 
function of the underlying dynamic of the security price 
changes. It followed that the volatility profile should be a 
flat line, constant across all strikes, since the considered 
options only differ by their strike prices; the pricing took 
place with the same underlying security over the same 
time to maturity with the same governing interest rates. 
However, since the stock market crash of 1987, volatility 
profiles have generally been not flat, rather displaying 
distinct smiles or smirks, as in Figure 1. That volatility 
profiles are not flat refutes the basic assumptions of the 
BS option formula. Recent years have witnessed a flurry  
 

 

Figure 1. Volatility profiles: Volatility versus strike price. If 
the profile is symmetric, it is referred to as a “smile”, while 
asymmetric profiles are “smirks” or “sneers”. 

of research to explain the volatility smile, and the focus 
has been to vary the underlying dynamic of the security 
prices changes. This process has two goals: to reproduce 
witnessed option prices and to employ an assumption of 
security price changes that is reasonable. A number of 
models have been proposed, outlined below (following 
Derman [6]).  

Local volatility models (or deterministic volatility 
function models or implied binomial/trinomial tree mod- 
els) [1,7-9] used current prices to deduce future volatile- 
ities. These methods are now out of favor since the im- 
plied future volatilities do not exhibit volatility smiles, 
rather much flatter patterns and lower levels of volatility. 
Also, the smoothing of local volatility surfaces from dis- 
crete option prices constitutes a significant issue.  

Stochastic volatility models [10,11] consider both the 
underlying security and its volatility as stochastic vari- 
ables. These models reproduce volatility smiles, but ini- 
tially only symmetric ones. Later, asymmetric prices 
were reproduced by allowing prices of the underlying 
security to be correlated with volatility. With these mod- 
els, hedging (see below) is difficult, primarily because 
volatility is not an observable statistic, so that a regime 
shift could not be noted at the time that a hedge transac- 
tion would be needed. 

More recently innovations have varied aspects of the 
model other than volatility. Jump diffusion models [3] 
have been adapted [12] to the stochastic volatility envi- 
ronment by relaxing the continuous assumption of price 
behavior. Stock modelers, for example, tend to think in 
downward jumps, like crashes, while energy price mod- 
elers might think of price spikes, the latter not only going 
in the opposite direction but being shorter lived. Appro- 
priate parameters must be incorporated for the frequency, 
average intensity and standard deviation of intensity, 
along with any assumptions regarding persistency or 
mean regression of the new price levels after the jump. 
These models possess intuitive appeal since dynamics 
such as crashes, spikes, and perhaps manic periods can 
be reflected. As a drawback, jump models exaggerate 
any hedging concerns associated with pure stochastic 
models; while fast moving markets may be difficult to 
hedge, jumping ones would seem impossible under in a 
continuous framework. More recent universal volatility 
models [13-17] comprise hybrids of the above.  

All these models introduce new parameters, for exam- 
ple one or more volatility parameters to create a smile, 
various distribution parameters for a stochastic volatility 
model, other parameters to describe jump or other effects. 
These parameters can be divided into two types: those 
parameters fitted to historical data and then fixed in the 
model and those allowed to vary moment to moment as 
free parameters (similar to implied volatility). The for- 
mer are called historically-fitted and the latter are implied. 
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Local volatility models generally employ a host of im- 
plied volatility parameters and few (if any) historically 
fitted variables. In contrast, stochastic volatility models 
employ many historically-fitted parameters and only one 
implied parameter, the volatility. Jump process parame- 
ters are generally historically-fitted. 

As discussed above, current research tends to add new 
parameters to models in an effort to better reflect various 
aspects of price movements. While doing this, one must 
be careful that new parameters not only improve the fit 
but also that the degree of improvement warrants the new 
parameter. Below we will investigate a one-parameter 
extension of the BS model which accounts for a small 
pricing drift. We evaluate its performance compared to 
the original BS model from the perspective both of re-
flecting option prices and from that of parsimony: can the 
increased complexity be justified statistically by the de-
gree of improvement? We fit both the BS and our exten-
sion to S&P 500 Options data from 2003-2005; the 
tradeoff between additional complexity and improved 
description is assessed using the likelihood ratio test. 

2. Mathematical Model and Methods 

How would drift come about? There are two alternatives. 
On the one hand, it may be a small trend that market par- 
ticipants cannot observe. Actual calculations of the drift 
show it to be quite small, small enough to not be detect- 
able in a statistical analysis of price movements. This 
view of the drift is consistent with the contention that 
market dynamics (alone) drive options prices, with neg- 
ligible distortion by market participants. On the other 
hand, the drift may be a trend perceived by market par- 
ticipants whether or not it actually exists in the market. 
This perceived drift alters market prices, but the neces- 
sary drift is not small enough to be discredited by statis- 
tical analyses. This view is consistent with the contention 
that market perceptions drive market prices, potentially 
independent of actual price dynamics. Whichever inter- 
pretation appeals to the reader, the mathematics is the 
same. 

It is interesting to note that this additional drift pa- 
rameter may be viewed as arising from the assumption 
that the underlying security experiences periods of vola- 
tility and periods of relative stagnation. During volatile 
periods, both random walk effects and interest rates im- 
pact option prices. However, during stagnant periods, 
any pricing effects due to volatility are dormant (by defi- 
nition) but the interest rate clock would still be running. 
Thus the implied forward expectation from current op- 
tion prices would conceptually be composed of two 
components: one due to the volatility effect (with interest 
rates during volatile periods), and one due to interest 
rates (alone) during stagnant periods. The implied drift 

reflects the difference between interest rate effects and 
the missing random walk effects over the stagnant peri- 
ods. The implied drift effect could be positive or negative 
since the stochastic process during active periods (im- 
plied by volatility) could create a forward expectancy 
above or below that implied by interest rates. 

2.1. Deriving an Extension of the Black-Scholes 
Model 

The traditional derivation of BS begins by considering 
the neutral hedge equity constructed by selling a ratio  

1
w

x

 
  

 of call option in a stock per share of stock held.  

Consider the stock and hedging options as a separate 
portfolio. For such a portfolio the net equity (E) invested 
is 

x

w
E x N

w

 
  
 

, 

where N is the number of shares of stock held, and sub- 
script notation for partial derivatives is adopted (that is, 

x xw w  ). Thus 

 1
xE N x w w     , 

is the net change in portfolio value with changes in either 
stock or option price. Applying the usual arbitrage-free 
argument originally introduced by Black, Merton and 
Scholes, it is required that option prices evolve over time 
so that equity value experiences growth according to 
risk-free interest rates. This is natural since the combina- 
tion of stocks and hedging options constitutes a risk-free 
portfolio. Mathematically, 

   1 1 ,x xE N x w w N x w w r t             (2) 

where r is the risk-free interest rate. Option price is ex- 
pected to vary with both time and price of underlying 
stock; using Taylor’s theorem changes in option price 
may be replaced with related changes in stock price in 
time, 

 

2

2 3
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2

, , .

x xxw w x w x w t

O t x t x

t      

    
         (3) 

The next step would be to substitute (3) into (2) and 
thereby derive a differential equation for option prices. 
However, to consistently neglect terms of differing order 
as 0t  , there must be an assumption about how 
changes in stock price, ,x  vary with changes in time. 
As done in the traditional BS assumption, here the as- 
sumption is that stock prices follow a random walk proc- 
ess with standard deviation vx in which the market vola- 
tility is v. Departing from BS, however, the random walk 
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is assumed to have a slight bias (as opposed to zero 
mean). Thus are made the following assumptions about 
the expectation,  , of quantities in (2) and (3): 

,.x cx t    reflecting the (small) bias, or drift, in ran-

dom steps,                                  (4a) 

0,xw x   reflecting market participants’ inability to 

perceive bias in the underlying carries over to an inability 
to perceive bias in the option price,              (4b) 

2 2 2 ,x v x t    reflecting growth of variance in the 

random walk.                               (4c) 

Here the parameter c may be positive or negative and 
reflects the expected drift or trend of underlying stock 
prices. Note that for this to be a consistent approximation 
it is required that 

 2 ,c O v  

meaning that the drift parameter will be small in com- 
parison to volatility, since  (which dovetails with 
the assumption that it is too small for market makers to 
take into consideration). 

1v

Multiplying (2) by wx, canceling a common factor of N, 
substituting (3) into (2), replacing the various changes in 
stock price with their expectations in (4), dividing by t  
and taking the limit  leads directly to: 0t 

 
2
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w w
r c x rw v x

t x

w

x

 
    
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

,0

,     (5) 

where c is the implied drift parameter. This is the Ex- 
tended Black-Scholes (EBS) model. BS’s differential 
equation can be recovered by setting c to zero. Note that 
this drift measures the deviation not from current prices, 
but rather deviation from the interest rate applied to cur- 
rent prices (the arbitrage-free estimate of future prices 
relative to current prices).  

2.2. Solution of the Extended Black-Scholes 
Equation 

We seek to solve (5) with a boundary condition at matur- 
ity (t = t*) given by 

   , maxw x t t x S   . 

Introducing a change of variables, 

 , ln , ,rx
t t z w e u z

S
 ,       

 
 

is introduced to remove the non-constant coefficients and 
exponential growth term, as well as to translate the con- 
dition at maturity into an initial condition, giving 

2 21 1
,

2 2zz zu v u c r v u
     
 

 

with 

   , 0 max 1,0zu z S e    .  

Changing to a traveling frame of reference  

21

2
z c r v    

 

  to remove the lowest order z 

derivative gives a simple diffusion equation: 

21
,

2
u v u   

with 

   , 0 max 1,0u S e     .  

The convolution form of the general solution for the 
diffusion equation is 

     
1 2

2 2
2

, 2π exp d ,
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y
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v
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
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

 
   

 
 y  

where  f   is the initial condition. Applying this form 
of the solution to the initial conditions above, and noting 
that the integrand will be zero for y   gives 

     
1 2

2 2
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From here, completing the square and using 

  2
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2
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π

z
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Returning to the original coordinates, simplifying, 
evaluating at t = 0 and employing the identity  

  1
1

2 2

z
z erf

  
    

  
, where Ф is the standard nor- 

mal cumulative distribution function, gives  

    ,ct rtw xe d Se d
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Under the assumption that c = 0 this reduces to the 
original BS option pricing formula. 
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3. Data Analysis and Model Competition 

In the absence of a market trend (c = 0), with x, r, S and 
t* assumed known, (6) gives a one-to-one relationship 
between volatility and option price. Inverting this rela- 
tionship individually for a series of options, differing 
only in strike price, often gives a non-constant volatility 
(the “smile” or “smirk”). However, when c is not zero, 
how should one proceed? A direct analog to the above 
procedure would require selecting pairs of options shar- 
ing all parameters save strike price, then solving the re- 
sulting nonlinear system of equations for v and c. But 
which pairs should be selected? Or if all possibly pairs 
are considered, how are results to be interpreted? Are the 
differences significant? This latter question, in fact, ap- 
plies also to the volatility smile: given the background 
variability in underlying stock prices and volatility, are 
the differences among applied volatilities really signifi- 
cant? 

In this paper, an alternate approach is employed fol- 
lowing a model competition and selection perspective 
advanced by Hilborn and Mangel in 1997 [18]. In this 
approach, model parameters for competing models are fit 
to all available data using maximum likelihood, cogni- 
zant of the fact that there is process variability in the wit- 
nessed parameters (e.g. stock prices are clearly not fixed 
through the course of a day) as well as observational 
variability (e.g. different market participants may assess 
volatility using different metrics, over different periods 
of time, yielding different option prices). Model parame- 
ters are chosen to maximize likelihood, and the model 
which accounts for the most variability among alternative 
models, with maximum parsimony, should be considered 
“best”. 

3.1. Statistical Methods 

The EBS vis-à-vis the BS constitutes a case of nested 
models, in which the simpler model is realized by a par- 
ticular choice of parameters in the more complex. A like- 
lihood ratio test may be used to characterize the signify- 
cance of differences between nested models. Assuming 
both models are fit to data using maximum likelihood, 
the statistic 

   12 data model data model ,R L L  2
  

is distributed according to a chi-squared distribution with 
number of degrees of freedom equal to the difference in 
numbers of parameters between model 1 (the simpler) 
and model 2 (the more complex, in which model 1 is 
nested). Here  

     22
2

data

1 1
data model ln 2π

2 2j e j obs
e

L 


   w w  

is the negative log-likelihood of model j given the ob- 

served data, with wj being the model prediction for the 
maximum likelihood parameters, wobs being the observed 
option price and e  being the standard deviation of the 
errors (see [18] for details). Because the difference in 
these logs is the log of the ratio of the likelihoods, this 
test is called the likelihood ratio test. The resulting chi- 
squared probability can be viewed as the probability that 
the more complex model is an improvement over the 
simpler nested model (that is, the probability that the 
simpler model’s parameters lie outside the corresponding 
parametric confidence interval of the more complex 
model). General wisdom states that parameters should 
not be added without penalty; the above procedure pe- 
nalizes the more complex model for its higher number of 
parameters via the numerical degrees of freedom in the 
chi-squared distribution. 

To determine c and v for each day of data in our EBS 
model and v for the BS model, we minimize the negative 
log likelihoods of each over the strike prices for that day. 
Furthermore, the negative log likelihood of each model is 
used in the likelihood ratio test, as described above. A 
corresponding p value was determined from the chi- 
squared distribution with one degree of freedom, indi- 
cating the probability that the more complex model (EBS) 
is a significant improvement over its simpler companion 
(BS) for that day.  

3.2. Data 

We use data from the Option Price Reporting Authority 
(OPRA) for S&P 500 index calls maturing December 
(19), 2006. The data runs from November 5, 2003 to 
November 3, 2005. Option Price Reporting Authority 
provides consolidated option information and is a com- 
mittee administered jointly by the five option exchanges: 
AMEX, BOX, CBOE, CBOT, ISE, PCX, PHLX. Our 
data came indirectly through a third-party vendor. We 
excluded 5 dates in which the data seemed in error: for 
the 1325 strike in 2003, November 20, 21, 25, and De- 
cember 8, 16 and 22; for the 1125 strike, the prices in 
2005 of October 24, 25 and 28 and November 2 also 
seemed probably in error. In the 1150 Strike, the follow- 
ing dates are excluded: 2005 October 19, 24, November 
3. We consider only contracts whose strike is between 
1125 and 1375, inclusive, and which is a multiple of 25. 
This has the effect of concentrating on contracts more 
likely to be liquid and traded, and to eliminate sporadic 
or illiquid contracts. During this time: 

1) The S&P 500 index grew from 1051.81 to 1219.94, 
with a minimum of 1033.65 (November 20, 2003) and a 
maximum of 1245.04 (August 3, 2005). The True Range 
(daily high minus daily low) expressed as a percent of 
the index value varied from 0.25% to 2.14%, with an 
average of 0.91% and a standard deviation of 0.37%. 
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(See Figure 2). 
2) Average transaction volume per contact grew from 

about 332 contracts (averaged over 5 working days) to 
peak of 3476 and ending at 2003 contracts (See Figure 
3). This increase is a natural consequence of coming 
closer to maturity since the shortest dated options are the 
most traded and liquid. 

3) Excluding the 1125 strike contract and certain days 
due to data issues, implied volatilities varied from 7.57% 
to 16.05%, with an average of 10.94% and a standard 
deviation of 1.23%. For each day, the difference between 
max and min implied volatilities (for days in which more 
than one contract was traded, and excluding 1125 and 
1150 strikes) varied from 0.26% to 6.43%, averaging 
1.92% with a standard deviation of 1.04%. 

4) We note that the closing price for each option and 
the index were used. This is a potential source of incon- 
sistency since the last trade for an option contract may 
not occur at the end of the last moment of stock trading 
(applicable for the index). Our model, like BS, assumes 
that the current price of the index is used. Option ex- 
changes generally close before stock exchanges, so clos- 
ing option and index prices seldom occur simultaneously. 
Even if the data from within a day were used to synchro- 
nize option and index prices, the result may not be as 
market participants view the market. Market makers may  
 

 

Figure 2. S&P 500 index. The underlying commodity be- 
havior for the options considered, over the time period No- 
vember 2003 to November 2005. 
 

 

Figure 3. Daily option volume. For each day, the average 
volume for option contracts in the series studied. As option 
contracts approach maturity, volume naturally increases 
since most trading is done in the nearest contract.  

well have a backlog of orders in either the option or the 
shares, such that a market maker could reliably see that 
the price will move in one direction. Thus the market 
maker would use an index price in the option formula 
that differs from the current index price.  

3.3. Analysis of Data: Results 

To compare the EBS model to the no-drift BS, two fit- 
tings are performed. First each day’s closing option 
prices are fit in the BS to the best implied volatility (one 
volatility for all options) that maximizes the likelihood of 
the model given actual option prices. Second, for each 
day, the EBS is fit for the best combination of drift and 
implied volatility (one combination for all options on that 
day) maximizing the likelihood. 

To evaluate the results on each day, the worst and av- 
erage per-day price difference between actual and model 
are chosen. The error is considered as a percent of the 
underlying closing index price on that day, with the re- 
sults summarized in Table 1. The error is approximately 
halved by the addition of an implied drift parameter. This 
is true whether looking at the worst price of each day, or 
the average over all option prices. The ratio of standard 
deviation to average for the error term does not change 
significantly when adding a drift parameter. 

Using a likelihood ratio test for each day, the drift pa- 
rameter is seen to have over a 95% chance of improving 
fit in 297 out of 344 days. Insight can be gained by com- 
paring this statistic with the implied drift for each corre- 
sponding day. Figure 4 illustrates that the low chances of 
improving the model occur on those days in which drift 
values are close to zero. This is to be expected, given that 
the probability of improvement depends on where the 
single parameter BS volatility estimate falls relative to 
the confidence interval for the drift + volatility estimate 
for EBS. The EBS fails to be clearly better exactly where 
its parameters become indistinguishable from the no-drift  
 
Table 1. Comparison of residuals, Classic BS with and 
without drift. The modified BS model with drift (called EBS) 
significantly reduces variability of volatility estimates over 
the classical BS model. The average variation in each day is 
generally halved, while the worst fit for each day (an outlier) 
is also reduced. Further reduction in variability may not be 
meaningful. 

 
Classic BS 
(No drift) 

EBS 
(With drift)

Max Error over Period 0.87% 0.58% 

Average Error (Each Day’s Worst) 0.27% 0.13% 

Average Error (All Prices) 0.15% 0.07% 

Std. Dev. of Error (Each Day’s Worst) 0.14% 0.09% 

Std. Dev. of Error (All Prices) 0.11% 0.06% 
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Figure 4. Probability that EBS improves BS. Most often, the 
chance is 100% that EBS improves BS. The lower probabil-
ity cases correspond to when the drift is close to zero and 
the two models are less distinguishable. 
 
BS. This supports the contention that the implied drift 
parameter significantly improves the model’s fit to actual 
prices overall. 

4. Discussion 

The EBS model makes a significant improvement, but 
perhaps adding more parameters could provide additional 
significant increases in fit. To the knowledge of the au- 
thors, there is no mathematical or statistical method for 
determining whether or not further parameters could be 
justified. Rather, practitioners need to look at the data 
and its context to determine whether or not additional 
parameters could be warranted. Here it is argued that the 
closeness of fit using implied volatility-drift in the EBS 
probably is as close as the data could reasonably allow. 

Referring back to Table 1, the average price error for 
an option in the new model is 0.07%, and the average 
worst for each day is 0.0013%. Can we expect greater fit 
than this? These price variations are similar to bid-ask 
spreads on many illiquid securities. Options have no- 
where near the liquidity enjoyed by the underlying index. 
To attempt any greater fitting of option prices would de- 
mand explanations of variations with a magnitude similar 
to that of bid-ask spreads in the security. This would 
seem unreasonable for a pricing model that ignores such 
bid-ask spreads. The conclusion is that the fit offered by 
the EBS may be as close as is reasonable. 

When introducing implied parameters into a model, 
one should observe how the parameter evolves over time 
to ensure that the implied parameter is neither too stable 
nor too erratic. If too stable, the implied parameter 
probably masks another effect more appropriate for di- 
rect modeling. Figure 5 compares the evolution of the 
implied volatilities that arise from the no-drift (BS) and 
with-drift (EBS) cases. (Gaps are due to removed data 
points.) The two volatilities track each other, with the 
no-drift volatility being higher than the other in practi- 
cally all cases.  

Figures 6 and 7 depict the evolution of the implied 
drift parameter. Figure 6 displays the parameter itself 
expressed as a rate similar to interest rates. This is the c  

 

Figure 5. Comparison of implied volatility estimates from 
EBS and BS. The EBS model’s implied volatility estimate is 
generally less than that of BS, but the two track each other 
reasonable well. 
 

 

Figure 6. Implied drift in the EBS model (expressed as a 
rate). The above annualized rates are generally small—the 
daily price movement would be below what could be de-
tected with statistical studies. The drift parameter becomes 
erratic closer to maturity as a consequence of annualizing 
rate on a short-term instrument; this effect is accounted for 
in the next figure. 
 

 

Figure 7. Implied drift in the EBS model (expressed as a 
discount price). Estimated drift rate data is converted to 
price data. The implied drift parameter evolves well, nei-
ther staying too static nor too fluctuating too erratically. 
 
in Equation (2). As the time to maturity shortens, how- 
ever, this drift rate becomes erratic, which is typical for 
any rate that is annualized over progressively shorter 
time periods; minor discrepancies in price are magnified. 
To account for this, in Figure 7, the drift parameter is 
expressed as a price of a zero-coupon bond whose matur- 
ity matches that of the option. A zero-coupon bond is a 
bond with no interest payment. Thus, a zero-coupon 
bond makes only a single payment, at maturity. The price 
of such a bond is given by:  

   Price payment 1
t

r   

where r is the interest rate and t the time to maturity. 
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Given a fixed t, a change in price implies a change in 
yield. For smaller t, the effect on yield is magnified. 
When t is very small, say a couple of weeks or less, yield 
is quite sensitive to price changes, and the effect from 
day to day can look quite distorted, as in the right end of 
Figure 6. This price representation displays a variability 
that dampens as time approaches maturity. This confirms 
the contention that the drift reflects price movements 
(either perceived by market participants or latent in the 
market) since over shorter horizons, lower price drifts 
appear.  

While yield is typically express as a percent return per 
year, the implied drift parameter in Figure 7 can be ex- 
pressed per day, by taking the difference of the price 
from 1.00 and dividing it by the number of days to ma- 
turity. This is the average daily drift implied by market 
prices. Over our sample, this varied from −0.0042% to 
0.0204%, with an average of 0.0033% and standard de- 
viation of 0.0028%. These are exceptionally small num- 
bers which could never be confirmed from historical 
analysis. This conclusion is consistent with a result from 
Brownian motion: that over short periods any drift ef- 
fects are completely dominated by the noise or random 
effects (See [19] p. 656 for further discussion). Using 
drift as an implied parameter implicitly allows it to vary 
moment to moment (or, in our case, day to day), and thus 
it would be difficult if not impossible to detect. Perhaps 
if any particular drift were valid over a longer period of 
time (say until maturity), then there might be a chance to 
confirm it with a historical study, but this is not the case. 
Given the momentary nature of an implied parameter, 
there is no real hope of confirming the validity of any 
particular drift measurement. Nonetheless, the effect over 
time until maturity is significant and affects option pric- 
ing.  

5. Conclusions 

In this paper, the Black-Scholes option pricing model is 
modified to have a free drift parameter alongside volatil- 
ity. Similar to the original BS work, the ensuing differen- 
tial equations are developed, and a closed-form solution 
for this model is derived, with the resulting model re- 
ferred to as the Extended Black-Scholes (EBS). Rather 
than fitting the new drift parameter historically, it is 
treated as an implied parameter, like volatility. Using 
historical data, each day’s closing volatility smile is 
best-fit to an implied volatility-drift combination. A like- 
lihood ratio test indicates that the implied drift parameter 
significantly improves the fit of the EBS model as com- 
pared with the BS model. It is argued that any better fit 
may not be justified, since the remaining unexplained 
differences between EBS and option prices are very 
similar to bid-asked spreads for securities whose liquidity 

is comparable to that of options. Furthermore, the small 
size of the daily drift parameter indicates that it would be 
unlikely to be uncovered during historical analysis.  

The new drift parameter may be interpreted in one of 
two ways: it may be an actual trend that is too small for 
market participants to observe; or it may be a small trend 
perceived by market participants and driving their prices, 
whether or not this drift actually exists in the market. 
These interpretations represent two opposing views of 
pricing theory: either security prices arise strictly from 
underlying market dynamics, or arise from perceptions of 
market players. It is interesting that historical testing 
cannot be used to resolve this debate, since the EBS is an 
option pricing model that can explain prices as much as 
justifiable, while accommodating either assumed cause.  
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