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ABSTRACT 

A model for the definition of electrical Power is presented, which retrieves the concepts of homomorphism from the 
geometrical tensor approximation at the wavelet approach. Their definition here is nevertheless different in that it con- 
siders both tensor algebra and wavelet operators, solving thus most of the problems usually associated with the numeri- 
cal methods. 
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1. Introduction 

Traditionally, the development of pattern recognition is 
known as “power quality” in power systems from elec- 
trical engineering point of view. In this way many works 
has been published in the last decades [1-7]. In the major 
approaches isfocalized to see how the perturbation affect 
the normal operation of the power systems. In power 
distribution networks, particular aspects as the feeder has 
been directed in order to the optimal power transfer. It is 
necessary proposed a new definition and methodology 
for solver the problem of the optimal power transfer. 
This work is fundamental supporting in the aspect to see 
a new power definition from an analytical point of view. 

Algebra, functional analyses and geometry are the 
building blocks for the construction of the language en- 
gineers currently want to use [7-10]. The basic principles 
on which this proposed theory is developed are founded 
on these three pillars. The postulates are: 

1) Electromagnetic energy, intended as intermediary, 
is continuous in systems of rational energy usage. 

2) Two elements, v and i are defined in the system. 
These elements comply with the terms of a vector space, 
with inner product and norm induced by this product, and 
the space H (Hilbert space) generated by those compo- 
nents is complete. In other words, any Cauchy sequence 
in H, converges to an element in H. 

3) There are orthonormal sets in these Hilbert spaces, 
which form bases andcreate space. Additionally, the Fourier 
analysis can be applied. 

Hypothesis 1: 
The implementation of this system under a new alge- 

braic structure will keep the previous assumptions in the 
combination v and i, because of the principle of energy 
conservation. The algebraic structure to be used is the 

dyadic or tensor product introduced in [11] and [12]. 
Hypothesis 2: 
The operator to be applied will have a homomorphous 

behavior. The properties of the generated space  
     w v i w v w i    continue to be of Hilberian 

space. 
The conditions of these hypotheses must be framed 

within the analysis of matrix functions in several vari- 
ables. 

2. Evaluation of the First Hypothesis 

2.1. Instantaneous Power Tensor Theory 

The proposed method is based on the definition of an 
evolutionary expression of instantaneous power, called 
“instantaneous power tensor” [13], in order to geomet- 
rically interpret the dynamic behavior of electromagnetic 
phenomena, analogous to studies of deformation in the 
mechanics of solids. Therefore, the goal proposed is to 
obtain a single expression containing the two compo- 
nents of the instantaneous power (active and reactive). 
Therefore, using the dyadic or tensor product the pro- 
posed expression is as follows: 

t
ij i j   v i vi                 (1) 

where ĳ is the instantaneous power tensor and subscript 
t refers to the vector transpose. On the other hand, a mul- 
tiphase electrical network was defined as one n-phase 
and m-wire power system related to the dimension of 
vector space, where voltage vector and current vector 
were defined assuming that, R1 is the single-phase system, 
R2 is the two-phase system with two-wire or three-wire, 
R3 is the three-phase system with three-wire or four-wire 
and Rn is the multiphase system with n-phase and m- 
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wire. 
Therefore, in a system of n-phase and m-wire, where 

the instantaneous vectors of voltage and current are ex- 
pressed as: 

1 1

2 ;

n n

v i

v i

v i

   
   
    
   
   
   

 
v i 2                (2) 

Then, the instantaneous power tensor in Rn is equal to: 

1 1 1 1 1 2 1

2 2 2 1 2 2 2

1 2

n

n
ij

n n n n n n

v i v i v i v i

v i v i v i v i

v i v i v i v i

     
     
        
     
     
     





     



     (3) 

Moreover, in a system of three-phase and three-wire or 
four-wire, where the phases are identified by a-b-c, the 
instantaneous power tensor in R3 is expressed as: 

a a a a a b a

ij b b b a b b b c

c c c a c b c c

v i v i v i v i

v i v i v i v i

v i v i v i v i

     
             
          

c

        (4) 

when n = 1, it is the case of a single phase system, and 
the instantaneous values of voltage and current are sca- 
lars. Therefore, according to the traditional concept of 
instantaneous power in single phase systems the instant- 
taneous power tensor in R1 is equal to: 

ij a av i                    (5) 

2.2. Orthogonal Decomposition of the Current 
Vector 

According to (1): 

 tt t t t
ij ij ij ij     v i i v         (6) 

This expression implies that the current vector can be 
obtained from the definition of instantaneous power ten- 
sor as follows: 

2 2 2 2
1 2

t t t
ij ij ij

n

v
v v v

  
  

   



i v

v v v
v       (7) 

such that,   denotes the Euclidean norm. Replacing (6) 
in (7) the current vector can be expressed by, 

t t
ij ij ij ij ij ij

p q

     
  

  
i v v v

v v v v v v
 i i   (8) 

where, pi  is the instantaneous active current vector: 

ij
p ijg


 


i v

v v
v                  (9) 

and  is the instantaneous reactive current vector: qi

t
ij ij

q b
 

 


i v
v v ijv             (10) 

In (9) gij is the instantaneous conductance tensor: 

11 1 1 2
2 2 2

22 1 2 2
2 2 2

1 2
2 2 2

n

n
ij

ij

n n n n

v iv i v i

v iv i v i

g

v i v i v i

 
 
 
 
 
  

  
 
 
 
  





   



v v v

v v v
v v

v v v

        (11) 

and in (10) bij is the instantaneous susceptance tensor: 

1 12 1 1 2
2 2

2 21 2 2 1
2 2

1 1 2 2
2 2

0

0

0

t
ij ij

ij

n n

n n

n n n n

b

v i v iv i v i

v i v iv i v i

v i v i v i v i

 



 

 
 
 
 
 
 
 
  
 
  





   



v v

v v

v v

v v

 (12) 

Moreover, the decomposition of the instantaneous cur- 
rent vector is characterized by: 

   

      
 

 
 

 

2

2

2
0

tt
p q p q ij ij

t t t
t

t t

t t t t t t

t

t

t t

t

g b

v

  

 
  

 




  



i i i i v v

i iv vi
v v

v v v v

v i v i v v v i v v i v

v v

v i
v v v v

v v

     (13) 

such that, 
22

p q i i i
2

             (14) 

2.3. Orthogonal Decomposition of the Power 
Tensor 

The decomposition of the instantaneous power tensor is 
obtained by applying the tensor product of the voltage 
vector on (8), thus: 

 p q p q       v i v i i v i v i        (15) 

Here the first term is the instantaneous active power 
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tensor: 

 
   

p
ij p ij

t
ij ij

g

tg g

    

   

v i v v

v v v v
       (16) 

and the second term is the instantaneous reactive power 
tensor: 

 
   

q
ij q ij

t
ij ij

b

b b

    

   

v i v v

v v v v t
        (17) 

Consequently, 
p q

ij ij ij                     (18) 

Moreover, (18) satisfies the orthogonality concept, in 
other words, 

 
      

    

   

trace

trace

trace

trace

trace trace

p q p t q
ij ij ij ij

t t
ij ij

t t
t t t

t t

t t t

t t
t

t
t t t

t

t
t t

t

g b

     

  

  
   


  



 
  

 

 

v v v v

vi vi iv
vv vv vv

v v v v v v

v i v v i v
v i v i

v v

v i
i v vi vv

v v

v i
i v v i

v v

t

t


 






tv v 0
 

  
 

 (19) 

Therefore, it holds that: 

22 p q
ij ij ij    

2
          (20) 

Such that,   denotes the norm of the system. In 
other words, the space generated by the operation is a 
normed space with norm induced by the inner product, 
thus the first hypothesis is proved. 

3. Evaluation of the Second Hypothesis 

Continuous Wavelet Transform in Several 
Variables 

In [14] shows an intuitive approach to the continuous 
wavelet transform in several variables. The general for- 
mulations are shown below. 

Considering a family of matrix functions obtained by 
scale changes and translations of a wave matrix called 
“mother wave” formed by a set of systems of one-di-  

mensional wavelets: ,    2 m
m t L  

    

    

    

, ,1 1 1 1

1

, ,2 2 2 2

2

, ,

1

1

1

a b

a b

a b m m m m

m

t t b
a

t t b
a

t t b
a

 

 

 

 
  
 
 
 
  
 
 

 
  
 
 



a

a

a

     (21) 

where:  , m
m m ma b a 0  . For normalization:  

   , ,a b m mt  t                 (22) 

where m is the dimension of body . It is assumed m
that the one-dimensional function satisfies the admissi- 
bility condition if: 

 
dC











               (23) 

 where 
 

In practice, the wave represented in the frequency frame 
falls so fast that the admissibility condition is reduced to 

is the Fourier transform of .  t

 0 0   or  d 0t t  . Therefore, To normalize the 
wavelet so its energy turns unitary implies {XE “eneen- 
ergía”} 

     2 2 21
d d

2π
t t t   

 

 

1       (24) 

Thus, an additional result will be: 

   2 2

, , 1a b m mt t             (25) 

In other words the admissibility condition will have a 
structure. 

Definition 1: 
Since  C L H

C
 an operator of a Hilbert space, it 

can be said that   complies with the following prop- 
erties: 

1) Hermitian *C C 
* *C C C C

. 
2) Unitary I     . 
3) Positive definite. 
4) Invertible. 
Definition 2: 
The continuous wavelet transform of a function in sev- 

eral variables,
 

   2
,

m
m nf t L   (where  is the space 

of square integrable functions) is defined as: 

2L

     

   

, , , , ,

, , , ,

, d

,

m nf a b m n m

a b m n m n

CWT a b t f t t

t f t














 n
     (26) 

And the question that arises is: is the wavelet operator 
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

 

   

   

   

   

,

, , , ,

, , , ,

, , , ,

, ,

,

,

d

,

1
d

2π

d
2π

m nf

a b m n m n

a b m n m n

a b m n m n

jb
m n m n

m n

CWT a b

t f t t

t f t

F

a
a F e 





  

  




















 

 
  
 
 







    (29) 

isomorphic? Following it will be shown how this is pos- 
sible. 

Proposition 1: 
Given the continuous wavelet transform  

 ,CWT a b
,m n

,m nf  of a function  the 
function 

   2
, ,m

m nf t L 
f t  might be reconstructed by: 

 

   
, ,

,

, ,1
, , , 2

,

d d
,

m n m n

m n

m n m n
f a b m n

m n

f t

a b
C CWT a b t

a 
 



 

  
    (27) 

Given the space of functions and the measurement in 
question, this integration is interpreted as Lebesgue.  Note that the integral in (29) is proportional to the in- 

verse Fourier transform of    a F    in each of 
the components of the matrix and it is a function of b. 
The above mentioned operation is valid, once the system 
is understood as an operator that keeps it in the same 
space. 

Proof: 
To simplify the proof was assumed that   1

,m n t L  , 
  1

,m nf t L L   just as   1
,m nF L   (or  ,m nf t  con- 

tinues). First 
,m nfCWT  is expressed in terms of 

Fourier transform of the wavelet and the signal. 
 ,a b

Note that the Fourier transform of  is:  , , ,a b m n t Be the element m,n of the matrix J: 

   , , , , ,
jb

a b m n m n m na e a          (28)      
,, ,,

m nm n f a b m n, , dJ a CWT a b t




  b      (30) 

This is the wavelet element m, n of the wavelet matrix 
operator. According to Parseval equality: replacing (29) in (30): 
 

        , , , ,

,

d
2π

jb
m n m n m n a b m nm n

m n

a
, , , dJ a a F e    

 


 

 
 
 
 

  t b                      (31) 

 

Applying Fubini’s theorem to each component of the matrix J [15]: 
 

        , , , , , , ,

,

d d
2π

jb
m n m n m n a b m n m n

m n

a
J a a F t e    

 


 

 
 
 
 

  b                        (32) 

 

Substituting for each component of the matrix 
t b

b
a

   in the second integral, gives: 

 

      , , , , ,, , ,
,

1
db d ( )jb jb j t

a b m n m n m nm n m n m n
m n

t b
t e e b a e a

aa
     







       
  

         (33) 

 

Given the restrictions imposed on  ,m nf t  y  ,m n t  
the order of integration can be changed by applying 
Fubini’s theorem and making the change of variable 

And replacing this result in (32), gives: 

 

  
,

2

, , ,
,

( ) d
2π

m n

j t
m n m n m n

m n

J a

a
a F e   





 
  
 


a a   gives: 


   (34) 

   
,

2 2

, ,1
d d

2π m n

m n m na a
a a

a a 

   

 


 

  C   (36) 
Evaluating (29) regarding variable a: 

This element m,n of the matrix Cψ must meet defini- 
tion 1. This integral is independent of  , therefore, it 
can be summarized as: 

 

 
  

, 2

2

,

, ,

d

1
d d

2π

m n

m n j t
m n m n

a
J a

a

a
F e a

a


 
 





 

 





 
   (35) 

   
, ,, ,

1
d

2π m n m n

j t
m n m nF e C C f t

  




         (37) 
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The operator is isomorphic with the condition of ad- 
missibility. It might be said that the wavelet transform 
has the properties of linearity, displacement and scale 
variance. Following, emphasis will be placed on the pro- 
perty of energy conservation.  

Proposition 2: 

Given  and its wavelet transform 

 {XE “transformada ondita: teorema de  

  2
,

m
m nf t L 

 ,a b


,m nfCWT

conservación de la energía”} {XE “transformada ondita: 
multiresolucion”} {XE “transformada ondita: función de 
dos escalas”} {XE “transformada ondita: criterio para 
selección de onditas”}, the following equality is verified: 

 

 
, ,

2

,

2
1

2

d

d d
,

m n m n

m n

f

f t t

a b
C CWT a b

a





 


 

 



 
        (38) 

Proof [1]: 
From the expression, 
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2
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,
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Making the change of function: 
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The previous equality might be written as: 
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Applying Parseval’s identity: 
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And replacing (40) in (42), gives: 
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NOTE: The change of the integration is done by 
Fubini’s and the second integral on the right side is call 
matrix of admissibility. 

Applying once again the Parseval’s equality: 
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This is the admissibility condition to be proved, 
namely the existence of transformable function matrices 
and with no change of energy. Therefore, it can be de-
duced that: 
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 (45) 

In other words, the wavelet transform shows homo- 
morphism in the presence of the tensor product provided 
that the conditions of the admissibility matrix are met, 
and that these conditions are framed within the charac- 
teristics in Definition 1. 

4. Conclusion 

Conceptual clarity is essential in the development of a 
theory that values the characteristics of a system, in par- 
ticular pattern recognition (Power Quality in electrical 
systems).Thistheory is based on matrix analyses and 
functional analyses using algebraic structures, which is a 
very important ingredient. The aim of this paper is to 
interpret in light of Engineering, a foundation to evaluate 
the Instantaneous Power Theory, through the wavelet 
operator, under the dyadic product structure. This method 
open the door for obtained a possible way from the 
analysis of the optimal power systems transfer. 
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