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ABSTRACT 

Charge equilibration has been recognized as a dominant process at the early stage of low-energy heavy-ion reactions. 
The production of exotic nuclei is suppressed under the appearance of charge equilibration, in which the proton-neutron 
ratios of the final reaction products are inevitably averaged. Therefore charge equilibration plays one of the most crucial 
roles in the synthesis of chemical elements. Focusing on how and when the charge equilibration takes place, zero sound 
propagation in femto-scale quantum liquids is explained. 
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1. Introduction 

This article is concerned with Fermionic property of heavy 
ions (many-nucleon systems with the size up to several 
10-femtometers) colliding at the energy of a few MeV 
per nucleon. In the following, we refer to those collisions 
as low-energy heavy-ion collisions. Fusion is not ne- 
cessarily achieved in the low-energy heavy-ion collisions, 
neither is fragmentation. Reaction dynamics and the re- 
sulting products can be drastically different depending on 
the impact parameter, the mass of colliding ions, and so 
on. Therefore the reaction mechanism of low-energy 
heavy-ion collisions is worth investigating to understand 
the production of chemical elements. This is deeply con- 
cerned with an open problem as for the existence and the 
origin of chemical elements including their production 
mechanism. 

Charge equilibrium in heavy-ion reactions means the 
states with the proton-neutron ratio corresponding to the 
average of the colliding ions, and charge equilibration is 
the process leading towards charge equilibrium. The che- 
mical property of final products can be different de- 
pending on whether charge equilibration appears or not. 
There is a relatively long research history for the charge 
equilibration. In fact many experiments of low-energy 
heavy-ion collisions were carried out in the 1960s. In 
those experiments most of the final products were re- 
ported to be in charge equilibrium, even when fragmenta- 
tion takes place [1]. There should not be any restric- 
tions to the proton-neutron ratio of the final products if 
the final product forms a kind of stable bound system, so 
that these experimental results cannot be trivially under- 
stood. 

One of the most important features of charge equili- 

bration is its rapidness taking as much as a few 10−22 s 
[1]. This time scale is actually short in the order of 
magnitude compared with the typical reaction time of 
low-energy heavy-ion collisions (1000 fm/c ~ 10−20 s), so 
that charge equilibration has been recognized as an 
inevitable and dominant process in low-energy heavy-ion 
reactions. The relation between charge equilibration and 
the isovector giant dipole resonance has been studied 
relatively well because of the correspondence in their 
time scales, but no decisive conclusion has ever been 
obtained. Indeed, including the question of “when does 
charge equilibration take place ?”, many things could not 
be explained merely by the isovector giant dipole re- 
sonance. For the theoretical research on the relation be- 
tween charge equilibration and the isovector giant dipole 
resonance, the importance of dipole mode to charge dis- 
tribution of a fissioning nucleus was pointed out by Hill- 
Wheeler [2] in the 1950s. Research on charge equili- 
bration using time-dependent mean field calculations 
were started in the 1970s (Bonche-Ngô [3]). Recently 
research based on three-dimensional time-dependent mean 
field calculations was carried out by Simenel-Chomaz-de 
France [4,5]. In this article, based on Ref. [6], the un- 
known relation between charge equilibration and zero 
sound propagation is presented. It leads to a rather uni- 
versal recognition of zero sound propagation in femto- 
scale quantum liquids, which cannot necessarily be re- 
duced to the giant dipole resonance. 

2. Theory of Matter Wave Propagation 

2.1. Landau’s Fermi Liquid Theory 

Let us denote a many-particle wave function by  
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where H  denotes the Hamiltonian operator. The solu- 
tion can be represented by    / 0,itHe x , =t x  un- 
der a suitable boundary condition, if H  does not de-  
pend on . Let the corresponding pro- 
bability density be , and begin with the classic 
theory of sound propagation inside gases. Readers may 
wonder why sound propagation is related to charge 
equilibration, it will be clarified step by step. Let the 
equilibrium probability density be 
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

 x . If the fluc- 
tuation is added to the equilibrium:  
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a force arises from the gradient pressure. Here the es- 
sential property of sound propagation is extracted from 
the simplified linearized analysis. The equation of mo- 
tion is given by  
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where  and  denote the velocity and the pressure, 
respectively. The pressure  depends on both   and 
the entropy . On the other hand, the equation of con- 
tinuity is given by  
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The right hand side is approximated by 0
t

 to 
the lowest order. After differentiating this equation by , 
an equality is derived together with the divergence of 
Equation (1). If we further assume that  is expanded 
with respect to 

P
  at a fixed entropy, the lowest order 
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This is a wave equation for  , where  S
P    

represents the propagation speed of the density. For  

example,  S
P    is given by 3Fv

= 0S

 for the per-  

fect Fermi gas in its ground state ( ), where Fv

 ex

 
means the Fermi velocity. This type of propagation is 
called first sound, which provides a picture for particles 
propagating with changing density. 

On the other hand, we should pay attention to the 
propagation of particle without changing density. This 
type of propagation is called zero sound, which has a 
finite frequency even when the wave number is equal to 
zero (cf. zero point vibration). To understand zero sound, 
the linear response is considered for a given external 
field 

 

where ,n t x  denotes the number density operator. In 
particular, if we restrict ourselves to the impulsive 
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 denotes the retarded generalized di- 
electric function. The resonance frequency can be cal- 
culated by the pole of the integrand of the right hand side. 
Eventually we assume the phonon dispersion relation 
( 0q ), which reproduces the frequency of pro- 
pagating wave, and is nonzero even when the wave num- 
ber is equal to zero:  
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then the resonance frequency is obtained. Consequently 
the dispersion relation at long wave length becomes  
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 denote the mass and 
the Fermi wave number, respectively. Note that this 
relation is the representation in momentum space. The 
lower-limit of the velocity for zero sound is the Fermi 
velocity, because the non-damping mode can only exist 
when  (see the denominator inside the logarithmic 
function). If    0V
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V q  is assumed in the limit 

, the left hand side becomes   2 2π 0m V F , 
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This shows that the propagation velocity of zero sound 
is almost equal to Fv  in the weak-coupling limit. It is 
just 3

changing density, because the change in density possibly 

 times faster than the previously seen first 
sound velocity of the perfect Fermi gas. A rather general 
discussion shows that zero sound is faster than first 
sound [7,8]. Roughly speaking, the matter waves without 
changing density propagate more easily than those with 
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leads to the appearance of larger restoring force. Zero 
sound provides a picture of particle exchange within a 
quite short time (but not instantaneous). 

Two different sound propagations in Fermi liquids 
have been discussed in terms of whether they entail the 
density change or not. In particular there exists zero 
sound in Fermionic many-body system, which is dif- 
ferent from and faster than the ordinary sound. Zero 
sound has been known to arise from the collective dy- 
namics of the Fermionic many-body systems. All the 
collective dynamics is actually based on the propagation 
of zero sound, while there are various representations 
(various modes) for the collective dynamics. One distinct 
difference between zero and first sounds is their relation 
to collisions between particles. First sound appears when 
the states are in local thermal equilibrium. This corres- 
ponds to the situation when the mean interparticle 
collision time is sufficiently smaller than the oscillation 
period of the propagating wave. Meanwhile zero sound is 
associated with the collective excitation mode, which 
disappears when there are many collisions between par- 
ticles. This corresponds to the situation when the mean 
interparticle collision time is larger than the oscillation 
period of the propagating wave. Although such a colli- 
sionless energy regime is expected to be realized due to 
the Pauli principle, its validity should be confirmed for 
each individual physical system. Consequently zero sound 
is expected to be important to low-energy phenomena, 
while first sound becomes effective at higher energies. 
For the usage of the terminology low and high energies, 
we had better note that both sounds are scaled by Fv  
(i.e. Fermi energy). For more details of sound p
pagation, see Section 5 of Ref. [9]. 

ro- 

2.2. Nucleon Propagation in Heavy-Ion  

As a research on zero sound in Fermionic 

harge Equilibration 

  

 we 
cons n system. There are two types of 

 
po

Collisions 

 theoretical 
many-body systems, Landau’s Fermi liquid theory [10, 
11] is well known, where zero sound propagation was ac- 
tually seen in liquid 3He [12,13]. However, there is no 
guarantee that such a sound plays a role in heavy-ion 
reactions. There are two essential differences between 
heavy-ion reactions and the 3He case; the physical sys- 
tem consists of finite numbers of nucleons, and the event 
is accom- plished within a finite time interval. That is to 
say, both size and time are highly restricted in heavy-ion 
reactions. Indeed, in the context of many-nucleon sys- 
tems, the main interest of zero sound propagation was 
not in heavy-ion reactions but in nuclear vibrations (for 
example, see Ref. [14]). In the following the mechanism 
of charge equilibration is discussed with respect to whe- 
ther it is achieved by nucleon propagation with or with- 
out changing density. 

3. Mechanism of C

3.1. Nucleon Propagation Realizing Charge
Equilibration 

As an example of Fermionic many-body systems,
ider many-nucleo

nucleons, that is, protons and neutrons. Charge equili- 
bration is the mixing of protons and neutrons due to the 
time evolution, therefore it is a kind of chemical mixing. 
Apart from such a chemical equilibration, there are se- 
veral kinds of equilibration in heavy-ion reactions, that is, 
mass equilibration, momentum equilibration, and thermal 
equilibration. Among them charge equilibration (che- 
mical equilibration) has drawn special attention because 
of its crucial role in the synthesis of chemical elements. 

Let us consider the collision of two ions. The existence 
of an upper energy limit for charge equilibration has been

inted out by Iwata-Otsuka-Maruhn-Itagaki [6] for the 
first time. The limit is presented by a formula explaining 
both experiments and numerical calculations based on 
microscopic three-dimensional time-dependent meanfield 
theory. Furthermore, the upper energy limit has been con- 
cluded to be determined by the Fermi energy.  
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where = 1,2i  identifies the two colliding ions, and 
E  means the energy in the laboratory frame. lab 1A  and 

2A , which satisfy 1 2=A A A , 1 1 1=A Z N  and 

2 2=2A Z N , denote the masses of the two colliding 
s, where 1ion Z , 2Z , 1 2  den oton 

ron numbers of each colliding ion (labeled 
by i ), respec vely. 

N  and N ote the pr
and the neut

ti   and   ar

e ch qu

many-nucleon system, special structures such as skin and 

e parameters intro- 
duced based on Ref. [15,16]. This formula provides an 
upp r energy limit of arge e ilibration, which arises 
from the nucleons propagating at the Fermi velocity. In 
heavy-ion collisions, there are four different Fermi ve- 
locities (Fermi energies), because there are two different 
kinds of nucleons and two colliding ions. The first term 
on the right hand side of Equation (3) calculates those 
four Fermi velocities. If only the Fermi velocities (for 
neutrons and protons) of the total merged system are 
taken, experimental results cannot be explained because 
the charge equilibration is accomplished before the for- 
mation of a compound nucleus (see the experimental 
comparison shown in Ref. [6]). In particular, for the 
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halo exist, and those structures change the Fermi energy. 
These effects are taken into account in   and   in 
Equation (4). For the nucleon wave associated with each 
Fermi energy to propagate throughout both colliding ions 
after touching, the minimum is taken in quation (4). 
This treatment does not seem to be so important at a 
glance, but it contributes to derive the fact that different 
reactions having exactly the same composite nucleus can 
result in a different upper energy limit (for the difference 
of upper energy limit, see Figure 2 of Ref. [6]). If it is not 
for such a treatment, we cannot explain both numerical 
calculations and experiments. Furthermore, for a correct 
comparison, it is necessary to estimate the relative ve- 
locity at contact time. The most considerable effect here 
is the deceleration due to the Coulomb repulsion, which 
becomes prominent for cases when the masses of the 
colliding ions are larger. This effect is considered in the 
second term on the right hand side of Equation (3). 
Consequently it was confirmed in Ref. [6] that the final 
fragments achieving charge equilibrium drastically de- 
crease at an incident energy higher than the energy shown 
in the formula. 

The nucleons propagating at the Fermi velocity, which 
is represented by Equations (3) and (4), correspond to the 
propagation of z

E  

ero sound. d, ding to the cal- 
cu

es the propagation of charge equili- 
br

 Indee  accor
lation of the mean free path of nucleons inside nuclear 

matter [17], collisions between nucleons were shown to 

appear and increase rapidly if the incident energy of 
heavy-ion collisions becomes a few 10% larger than the 
Fermi energy (of the composite nucleus). In such situa- 
tions, zero sound itself disappears. The possible pro- 
pagation speed of zero sound is not not different from the 
amplitude of the Fermi velocity. This fact explains the 
reason why Equations (3) and (4) are related to zero 
sound propagation. 

Figure 1 visualiz

 

ating flow: neutron-rich flow from 52Ca (N/Z = 32/20) 
to 36Ca (N/Z = 16/20). Cases with two different impact 
parameters and two different energies are compared. 
Because this heavy-ion reaction is classified to class II of 
the classification shown in Figure 1 of Ref. [18] and the 
“N/Z = 1”-line is located between the initial points of 
52Ca and 36Ca on the N-Z plane, its charge equilibration 
dynamics can be measured mostly by the flow of 
neutrons. The final products are different, where only the 
case with = 6.1b  fm and E/A = 1.0 MeV results in 
fragmentation, while the other cases result in fusion. 
Despite such significant differences in final products, the 
propagation speed of charge equilibrating flow is almost 
the same. Indeed, the wave front of N/Z = 1.10 pro- 
pagates 6.5 fm in 0.75 × 10−22 s after the neck formation 
(the neck is formed at 6.0 × 10−22 s for E/A = 1.0 MeV 
and 3.0 × 10−22 s for E/A = 2.0 MeV). It shows that the 
propagation speed of charge equilibrating flow is in- 

 

Figure 1. (Color online) Propagation of on-rich flow is depicted for the collision between 52Ca and 36Ca, where 52Ca and 
36Ca correspond to the ions c ming fr ft and right hand sides, respectively. The colored parts correspond to the parts 

  

 neutr
om the leo

with N/Z > 1 (each frame is 40 × 30 fm2), and the density contour equal to 0.02 fm−3 is shown by a thick black curve. 
Three-dimensional time-dependent mean-field calculations with a Skyrme interaction (SLy4d) are carried out; the single- 
particle wave functions are represented on a Cartesian grid with the spacing of 0.8 fm, and the time unit of calculation is set 
to 1.5 × 10−24 s. The initial distance between the two colliding ions are set to 20 fm, then the relative velocity of collision is 
given. 
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dependent of the incident energy (the relative velocity of 
collision) and the impact parameter, while the total neu- 
rons in

ferent from the isovector giant dipole resonance some- 
times appears (see Figure 4 of Ref. [6]). Although it is 

t cluded in neutron-rich flow depends highly on the 
incident energy. In particular the propagation speed of 
charge equilibrating flow is faster than the relative ve- 
locity of collision (Table 1). 

With respect to zero sound, what was clarified in Ref. 
[6] can be summarized in the following three points. First, 
zero sound propagation plays a role in heavy-ion colli- 
sions. Second, the fast charge equilibration, which is 
achieved within the order of 10−22 s, is realized as nu- 
cleon propagation without changing density. Third, there 
exists an upper energy limit for the fast charge equili- 
bration, which corresponds to the energy limit at which 
zero sound can survive. For example, as is shown in Ref. 
[6], the upper energy limit explains the experimental 
values: the appearance of charge equilibration for 40Ar + 
58Ni at Elab/A = 7.0 MeV and 56Fe + 165Ho at Elab/A = 8.3 
MeV, and the disappearance of charge equilibration for 
112Sn + 124Sn at Elab/A = 50 MeV. For the terminology of 
“fast” charge equilibration, it takes into account the exis- 
tence of another kind of charge equilibration that has 
nothing to do with zero sound propagation. Such charge 
equilibration, which appears at higher energies, is more 
related to the first sound. Therefore its process is re- 
latively slow compared to the fast charge equilibration, 
and insufficient to lead to fusion or to charge equilibrium 
for most fragments. Charge equilibration at higher ener- 
gies was also studied well (for example, see references 
[8-10,20-23] of Ref. [6]). 

As a remark, the previous research on charge equili- 
bration with respect to the collective dynamics is men- 
tioned. As is discussed, charge equilibration was studied 
in association with the isovector giant dipole resonance. 
Charge equilibration is sometimes related to the isovector 
dipole resonance, but not in all cases; i.e. the concept of 
resonance is too restrictive to explain charge equili- 
bration. Nevertheless isovector giant dipole resonance 
means that the modes related to the composite nucleus 
play a role, it cannot explain the different upper energy 
limits for different reactions having exactly the same 
composite nucleus. In addition, an isovector mode dif- 

always true that the fast charge equilibration is achieved 
by the collective dynamics, the fast charge equilibration 
is not necessarily achieved by the isovector giant dipole 
resonance. 

3.2. Origin of Charge Equilibration 

Apart from how and when charge equilibration takes 
e equilibration place, here we see the reason why charg

takes place. First of all, the propagation of zero sound is 
expected to be efficient to any kind of nucleon pro- 
pagations and vibrations. The answer is obtained by cla- 
rifying the origin of charge equilibration. When the two 
ions have a contact during the heavy-ion collisions, large 
fluctuations appear in the shape and the internal structure. 
Zero sound is expected to contribute to stabilization by 
changing both the shape and the internal structure, which 
can be understood by the contribution of each term 
included in the Bethe-Weizsäcker mass formula [19,20]:  

   2

2 3 2 1 3
v s c s= ,ol urf oul ym

N Z
B A a A a A a Z A a

A
 

    

where the coefficients are given by v 16ola   MeV, 

s 20urfa   MeV, c 0.751oula   MeV and s 21.yma   
t, the first and

ang

e s
te

here the propagation speed is the same for collisions with the two different relative velocities and the two different impact 

4
MeV, respectively [21]. After contac  
second terms contribute to stabilization by ch ing the 
shape such as the volume and surface area, while the 
third and forth terms contribute mainly to stabilization by 
changing the internal structure. It is reasonable that the 
shape change (including vibration) due to zero sound 
propagation leads to stabilization, and we do not go 
further into detail. Here we focus on stabilization by 
changing the internal structure. The effect due to the 
symmetry energy (the forth term) should play a principal 
role, because the Coulomb energy (the third term) is 
actually small except for the collisions between very 
heavy ions. This symmetry energy is the principal 
driving force of the stabilization by changing the internal 
structure, and its effect acting on zero sound propagation 
is fast charge equilibration. In this manner charge equi- 

peed of light (corresponding to the nuclear standard value). 
d by the propagation speed of the wave front of N/Z = 1.10, 

 
Table 1. Comparison of speeds, where |vF| is fixed to 1/3 of th
The propagation speed of charge-equilibrating flow is calcula
w
parameters (Figure 1). The relative velocity of collision at the contact is slower than that at the initial time, because of the 
deceleration due to the Coulomb repulsion. 

Motion Speed Description 

Propagation of charge-equilibrating flow 0.90 |vF| ~6.5/(0.75 × 10−22) fm/s 

Relative veloc A = 2.0 MeV Speed given at the initial time 

Sp in e 

ity for E/ 0.36 |vF| 

Relative velocity for E/A = 1.0 MeV 0.23 |vF| eed given at the itial tim
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libration und propagation. 

. Sum

physical interpretation has been given 
 equilibration; i.e., the fast charge 

libration and
Nucleon Exchange in Dissipative Heavy-Ion Collisions,”
Physics Repor 84, pp. 1-120.  
doi:10.1016/037

the Interpretation o sical Re- 
view, Vol. 89, No. 5,
doi:10.1103/PhysRe

 is closely related with zero so

4 mary 

The propagation of charge equilibrating flow has been 
visualized, and a 
to the fast charge equi- 
libration is realized by zero sound propagation in which 
their propagation speeds coincide with each other. This 
means that the collective dynamics of the many-nucleon 
system and thus its Fermionic statistical property are es- 
sential to the fast charge equilibration. In this context the 
upper energy limit for the fast charge equilibration cor- 
responds to the upper-limit energy for zero sound pro- 
pagation to be effective. Consequently charge equili- 
bration should be regarded as the exchange of nucleons 
(charge exchange), because zero sound does not neces- 
sarily entail density change. 

The correspondence of zero sound propagation in 
femto-scale systems is not only the giant dipole reso- 
nance, but also the flow propagating almost at the Fermi 
velocity. Indeed, the similarity between neutron-rich flow 
shown in Figure 1 and the isovector giant dipole re- 
sonance is quite limited. Once the window between the 
two nuclei has opened, nucleons can cross relative freely 
into the other fragment, and this leads to an exchange of 
protons and neutrons with a speed governed by the Fermi 
velocity. After this rapid initial exchange the oscillation 
corresponding to giant dipole resonance appears. It is 
suggested that a prominent role of zero sound in fe- 
mto-scale systems can be experimentally detected by the 
appearance of the fast charge equilibration; whether most 
of the final products of heavy-ion reactions are in charge 
equilibrium of not. 

As is discussed, the fast charge equilibration is not a 
process appearing only at a certain energy. The fast 
charge equilibration universally appears in low-energy 
heavy-ion reactions at energies lower than the upper 
energy limit, instead. Note that the fast charge equili- 
bration process becomes operational only if the two col- 
liding ions interact by the nuclear force.  
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