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ABSTRACT

In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies.
We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cycle. We improve

some important results.
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1. Introduction
We consider the n-dimensional differential equations
x=f(xv¢) (1.1

where xeR",¢ is a small parameter, ve R® is a pa-
rameter. In studying the global bifurcation, we usuaally
assume unperturbed differential equations

i=f(x0,0) (1.2)

admits ahyperbolic equilibruim and a homoclinic orbit
connecting it. It is the peresistence of homoclinic oribit
and heteroclinic that we usually study in global bifurca-
tion, we refer to Wiggins [1], Palmer [2,3], Naudot [4]
and Meyer and Sell [5]. But in studying the pulses solu-
tions of some recation-diffusion equations, we often meet
the problem of homoclinic bifurcations from the hetero-
clinic cycles, refer to Kokubu [6], Chow, Deng and Ter-
man [7], Gambaudo [8] and reference therein. Suppose
Equation (1.2) has two hyperbolic equilibriums p, p,
and two homoclinic orbits ¢,,¢q, and two homoclinic

orbits ¢,(7),q,(¢).
If

lim qi(t):pi’tliq;qi(t):pwll =12

t—>—0
(where we assume ¢,(¢)—g5(t) p,=p;) then we say
that T=¢,(1)Uqg,(t)ug,Ug, is a heteroclinic cycle

consisting of ¢,(¢), ¢,(¢), p, and p,. The study of
homoclinic bifurcation from a heteroclinic cycle is very
important and interest not only from the point of view of
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bifurcation theory itself but also from the point of view
of application, we refer to Kokubu [6], Chow, Deng and
Terman [7]. The main purpose of this paper is to inverti-
gate the homoclinic bifurcation from heteroclinic cycles
by making use of exponential dichotomies and Melnikov
technique. For convenience, we only discuss the case of
heteroclinic cycles with length = 2. Using the theory of
exponential dichotomies, Melnikov functions and Slini-
kov chang of variable, Kokubu [6] investigate the peri-
odic and homoclinic bifurcations from a heteroclinic cy-
cle. In Kokubu [6], he needs to divide the problem into
critical and non-critical two cases. Moreover, he needs
that the heteroclinic orbits approach the hyperbolic equi-
libriums along the eignspaces associated with the princi-
pal eigenvalues. Chow, Deng and Terman [7] also stud-
ied the same problem in the non-critical case by making
use of Liapunov-schmidt method and Silnikov’s changes
of variable and Poincare map and obtain some analytical
results. Chow, Deng and Terman [7] also the conditions
as in Kokubu [6]. Melnikov functions were not obtained
in Chow, Deng and Terman [7]. Chow, Deng and Ter-
man [9] studied the same problem as this paper, Kokubu
[7] did not need to divide the problem into critical and
non-critical two cases and unified the two cases and
didn’t ndde that the heteroclinic orbits approach the hy-
perbolic equilibriums along the eigenspaces associated
with the principal eigenvalues. The results of Chow,
Deng and Terman [9] are weaker than those of Kokubu
[6] and Chow, Deng and Terman [7] under weaker as-
sumptions because of the topological approachs.The
purpose of this paper is to improve the above results by a
analystic method (Lin’s method [10]).We can also unify
the critical and non-critical cases and weak the condi-
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tions of Kokubu [6], Chow, Deng and Terman [7,9].
Moreover, it is also an interesting to provide an analystic
method of studying bifurcations of heteroclinic cycles.
Many ideas of this paper come from Lin [10], Meyer and
Sell [5], Kokubu [6] and Palmer [2,3]. But it should note
that the results of this paper cannot be followed directly
from these papers, much technique has been made. Let us
finally mention the related results on the bifurcations of
heteroclinic cycles. Sandstede [11] investigated the forced
symmetry breaking of heteroclinic cycles. Guckenheimer
and Holmes [12] discussed the spontaneous symmetry
breaking of heteroclinic cycle. Krupa and Melbourne [13]
studiecd the stability of heteroclinic cycle. On the other
related results on heteroclinic cycles, we refer to the ref-
erences of the above mentioned papers and good survey
of Krupa [14]. The paper is organized as following. In
Section 2, we give the main result; in Section 3, the proof
of the main result is given.

The main tool used in this paper is theory of exponen-
tial dichotomies. We consider the linear differential equa-
tions

x=A(t)" (1.3)

where xeR", A(t) is a n x n continuous bounded
matrix on R. We say Equation (1.3) admits an exponen-
tial dichotomy on interval J if ther exist con stants X, o, a
projection P and the fundamental matrix X(t) of Equation
(1.3) satisfying;

X () Px 7 ()| < Ke i = s
X () (1-P)x (s)| < ke 2 s

for ¢t,seJ. On the theory of exponential dichotomies,
refer to Coppel [15], Sacker and Sell [16] and Meyer and
Sell [17]. On the relations between exponential dichoto-
mies and homoclinic, heteroclinic bifurcations, we refer
to Palmer [18] and Meyer and Sell [16].

2. Main Result
We consider differential equations
)'c=f(x,v,g)

where xeR",s is small parameter, veR® is a pa-
rameter.  f:QxI?x1, - R"isC; with respect to
(x,v,e)eQxIix1I,, where Q< R’ cl\ompact subset,
I, a small interval containing zero, 7,=[0,b] a small
interval.

We assume C1. For v=0,& =0, unperturbed equation

i=f(x,0,0) 2.2)

Admits two hyperbolic equilibriums p,, p, and two
heteroclinic orbits ¢,(¢),q,(¢) connecting p;,p, re-
spectively (form a heteroclinic cycle), that is,

2.1)

Copyright © 2012 SciRes.

lim ¢, (1) = py.limg, (1) = p,,

t—>—0
tl_imo%(t) zpzvtl_iﬂl% (t) =D
qi(t)eQ,izl,Z .
We denote the heteroclinic cycle by

I'=q,(1)Uq,(1)Ug,Ug, .

We want to study under what conditions can a homo-
clinic orbit bifurcate from the heteroclinic cycle T" as
the second case of Kokubu [6]

C2. All real parts of the matrix f,(p,,0,0)(i=12)
are different from zero; and the number of eigenvalues
with positive real parts is m, =m(<n)(i=1,2).

If the conditions C1 and C2 are satisfied then equation

i=f.(p,0,0)x,i=12. (2.3)

admit an exponential dichotomy on both R, and R_,
and the sum of dimensions of stable and unstable sub-
spaces is n. If follows from the roughness of exponential
dichotomy that (refer to Zeng [12], Sacker and Sell [16],
Coppel [15]) that the variational equations along ¢, (¢)

i=f,(q,(¢),0,0),i=12 (2.4)

admit an exponential dichotomy on both R, and R,
and the sum of dimensions of the stable and unstable
subspaces is m, +n—m, =n. In the follows, because we
want to the exponent of ¢“"* =¢“ to be greater that 1,
without loss of generality, we may assume the constants

K,a>1. Otherwise, we replace /¢ by %lng, then

2
the exponent of eaalm =¢? isgreater than 1.

C3. The variational Equations (2.4) admit a unique (up
to a scalar multiple) nontrival bounded solution ¢[(t)
onR.

Under the conditions C1, C2, C3, we can prove (refer
to Zeng [12] that the adjoint equations of equations of
(2.3), (2.4)

é=-g=(a0)¢ i=1,2

also admit unique (up to a scalar multiple ) nontrival
bounded solution v, (¢),y, (), respectively, on R, and
an exponential dichotomy on both R, and R_, respec-
tively. The constants of the exponential dichotomies are
also K, a.

We let

My =[ "3 (1) 1,(4:(¢),0,0)dr,

M, = [y (1)1, (42(0).0.0)d

The main result of this paper is
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Theorem 1 We assume the conditions C2, C2 and C3
are satisfied, then when ¢,v sufficiently small Equation
(2.1) admits a unique hyperbolic equilibrium p,(&,v)
satisfying p,(0,0)= p, .If the 2 x 2 matrix

o)

is invertible, the for ¢ >0 sufficiently small there exista
a continuous function v=v(¢) satisfying

1(0)= gy =M [ vi (1) £.(a(2),0,0)ds

40 %

LV (t)fv(%(f),O,O)ds
such that the equation
i=f(nev(e)e) 2.6)

admits a homoclinic orbit connecting p,(&,&v(¢)) in
the neighbourhood of the heteroclinic cycle T .

Remark If the conditions C1, C2 and C3 are satisfied,
uing the standard method (refer to Zeng [19]), we can
obtain the bifurcative equations of persistence of the two
heteroclinic orbits ¢,(¢) and g,(7)

y(me)=[ " vi(s) g (s Els me) we)ds =0 (27)

Ay(me)=["w;(s)g, (5. 5,(s, ,6), pe)ds =0 (2.8)

where Z(s,0,0)=0,i=1,2. If the matrix M is invertible
then we can easily prove (refer to Zeng [19]) that for
& =0 sufficiently small there exits a continuously dif-
ferentiable function = /1(&) such that

H(si(),e)=0 H,(si(e),&)=0
and

i=f(x. (). €) (2.9)

has two hyperbolic equilibriums p, (&), p, (&), satis-
fying p,(0)=p, and p,(0)=p,, and two heteroclinic
orbits g, (7,&), p,(t,¢) satisfying

t|lr_]lcil(l‘,£)=]~)l(€) ,|il’_qu~1(t,8)=]~)2 (5) )
tlir:rl% (t1‘9):l~72 (5) tlir:rl% (t15):ﬁ1(g) :

That is, the heteroclinic cycle T persists in the re-
gion of parameters

{(ea(e).)}
Fiom Theorem 1 of this paper we see that in the region
of parameters
{(su().2))
a homoclinic orbit connecting pl(s,gv(s)) bifurcates

from the heteroclinic cycle T'.
Kokubu [5] proved that
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ET AL.

of(eu(e). )} (). )

We can also prove that if the conditions C1, C2 and
C3 are satisfied then for ¢ =0 sufficiently small a ho-
moclinic orbit connecting p,(¢),P,(0)= p,, bifurcates
from the heteroclinic cycle I', but the region of pa-
rameters of bifurcation is different from {(gy(g),g)} .

3. The Proof of the Main Result

To prove the main result of this paper, we want to find
the bounded solutions of Equation (2.1) x(z) on
(—o,) and x,(¢) on (-w,x) satisfying

x (@) =1x,(-0)

We make a change of variables for Equation (2.1)
x=z+q(t),~o<r<o.
x=2,+q,(t),—o<t<o

respectively, and obtain the equations
z=f(z+4(t).v.€)-f(4(t).0,0),~0<r <.
z, :f(22 +q2(t),v,g)—f(qz(t),O,O),—a)St<oo.

We write the above equations in the following form

z=4(t)z+g(tz,v,€),~0<t<w (3.1)
2, =4y (t) 2, + &, (t,2,,v,8),~0 <t <0, (3.2)

And the boundary value condition in the following form

z(0)=2(-0)=¢,(-0)-q (o) (3:3)
where @ is sufficiently large.
4.(t)=£.(4.(¢),0,0) (3.4)

g (tzv,e)=f(z+q,(1),v¢)
~/(45(1),0,0)-4,(1)z,
i=12. g/(t,z,v,e)=i=12 satisfying:
g (zve)| <G |af +pl+]el)i=12  @5)
In order to find the bounded solutions of Equations

(3.1), (3.2) and (3.3), we consider the following bound-
ary value problem

z=A4(t)z,+ g (t,z,v,€),~0<t<Ine. (3.6)
2, =4, (t)z,+ g, (t,2,,v,€),Ine <t <o, (3.7)

z(-Ine)-z,(Ine)=q,(Ine)—¢,(~Ing). (3.8)

where z<1.For any h(r), h()eC;(RR"), we
first consider the following boundary value problems for
e>0
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21=A1(t)zl+hl(t),—oo<tﬁ—|ng. (3.9)
z, =4, ()2, + (1), INe<t <0 (3.10)
z(-Ing)-z,(Ine)=q,(Ine)—¢, (-Ine)  (3.11)

We let b(e)=q,(Ine)—
lowing lemma:

Lemma 1 Assume the conditions C1, C2 and C3 are
satisfied.

Then there exists sufficiently small &, >0 such that
for 0<e<g, Equations (3.9), (3.10) and (3.11) admit a
ungue continuous except at ¢+ = 0 bounded solution
z,(t,&) satisfying ¢ (0)z,(0-,£)=0,i=1,2 with

2. (1) < G (b )]+

¢,(=In¢) and have the fol-

t)).i=12 (3.12)

Moreover, z(t,¢) is differentiable in ¢ and with

Z, (t,5)|+

where z,(0—) denotes the left limit of function
z,(t,¢) at =0, C is a constant independent of &.,
Moreover, if

Z(Ing)-

Let
p(t)=z(t,e+h)—z(1,6)-Z,(1,€)h,
P, (t)=z,(t,e+h)—z,(t,&)~Z,(t,€)h.
then p,(7), p,(¢) arethe solutions of equations
p=A4(t)p,—o<t<-Ing
Py =4, (1) py,Ine <t <o,

Z,, (t, 8)| <L.

p(=Ing)=p,(Ing)=z(-Ing,e+h)
z(-Ine,¢)
(-Ing,e)h+Z,(Ing,&)h.

-z,(Ine,e+h)-
+z,(Ine,&)-Z,

In the same method as follows, we can show that

b ()] = (6) = O ()

—Ine &

() (s)ds—y; (—Ing)z (-Ing)=0. (3.13)
3 () by (5)ds — i (I g) 2, (—Ing) =0, (3.14)

then z(¢), z,(¢) are continuousats=0.

Proof Lemma 2 is mainly due to Lin [10]. For the
proof of the first part of existences of the solutions
z,(t,¢) satisfying (3.12), (3.13) and (3.14), we refer to
Lin [10] and omit the proof. We now want to prove the
second part that z(7,&) is differentiable in &.We let
z(t,€), z,(t,&) be the bounded solutions, which are
continous except at + = 0 and satisfy (3.12), (3.13) and
(3.14), of equations

=4 (t)z+h(1),~0<t<-Ine.
z, =4, (t)22 +h,(t),Ine<t <o
z(-Ing)-z,(Ine)=q,(Ine)—

Let Z (¢,
equations

¢, (—In¢)

€), Z,(t,&) be the bounded solutions of

Z,= 4 (1)Z,~0<t<-Ins.
Z,=4,(1)Z,,Ing<t <.

Z,(Ing)={4,(-Ing)z (-Ine,e)+ 4,(Ine)z,(In&,8)+ 4 (-Ing) g, (-Ing)+ 4,(In£) g, (In g)}/s

z, (t, g) =Z, (t,

Now we prove the boundness of z,_ . Let
Iyl(t,g)=zl(t,5+h)—zl(t,g),
n,(t.€)=z,(t,e+h)—z,(1,¢),

then 7,(t,¢),

€),i=12.

1,(t,&) are the solutions of equations
m=A4()np,—o<t<-Ine.
m=A4()np,—o<t<-Ine.
m(=Inge)-n,(Ing,¢)
=z (-Ing,e+h)—z,(Ine,e+h)
—z(-Ing,e)+2z,(In¢, &)

From (3.12) we obtain

|771 (t,g)|+|772 (t,g)| < 2C1|zl(—|n ee+h)—z,(Ing,e+h)—z(=Ing,e)+z,(In 5,5)|

hence there exsits a constant L > 0 such that

2z, (1, £)| + |22£ (¢, g)| <L.

This completes the proof of Lemma 2.

Now we consider Equations (3.1)-(3.3). We have the
following lemama:

Lemma2 Assume conditions C1, C2 and C3 are satis-
fied. Then there exist sufficiently small &, >0and the

Copyright © 2012 SciRes.

constants C,, L > 0 such that for 0<e<¢, Equations
(3.1)-(3.3) admit aunque continuous except at + = 0
bounded solution z,(,v,&) satisfying

# (0)z,(0-v,£)=0,i=1,2
with

C ([b@)|+1+e])
2(|2Kg +|v|+|5|),i:1,2

| (tvg|

I/\

AJCM
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z, (tv,e)|+|z, (tve) <Li=12.  (3.5)
Moreover, if
G,(v,8)=] " vi(s) 2 (5.7 (s,v,2),v,8)ds (3.16)
_V/I(_lng)zl(—m[;‘,v,g)zo
G (ve)=[ " wi(5)& (57 (s,v.2).v.8)ds (3.17)

—y, (-Ing)z,(~Ine,v,)=0

then z(7,v,e), z,(¢,v,€) arecontinuous at¢=0.

The proof of Lemma 2 can be proved by contract fixed
point theorem and is similar to that of Lin [10].

From Lemma 2 we see that if we have proved that bi-
furcative Equations (3.16) and (3.17) can be can be
solved then we find the continuously bounded solutions
of Equations (3.1), (3.2) and (3.3)

zl(t,v,g)—oo<tg—|n5
and

Zz(t,v,g),lngﬁt<oo.

Now we mainly solve bifurcative Equations (3.16) and
(3.17). We make a change of variable for Equations (3.16)
and (3.17) v~e&v and obtain the following bifurcative
equation

B, (v,£)=G,(v,¢)

—Ine &

=[ v (s)g(sz(sve)me)ds  (318)
—y; (~Ing)z, (~Ing,v,2) =0
B,(v,&)=G,(v,¢)
=[ v ()& (5.2, (sv.8) ve)ds (3.19)
—y; (~Ing)z,(-In&,v,6)=0
From (3.15) we have
2. (10 8)| <G, (2K e el +[el)i=12  (3.20)

Leting ¢ — 0 inthe above equation, we obtain

z(1,0,0)=0 i=12 (3.21)

(Remark ACTUALLY, z(t,ev,¢) is defined only
for &£>0. but due to the existence of its limit, here we
define the vaule of the limit to be the value at £=0. In
the sequel, we make the same definition.)

From the property of w,(7) we have

|://,.(In £)| <Ke"™ =Kg,i=12

hence

limy,(-Ing)=0,i=12 (3.22)
-0

From the representation of (3.18), (3.19), (3.21) and

Copyright © 2012 SciRes.

(3.33) we obtain

Il//l

—|Iml//1 (<Ing)z(~Ine,ev,¢)

5,0,0),0,0)ds

gl Szl

(3.23)

—I l//l gl(s zl( ,o,o,o)ds)=0

In the same way, we can obtain

J.'//z

For convenience, we definea 2x1 matrix

B(ne) = [Bl (v,g)J

B,(v,¢)

5)g,(s:2,(5,0,0,0)ds)=0 (3.24)

then we have

B(v, 0) =0
We define
—B(v,g) )
H(s,v) = &
B, (v,€),e=0
Obviously, for £=0 equation
B(&,v)=0 (3.25)
And equation
H(ev)=0 (3.26)

equivalent. Now we want to find the solutions of Equation
(3.26). We first compute B, (v,0). From (3.18) we have

B(&,v)

=—,(—In 5)%&(_'” &z, (~In g,ev,e),ev,s)

ne 3.27
+ ; v, (s);—ggl(s,zl(s,gv,g),gv,g)ds (3:27)
d( -
_E{% (=Ing)z,(=In €,€V,6‘)}

Now we compute (3.27). Since

|g, (¢, z,gv,g)| <C (|Z1|2 +|e| +|£|)

we have
l —Ing,z (- Ing,gv,g),gv,g)
<1cl(|zl-|ng ev.ef +|el] )
&
1 ot ’
<=G,|C 2Ke 2+|g||v|+|g|J le|[v+|e]
&

1 2
<c, [q[zKe“‘z vlefe +|g|§J ¥ +1}
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and hence 1gl(—lms,zl(—lng,gv,g),gv,g) is bound-
&

ed for ¢>0.
Since

Igiirgl//;(—lng)+y/f(oo)=0,

we have

(-In¢),z

. . 1
Igl_r}rgt//l(—lng);gl (—Ing,ev,e),ev
=0
Noting z(#,0,0)=0, we can easily prove that

' (3.28)

&0

= £,(4:(5),0,0)v+ £, (4 (s),0.0),

d
|'md_g1(5 z(-Ing,ev,€),ev, g)

hence

—-lng &

lim|] wl(S) (52 (-Ine,ov.e)ev.e)ds (329)

-] v (s)fv(ql(s),o,o)w 7 (a(5).0,0)ds.

Last, since

ddg{ (=Inég)z (- Ing,gv,g)}

L (=Ing) £ (a, (- Ing))
‘(//1 Ing)[ (z(~Ine,ev,e)+q(-Ing)ev,é)

_f(% |I’I£ ):”
+|5le —Ing,gv,.9| |zl(S

|1,z/1 —In g)|

<|w,

z(~Ing,ev,¢)

(3.30)

(<Ing,ev,e)|
<K|z (t,eve)|e“ +
[Cl(|z1( Ine, 5v5| |5||v|+|€|)} +L
<K |z (t,eve)| e
+|yi (~In £)|[C1(C1|V|+1)+1+|V|]+L

we obtain

L@);—g{wf(—lng)zl(—lng,gv,g)}:0 (3.31)

From (3.28), (3.29) and (3.31) we have
() (a(5).0.0)v

+_;;(ql(s),o,o)ds

In the same way, We can prove
BZE (V’O): :W; (s)(f;(qz (S),0,0)V
+1,(4,(s),0,0)ds

Bls(v'o) (332)

(3.33)

Copyright © 2012 SciRes.

Hence we have

H,(v,,0)=B,(v,,0)=0 (3.35)
From (3.34) we have
H,(v,,0)=M (3.36)

Since the matrix M is invertible, it follows from the
implicit function theorem that for ¢>0 sufficienly
small there exists a continuous function v=v(g),

v(0)=v, satisfying
H(v(g) , 5) =0
Hence for ¢>0 sufficiently small we have
B(v(¢),)=0 (3.37)

Hence for &£>0 sufficiently small Equations (3.6),
(3.7) and (3.8)

zl(t,g):zl(t,gv(e),g),—oo<tS—Ing,
zl(t,g)=zl(t,5v(£),5),|ng<t£oo,
So for ¢>0 sufficiently small the equation
i=f(tev(e).€). (3.38)
has two solutions
x :(t,g):zl(t,g)+ql(t),—oo<t£—|n5,
x,=(t,6)=2z,(t,€)+q,(t),Ine <t <oo,
satisfying
xl(—ln 5,5):x2 (—In 5,5)

We construct a solution of Equation (3.38) by making
useof x(r,&) and x,(z,¢)

xl(t—lns,e),—oo<tSO
(1)~
x,(t=Ing,g),0<t <0
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Since x,(—Ing,e)=x,(-Ing, &), x(t,¢) is a con-
tinuously bounded solution of Equation (3.38).

Now we show x(t,g) is @ homoclinic orbit connect-
ing the equilibrium ¢, (£, &v(¢)). Since when —o0 <#<0

|x1 (t,€)—q, (5, gv(g))|

:|Zl(t—|n5,£v +q,(t-Ine)—q, (&, gv(s))|

) (3.40)
S|zl(t—lng,gv ,(9)|+|ql t-In¢) q1|

+|q1(€,5v(8))—q1|

Hence for any §>0, there exist & >0 and 7>0
such thatwhen O<e<g, and ¢t<-T+Ing, we have

|xl (t.e)—a (e, 5v(5))| <5

Since ¢, (&,v(¢)) is hyperbolic, we obtain (refer to
[9]) for &£=#0 sufficiently small

lim x(¢,¢) = ¢, (&,2v(¢))
In the same way, we can prove that
Iimx(t,g):ql(g,gv(g))

Hence x(z,&) is a homoclinic orbit connecting
g,(¢,ev(¢)) in the neighbouthood of the heteroclinic
cycle T'.

Theorem 1 discussed the second case of bifurcations
of Kokubu [6]. Acutally, we slso investigate the first case
of bifurcation as in Figure 2 in the same way and have
the following result. We assume

Bl for v=0, ¢=0, unperturbed equation

i=f(x,0,0)

Admits three hyperbolic equilibriums p,, p,, p, and
two heteroclinic orbits ¢,(7), ¢,(¢) connecting p, to
p,, P, 10 p,, respectively, that

(3.41)

tlir_rl%(t):pll!mﬂ]%(t):pz
tl_imo% (l)=p2,!Lr?Oq2 ([):ps
We denote by TI=g¢,(1)Uqg,(t)vg,Ug, Up,.
Theorem 2 We assume the conditions B1, C2 and C3
are satisfied, then when &, p sufficiently sall Equation

(1.1) admits two hyperbolic equilibrium p,(¢,p) ,
pz(g,p) satisfying pl(0,0)zpl, pz(0,0):pz. If

the 2x2 matrix
M = M,
= M,

Is invertible, then for ¢>0 sufficiently small there
exists a continuous function p= p(g) satisfying

Copyright © 2012 SciRes.

[ (9)( £ (a(5).0,0)5)

p(0)=-M"""

[7wi ) (a:(5).0.0) )
Such that the equation
£= /(oo (e) )

Admits a heteroclinic orbit connecting p, (&,0(¢))
to p3(€,€p(£)) in the neighbourhood of the hetero-
clinic cycle TI

(3.42)
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