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ABSTRACT 

Certain refinements and generalizations of some well known inequalities concerning the polynomials and their deriva-
tives are obtained. 
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1. Introduction to the Statement of Results 

Let  denote the space of all complex polynomials  nP z

 
1

n
j

jP z a z
j

   of degree n. If , then  nP P

   | | 1 | | 1max maxz zP z n P z           (1) 

and  

   | | 1 | | 1max max .n
z R zP z R P z        (2) 

Inequality (1) is an immediate consequence of S.Bern- 
stein’s theorem (see [1]) on the derivative of a trigono- 
metric polynomial. Inequality (2) is a simple deduction 
from the maximum modulus principle (see [2, p. 346] or 
[3, p. 137]). 

Both the inequalities (1) and (2) are sharp and the 
equality in (1) and (2) holds if and only if  has all 
its zeros at the origin. It was shown by Frappier, Rahman 
and Ruscheweyh [4, Theorem 8] that if , then  

 P z

nPP

   π
| |=1 1 2max max .ik n
z k nP z n P e       (3) 

Clearly (3) represents a refinement of (1), since the 

maximum of  P z  on 1z   may be larger than the 

maximum of  P z  taken over  roots of unity,   2
th

n

as is shown by the simple example   nP z z ia  , 
. 0a 

A. Aziz [5] showed that the bound in (3) can be con- 
siderably improved. In fact proved that if , then 
for every given real 

nP P
 ,  

  | | 1 πmax
2z

n
P z M M              (4) 

where  
  2 π

1max i k n
k nM P e 




            (5) 

and πM  is obtained by replacing   by π  . The 
result is best possible and equality in (4) holds for 
  z , 1 1n iP z re r     . 
Clearly inequality (4) is an interesting refinement of 

inequality (3) and hence of Bernstein inequality (1) as 
well.  

If we restrict ourselves to the class of polynomials 

nP P  having no zero in 1z  , then the inequality (1) 
can be sharpened. In fact, P. Erdös conjectured and later 
P. D. Lax [6] (see also [7]) verified that if   0P z   for 

1z  , then (1) can be replaced by  

   | | 1 | | 1max max .
2z z

n
P z P z          (6) 

In this connection A. Aziz [5], improved the inequality 
(4) by showing that if n  and  does not 
vanish in 

P P  P z
1z  , then for every real  ,  

   1 22 2
| | 1 πmax

2z

n
P z M M           (7) 

where M  is defined by (5). The result is best possible 
and equality in (7) holds for   n iP z z e  

P P
. 

A. Aziz [5] also proved that if  and n   0P z   
in 1z  , then for every real   and ,  1R 

     1 22 2
| |=1 π

1
max

2

n

z

R
P Rz P z M M  


     (8) 

In this paper, we first present the following result which 
is a refinement of inequality (7). 

Theorem 1. If nP P ,  does not vanish in   P z

1z   and  | | 1min zm  P z , then for every real  ,  

   1 22 2 2
| | 1 πmax 2 .

2z

n
P z M M m         (9) 

where M  is defined by (5). The result is best possible 
and equality in (9) holds for   n iP z z e   . 
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As an application of Theorem 1, we mention the cor- 
responding improvement of (8). 

Theorem 2. If , and  for nP P   0P z  1z   and 

 | | 1min zm  P z  then for every real   and ,  1R 

     1 22 2 2
π

1
2

2

nR
P Rz P z M M m 


      (10) 

where M  is defined by (5). The result is best possible 
and equality in (10) holds for   n iP z z e   . 

Here we also consider the class of polynomials 

n  having no zero in P P z k ,  and present 
some generalizations of the inequalities (9) and (10). 
First we consider the case  and prove the follow- 
ing result which is a generalization of inequality (9). 

0k 

1k 

Theorem 3. If  does not vanish in nP P z k , 

 and 1k   | |min z km P z , then for every real  ,  

 
 

 1 22 2 2
| | 1 π

2
max 2

2 1
z

n
P z M M m

k
     


 (11) 

where M  is defined by (5). 
Next result is a corresponding generalization of the 

inequality (10). 
Theorem 4. If  does not vanish in nP P z k , 

 and 1k   | |min z km P z , then for every real   

and ,  1R

   
 

 1 22 2 2
π

2

1
2

2 1

nR
P Rz P z M M m

k
  


   


 (12) 

where M  is defined by (5). 
Remark 1. For , Theorem 3 and Theorem 4 

reduces to the Theorem 1 and Theorem 2 respectively. 
1k 

For the case , we have been able to prove: 1k 
Theorem 5. If , nP P  P z  has no zero in z k , 

 and 1k   | |min z km P z , then for every real  , 

 

 
 

| | 1

1 22 2 2
π

2

max

2
2 1

z

n

P z

n
M M m

k
 







  


,     (13) 

provided  P z  and  Q z  attain maximum at the 

same point on 1z   where    1nQ z z P z . The  

result is best possible and equality in (13) holds for 
.   n nP z z k 

Theorem 6. If , nP P  P z  has no zero in z k ,  

1k   and  | |minm z k P z , then for every real   

and R 1

   
 

 1 22 2 2
π

2

1
2 ,

2 1

n

n

R
P Rz P z M M m

k
  


   


 

(14) 

provided  P z  and  Q z  attain maximum a

t on 

t the 

same poin 1z   where    1nQ z z P z . The  

result is best po  and equ ds for ssible ality in (14) hol
  n nP z z k  . 

2. Lemmas 

hese theorems, we need the following For the proofs of t
lemmas. The first Lemma is due to A. Aziz [5]. 

Lemma 1. If nP P , then for 1z   and for every 
real  ,  

       
2

2 2 2 2
π2

n
P z nP z zP z M M         (15) 

where M  is defined by (5). 
Lemma 2. If nP P  and for   0P z   z k , 

1 , then for k 1z  ,  

     k P nPz z zP z nm     

where  | |min z km P . z

ma 2 is a special cases of a result due to A. Aziz 
an

Lem
d N. A. Rather [8, Lemma 5]. 
Lemma 3. If nP P  does not vanish in z k , 

k 1 , then  

   | | 1max for 1nk zP z Q z z    

where    1nQ z z P z . 

This Lemma is due to N. K. Govil [9]. 
Lemma 4. If  P z  is a polynomial of degree n 

which does not vani  sh in z k , 1k  , then for 1z   

     | | | | 1minn
z zk P z n Q z maxk P z    

where    1nQ z z P z . 

Proo  | |min z km P .z  If  P zf of Lemma 4. Let   

has a zero on z k , then ult fo  0m   
 we a

and the res llows
3. Henfrom Lemma ceforth ssume that  P z  has 

no zero on z k , therefore 0m   and  

  fo .m P z kr z 

If 

 

  is any real or complex num withber  1  , 
then for z k ,  

  .n nmz k P z   

By Rouche’s Theorem, it follows t e polynomial hat th
    n nF z P z mz k   does not vanish in z k , for 
ery real or complex number ev   with 1  . Apply- ,  
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ing Lemma 3 to the polynomial  F z , we get

 
  

 | | 1max for 1.n
zk F z G z       (16) z

where  

     
 

1 1

.

n n

n

G z z P z z P z m k

Q z m k





  

 
 

n

Replacing  F z  by   n nP z mz k  and  G z  by 
  nk , weQ z m  obtain from (16) for 1 ,  z 

   1 n  

Now choosing the argument of

| | 1max .n n
zk P z n mz k Q z      (17) 

   in the l
side of (17) such that  

eft hand 

   1n n nP z n mz k P z nm k     

we obtain for 1z  ,  

   | | 1max .n
zk P z nm Q z     

Letting 1 
 

, we get the desired result. This proves 
Lemma 4.

f the Theorems 

othesis does not  

3. Proof o

Proof of Theorem 1. By hyp

vanish in 
 P z  

1z   and  | |z k

Lemma 2 with 1k  , we have  

minm  P z , therefore, by 

      
2 2

for 1.nm P z z   

This gives with the help of Lemma 1  

P z nP z z   

          

 

22 2

2
2 2

π .
2

z zP z

n
M M  



 
 

Since  

2
P z P z nm P z nP     

      

 

2 2 2 2

2 2 2

2

,

nm P z n m nm P z

P z n m

    

 
 

it follows that  

P z

   
2

2 2 2 2 2
π2 P ,

2

n
z n m M M      

which implies for 1z    

   1 22P z  2 22
2

n
M M m     

and hence  

   1 22 2 2
| | 1 πmax 2 .

2z

n
P z M M m       

This completes the proof of Theorem 1.  

Proof of Theorem 2. Applying (2) to the poly ial nom
 P z  

we
which is of degree and using The  1, 1n   orem

 obtain for 1t   and 0 < 2π ,  

   

 

1
| | 1

1 21
π

max

2 .

i n
z

n

P te t P z

n
t

 





 


 

2 2 2

2
M M m  

Hence for each  and , we have  1R , 0 2π  

       

 

   

1 1

1 2 1
π 2 d .

R n2 2 2

1

1 22 2 2
π

Re d d

1

2
1

2 1 .
2

R Ri i i i i

n

P P e e P te t P te t

M M m

M M m R

    

 

  

   

 

   

 

This implies for 

nt t
    

1z   and ,  1R 

     1 22 2 2
π

1
2 ,

2

nR
P Rz P z M M m  


     

w  2. 
The proof of the Theorem 3 and 4 follows on the e 

lines as that of Theorems 1 and 2, so we omit the de
ll the zeros of 

hich proves Theorem
sam
tails. 

Proof of Theorem 5. Since a  P z  lie 
in z k , where 1k  ,  | |min z km P z , by Lemma 
4, we have  

   | | 1 | | 1max max ,n
z zk P z nm Q z    (18) 

where  

    

 1nQ z  P z  z P z . Also by hypothesis 

and  Q z  become maximum at the same point on 

1z  , if

 
  

 | | 1x , 0 2π,z P z P e          (19) ma i

then  

   | | 1max , 0 2πi
z Q z Q e           (20) 

an be easily verified that  and it c

      for 1.Q z nP z zP z z    

Therefore, by Lemma 1  

   
     

 

2 2

2

2
2 2

π .
2

i i

i i i

P e Q e

e e P e

n
M M

 

  

  

 



 

 

This gives with the help of (18), (19) and (20) that  

2
iP e nP 

    22

     
22 2

2 2

2

i n iP e k P e nm   

π ,i i n
P e Q e M M 
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which implies,  

     π .
22 2

2 2 2 2

2
i n i n

P e k P e n m M M 
     

Equivalently,  
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