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ABSTRACT 

Effects of thermal and species diffusion with one relaxation time on the boundary layer flow of a viscoelastic fluid 
bounded by a vertical surface in the presence of transverse magnetic field have been studied. The state space approach 
developed by Ezzat [1] is adopted for the solution of one-dimensional problem for any set of boundary conditions. The 
resulting formulation together with the Laplace transform techniques are applied to a thermal shock-chemical reactive 
problem. The inversion of the Laplace transforms is carried out using a numerical approach. The numerical results of 
dimensionless temperature, concentration, velocity, and induced magnetic and electric fields distributions are given and 
illustrated graphically for the problem. 
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1. Introduction 

Viscoelastic flows are encountered in numerous areas of 
petrochemical, biomedical and environmental engineer-
ing including polypropylene coalescence sintering [2] 
and geological flows [3]. A wide range of mathematical 
models have been developed to simulate the nonlinear 
stress-strain characteristics of such fluids which exhibit 
both viscous and elastic properties [4]. 

In nature and many industrial applications, there are 
plenty of transport processes where simultaneous heat 
and mass transfer is a common phenomenon. Its applica-
tion is found in many diverse fields but not limited to 
cleaning operations, curing of plastics, manufacturing of 
pulp-insulated cables, many chemical processes such as 
analysis of polymers in chemical engineering, condensa-
tion and frosting of heat exchangers [5]. The study of 
convection reduces to the determination of convective 
heat and mass transfer coefficients. Convective heat and 
mass transfer coefficients are important parameters, which 
are a measure of the resistance to heat and mass transfer 
between a surface and the fluid flowing over that surface. 
The convective coefficients depend on the hydrodynamic, 
thermal and concentration boundary layers. In many of 
the internal flows, both forced and natural convection 
play major roles in the heat and mass transfer processes. 

Whereas in the entrance section of a duct, forced convec-
tion becomes dominant, as the flow moves towards the 
downstream section, natural convection could dominate 
over forced convection and finally in the thermally de-
veloped region natural convection becomes negligible. 
Natural convection may be due to a temperature or con-
centration gradient or both. If the buoyancy forces are 
due to temperature and concentration gradients that act in 
the same direction, both the heat and mass transfer will 
increase. However, if the temperature and concentration 
gradients act in the opposite direction, both heat and 
mass transfer reduce [6]. 

In recent years, the study of viscoelastic fluid flow is 
an important type of flow occurring in several engineer-
ing processes. Such processes are wire drawing, glass 
fiber and paper production, crystal growing, drawing of 
plastic sheets, among which we also cite many applica-
tions in petroleum in drilling, manufacturing of foods and 
slurry transporting. The boundary layer concept of such 
fluids is of special importance due to its applications to 
many engineering problems among which we cite the 
possibility of reducing frictional drag on the hulls of 
ships and submarines.  

A great deal of works has been carried out on various 
aspects of momentum and heat transfer characteristics in 
a viscoelastic boundary layer fluid flow over a stretching 
plastic boundary [7] since the pioneering work of Sa- *Corresponding author. 
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kiadis [8]. Ezzat and Zakaria [9] studied the effects of 
free convection currents with one relaxation time on the 
flow of a viscoelastic fluid through a porous medium. 
Khan and Sanjayanand [10] studied heat and mass trans-
fer in a viscoelastic boundary layer flow over exponen-
tially stretching sheet.  

In this work, we use a more general model of MHD 
mixed convection flow of conducting viscoelastic fluid 
which also includes both the relaxation time in the heat 
and concentration equation and the electric permeability 
of the electromagnetic field. The unsteady free convec-
tion heat and mass transfer flow of electrically conduct-
ing incompressible viscoelastic fluid past an infinite ver-
tical plate in the presence of a transverse magnetic field 
and chemical reaction using the state space approach and 
Laplace transforms technique. The inversion of the 
Laplace transform is carried out using a numerical tech-
nique [11]. 

2. Formulation of the Problem 

The electro-magnetic quantities satisfy Maxwell’s equa-
tions [12]: 
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These equations are supplemented by Ohm’s law 

 o o    oJ E V H            (5) 

Consider an unsteady free convection flow of electri-
cally conducting incompressible, viscoelastic fluid past 
an infinite vertical plate. The x-axis is taken in the verti-
cal direction along the plate and y-axis normal to it. Let u 
be the component of the velocity of the fluid in the x di-
rection and a constant magnetic field acts in the y direc-
tion of strength . This produces an in-
duced magnetic field  and an induced elec-
tric field  as well as a conduction current 
density 
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Equation (5) reduces to 
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The vector Equations (1) and (2) reduced to the fol-
lowing scalar equation 
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Eliminating J between Equations (6) and (7) we obtain 

 o o o o o

h E
E

y t
          

H u         (9) 

Eliminating E between Equations (8) and (9) we ob-
tain 
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The Lorentz force has a non-vanishing component in 
the x-direction, given by: 
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Assume that the viscoelastic fluid contains some 
chemically reactive diffusive species then the equations 
describing the flow in the boundary layer reduce to:  
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Introduce the non-dimensional quantities. 
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In Equation (23) the overbar denotes the Laplace 
transform and the prime indicates differentiations with 
respect to y. 

With the help of the non-dimensional quantities above 
Equations (12)-(16) reduced to the non-dimensional equ- 
ations 
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Equation (23) can be written in constracted form as 
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The formal solution can be expressed as:  
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To simplify the algebra, only problems with zero ini-
tial conditions are considered. Taking Laplace transform 
of Equations (18)-(22) and writing the resulting equa-
tions in matrix form results in (23). 
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The Maclaurin series expansion of  exp s y  A  is 
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Using the Cayley-Hamilton theorem, the infinite series 
can be truncated to the following form 

  2 3
0 1 2 3 4

5 6 7
5 6 7

exp

,

s y a I a a a a

a a a

       
  

A A A A A

A A A

4

 (30) 

where I is the unit matrix of order 8 and a0 – a7 are some 
parameters depending on s and y. 

The characteristic roots 1, 2 ,  and k k 3k 4k  of 
the matrix A must satisfy the equations. 
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The solution of this system of linear equations is given 
in Appendix A: 

Substituting for the parameters a0 - a7 into Equation 
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elements (ℓij i, j = 1, 2, 3, 4, 5, 6, 7, 8) of the matrix L(y, s) 
which listed in Appendix B. 
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It is now possible to solve broad class problems in the 
Laplace transform domain. 

3. Thermal Shock-Chemical Reactive  
Problem 
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where  and  are constant and H(t) is Heaviside 
unit step function. 
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Now we apply the state space approach described 
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By solving this system, we arrive at   
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i i i i
i i i

i i

i i

k k k k mk k
h s b A k k k k k

k k bn k k k k

k k k k m k k k k m
k k k k

k k k k k k k k








             
    

              
    






       (36) 

 
Finally substituting the above value into (25), we ob-

tain the solution of the problem in the transformed do-
main as:  

   1, expoT
T y s k y

s
              (37) 

   2, expoc
c y s k y

s
              (38) 

     

   

   

   

2
1 1 4 1

2
2 2 4 2

2
3 3 4 3

2
4 4 4 4

, exp

exp

exp

exp

u y s A k m k y

A k m k y

A k m k y

A k m k y

  

  

  

  

      (39) 

     
   

1 1 1 2 2 2

3 3 3 4 4 4

, exp exp

exp exp

h y s b A k k y A k k y

A k k y A k k y

   
    

 (40) 

where the constants Ai, i = 1, 2, 3, 4 are listed in Appen-
dix C. 

The induced electric field and current density take the 
following forms 

  
   

1 1 2 2

3 3 4 4

exp exp

exp exp ,

E sb A k y A k y
A k y A k y

   
    

    (41) 

   

   

   

   

2 2
1 1 1

2 2
2 2 2

2 2
3 3 3

2 2
4 4 4

exp

exp

exp

exp .

o

o

o

o

J b A k s k y

A k s k y

A k s k y

A k s k y









  

  

  

   

      (42) 

The shearing stress at the wall is given by 

    2 2u 

   

1 1 1 4 2 2 2 4

2 2
3 3 3 4 4 4 4 4

0y

s A k k m A k k m
     

y

A k k m A k k m






    

 (43) 

4. Inversion of the Laplace Transforms 

above In order to invert the Laplace transform in the 
equations, we adopt a numerical inversion method based 
on a Fourier series expansion [11]. In this method, the 
inverse g(t) of the Laplace transform  g s  is approxi-
mated by the relation 

     1π
1

11

1

1cte
Re π ,

2

0 2 ,

ik t t

k

g t g c e g c ik t
t

t t





      
  

 


 (44) 

where N is a sufficiently large integer representing the 
number of terms in the truncated infinite Fourier series. 
N must chosen such that  

 1πRe iN t tcte e g 1 1πc iN t     , 

where 1  is a persecuted small positive number that 
corresponds to the degree of accuracy to be achieved. 
The parameter c is a positive free parameter that must be 
greater than the real parts of all singularities of  g s . 
The optimal choice of c was obtained according e 
criteria described in [11].  

to th

5. Numerical Results and Discussion 

and mass 

fields as well as the induced magnetic and electric fields 

The problem of free convective flow with heat 
transfer of a viscous incompressible viscoelastic electri-
cally conducting fluid past a vertical plate in presence of 
a transverse magnetic field has been considered. The 
solutions for velocity, temperature and concentration 
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are obtained by using the state space approach. The tech-
nique is applied to a thermal shock-chemical reactive 
problem without heat sources. The effects of flow pa-
rameters such as Grashof number for heat and mass 
transfer TG , cG , Prandtl number rP , Schmidt number 

cS , chemical reaction parameter K, viscoelastic parame-
ter ok  a re ation time ond lax   have been studied ana-

ically and presented with the help of Figures 1-8 for 
the considered problem.  

5.1. Velocity Field (u) 

 
lyt

The velocity of the flow
variation of the flow param

 field varies vastly with the 
eters such as Grashof number 

 o e

 Parameter (ko) 
Figure 1 depicts the effect of viscoelastic parameter 

eping ot

easing

The values of Grashof number for heat  have been 
nt of 

for heat and mass transfer TG , cG , viscoelastic pa-
rameter ok , Prandtl number rP , Schmidt number cS , 
chemical reaction parameter K ffects of these pa-
rameters on the velocity fluid f flow field have be n 
presented in Figures 1-3.  

5.1.1. Effect of Viscoelastic

. The e

ok  
her 
ith

on the velocity profiles of the flow field ke
parameters of the flow field constant. The curve w  
viscoelastic parameter, 0ok   corresponds to Newto-
nian flow and in other two curves the viscoelastic pa-
rameter is taken in incr  order. The viscoelastic 
parameter is found to decelerate the velocity of the flow 
field. The above parameter is in good agreement with the 
result obtained in cases of Khan and Sanjayanand [10]. 

5.1.2. Effect of Grashof Number for Heat (GT)  

T

chosen as they are interesting from physical poi
G

e view. The free convection of heat is du to the tem-
perature difference oT T  and hence 0TG   when  

0oT T   which ph y corresponds t ling of 
 by free convection currents. Then 0TG

ysicall o coo
the surface   
correspond to heating of the surface by free convection 
currents. In Figure 2, we observe that the effect of cool-
ing and heating by free convection currents when 

0TG   and 0TG   are in agreement with physical 
tions th ling of the surface by free convec-

tion currents occurs for positive values of TG  while 
heating corresponds to negative values of TG It was 
also noticed that the velocity increase with the increase 
of TG . 

 

observa

5.1.3. Effect

ica

5.2. Temper

at coo

of Different P

ld.

ature Field (

.

, Sc

o

 

, K)  
 

o-

re or less 

 arameters (Gc, P

T) 

to change 

 

r

m

Figure 3 present the effect of Grashof number for mass
transfer cG , Prandtl number rP , Schmidt number cS  
and chem l reaction paramete K on the velocity pr
files of the flow fluid. Comparing the curve (1) and (2) of 
the figure, it is observed that the Grashof number for 
mass transfer is to enhance the velocity of the flow field 
at all points. The effect of both Prandtl number rP  and 
chemical reaction parameter K on the velocity field is 
shown by the curves (1), (3) and (5). It was found that 
the increasing of rP  and K lead to decelerate the veloc-
ity of the flow fie  Curves (1) and (4) describe the ef-
fect of Schmidt number cS  on the velocity profiles of 
the flow field which reve that the presence of heavier 
diffusing species has a retarding effect on the velocity of 
the flow field. The effect of the above parameters has the 
same behavior as in case of Das et al. [13]. 

r 

al 

The temperature field is found 
with the variation of the Prandtl number rP . Figure 4 is 
plot of non-dimensional temperature and di ance for five 
different values of the Prandtl number. The temperature 

st

 

Figure 1. Velocity distribution for different values of viscoelastic parameter ko. 
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Figure 2. Velocity distribution for different values of GT. 
 

 

Figure 3. Velocity distribution for different values of Gc, Pr, Sc and K. 
 

 

Figure 4. Temperature distribution for different values of Pr. 
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Figure 5. Concentration distribution for different values of Sc. 
 

 

Figure 6. Induced magnetic field distribution for different values of GT, Gc. 
 

 

Figure 7. Induced electric field distribution for different values of GT, Pr, Sc and K. 
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Figure 8. Current density distribution for different values of GT, Pr, Sc and K. 
 

f the flow field diminishes as the Prandtl number in-

5.3. Concentration Field (c) 

ion distribution of the 

5.4. Induced Magnetic Field (h) 

 induced mag-

5.5. Induced Electric Field (E) and Current  

The induce nd current density of the flow 

field and current density have been presented in Figures 

ifferent Parameters (GT, Pr, Sc, K) 
Figures 7 and 8 present the effect of Grashof number for 

t number 

flu

 skin friction coefficient τ for 
K and  corre-

ng e

 nature of the governing 
D viscoelastic flow, few 

at

 

o
creases. Higher the Prandtl number, the sharper is the 
reduction in the temperature of the flow field. 

The variation of the concentrat
flow field with the diffusion of the mass is shown in Fig-
ure 5. The concentration distribution decreases at all 
points of the flow field with the increase of the Schmidt 
number cS . This shows that the heavier the diffusing 
species h e a greater retarding effect on the concentra-
tion distribution of the flow field. The concentration pro-
files are in good agreement with the results obtained in 
case of Hsiao [14]. 

av

Figure 6 concentrate on variations in the
netic field profiles h for cooling 0TG   and heating 

0TG   of the plate due to chang he values of 
 number for mass transfer cG . It is observed that 

for cooling (heating) of the plate the induced magnetic 
field increases (decreases) rapidly in the vicinity of the 
plate and decreases (increases) asymptotically for higher 
values of y. It is also observed that an increase in Grashof 
number for mass transfer cG  increases (decreases) the 
induced magnetic field. 

e in t
Grashof

Density (J) 

d electric field a
field vary vastly with the variation of the flow parameters 
such as Grashof number TG , Prandtl number rP , 
Schmidt number cS  and che al reaction parameter . 
The effects of th  parameters on the induced electric 

7 and 8.  

Effect of D

mic  K
ese

heat transfer G , Prandtl number P , SchmidT r

cS  and chemical reaction parameter K on the induced 
electric field E nd current density rofiles of the flow 

id, respectively. It was found that the increasing of 
these parameters lead to decelerate the magnitude of both 
the induced magnetic field and current density but 
Grashof number for heat transfer is to enhance them. 

5.6. Skin Friction (τ) 

, a J p

The numerical values of
different values of G , T c r c o

sponding to cooling of the plate 0TG   are entered in 
Table 1. It is observed th th in icient τ 
increases due to increase in TG , cG ile decrease due 
to increase in rP , cS , K and ok .  

6. Concludi  R marks 

G , 

at 

P , 

e sk

S , 

 

k

ff friction coe
wh

1) Owing to the complicated
equations for the unsteady MH

tempts have been made to solve problems in this field. 
These attempts utilized approximate methods valid for 
only a specific range of some parameters. In this work, 
the method of direct integration by means of the matrix 
exponential, which is a standard approach in modern 
control theory and is developed in detail in many texts 
such as Ezzat [1], is introduced in the field of MHD and 
is applied to specific problems in which the temperature, 
velocity, concentration and magnetic field are coupled. 
This method gives exact solutions in the Laplace transform 
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Table 1. Values of the skin friction τ due  the variation of GT, Gc, Pr, Sc, K nd ko.  to

T c r c o

a

G  G  P  S  K k  τ 

1 2 0.73 0  1.23 915  .22 0.2 0.2 73

5 2 0.73 0.22 0.2 0.2 1.2373925  

1 4 0.73 0.22 0.2 0.2 2.4747825  

1 2 1 0.22 0.2 0.2 1.0391526  

1 2 0.  73 0.62 0.2 0.2 0.2902698  

1 2 0.73 0.22 0.5 0.2 1.1652091  

1 2 0.73 0.22 0.2 0.4 1.1499502  

 
omain without any assumed restrictions on the applied 

 

n this work, we use a more general model of equa-
tio

d
magnetic field or viscoelastic parameters. The same ap-
proach was used quite successfully in dealing with prob-
lems in generalized thermoelasticity theory by Ezzat et al.
[15]. 

2) I
ns, which includes the relaxation time of heat conduc-

tion o  and the electric permeability of the electromag-
netic field o . The inclusion of the relaxation time and 
electric permeability modifies the governing thermal, 
concentration and electromagnetic equations, changing 
them from parabolic to hyperbolic type, and thereby 
eliminating the unrealistic result that thermal and chemi-
cal reactive disturbance is realized instantaneously eve-
rywhere within a fluid. 

3) The work considered here in reflects the effects 
tra

over the boundaries has many
ap

agriculture, engineering, petroleum industries, and heat 
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Appendix A: The Solution of the Linear System 

 2 2 2 2 2 2 2 2 2 2 2 2
0 2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4a F k k k C k k k C k k k C k k k C    ,  2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4a F k k k S k k k S k k k S k k k S     

        2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 3 2 4 3 4 1 3 4 3 1 1 4 2 4 1 4 2 1 2 3 1 2 1 3 2 3a F k k k k k k C k k k k k k C k k k k k k C k k k k k k C             4  

        2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 2 3 2 4 3 4 1 3 4 3 1 1 4 2 4 1 4 2 1 2 3 1 2 1 3 2 3 4a F k k k k k k S k k k k k k S k k k k k k S k k k k k k S              

        2 2 2 2 2 2 2 2 2 2 2 2
4 2 3 4 1 1 3 4 2 1 2 4 3 1 2 3 4a F k k k C k k k C k k k C k k k C             

        2 2 2 2 2 2 2 2 2 2 2 2
5 2 3 4 1 1 3 4 2 1 2 4 3 1 2 3a F k k k S k k k S k k k S k k k S            4

4

 

 6 1 2 3a F C C C C     4  7 1 2 3a F S S S S    ,  

where  

           2 2 2 2 2 2 2 2 2 2 2 2
1 2 1 3 1 4 2 3 2 4 3 4

1
F

k k k k k k k k k k k k


     
 

       2 2 2 2 2 2
1 2 3 3 4 4 2 1coshC k k k k k k k y    ,      2 2 2 2 2 2

2 3 4 4 1 3 1 2coshC k k k k k k k y     

     2 2 2 2 2 2
3 4 1 1 2 2 4 3coshC k k k k k k k y    ,      2 2 2 2 2 2

4 1 2 2 3 1 3 4coshC k k k k k k k y     

     2 2 2 2 2 2
1 2 3 3 4 4 2 1

1

1
sinhS k k k k k k k y

k
    ,      2 2 2 2 2 2

2 3 4 4 1 3 1 2
2

1
sinhS k k k k k k k y

k
     

      2 2 2 2 2 2
3 4 1 1 2 2 4 3

3

1
sinhS k k k k k k k y

k
    ,      2 2 2 2 2 2

4 1 2 2 3 1 3 4
4

1
sinhS k k k k k k k y

k
     

Appendix B: Elements of the Matrix L(s, y) 

   2 2 2 2 2 2
11 1 2 1 3 1 4 1F k k k k k k C     , , 12 0 13 0 , 14 0  

   2 2 2 2 2 2
15 1 2 1 3 1 4 1F k k k k k k S     , , 16 0 17 0 , 18 0 , 21 0  

   2 2 2 2 2 2
22 2 1 2 3 2 4 2F k k k k k k C     , , 23 0 24 0 , 25 0  

   2 2 2 2 2 2
26 2 1 2 3 2 4 2F k k k k k k S     , , 27 0 28 0  

        2 2 2 2 2 2 2 2 2
31 2 1 1 4 1 2 3 3 4 3 2 4 4 4 4

01
TG F

k k k m C k k k m C k k k m C
sk

           
  

         2 2 2 2 2 2 2 2 2
32 1 2 2 4 2 1 3 3 4 3 1 4 4 4 4

01
cG F

k k k m C k k k m C k k k m C
sk

           
  

         2 2 2 2 2 2 2 2 2 2 2 2
33 4 2 3 1 3 4 3 3 3 2 4 1 4 4 4 4

4

F
k k k k k m k C k k k k k m k C

m
           

      2 2 2 2 2 2 2 2 2
34 4 1 3 3 2 3 1 4 4 2 4n m F k k k k S k k k k S          

        2 2 2 2 2 2 2 2 2
35 2 1 1 4 1 2 3 3 4 3 2 4 4 4 4

01
TG F

k k k m S k k k m S k k k m S
sk

           
  

        2 2 2 2 2 2 2 2 2
36 1 2 2 4 2 1 3 3 4 3 1 4 4 4 4

01
cG F

k k k m S k k k m S k k k m S
sk

           
  

        2 2 2 2 2 2 2 2 2 2
37 1 3 2 3 3 4 3 1 4 2 4 4 4 4F k k k k k m S k k k k k m S            
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     2 2 2 2 2 2 2 2 2
38 3 1 3 2 3 4 1 4 2 4n F k k k k C k k k k C        ,  

     2 2 2 2 2 2 2 2 2
241 1 1 2 1 3 3 2 3 4 4 4

01
TG bF

k k k S k k k S k k k S
sk

        
  

     2 2 2 2 2 2 2 2 2
42 2 2 1 2 3 3 1 3 4 4 1 4

01
cG bF

k k k S k k k S k k k S
sk

        
  

     2 2 2 2 2 2 2 2
43 3 3 1 3 2 3 4 1 4 2 4bm F k k k k S k k k k S         

         2 2 2 2 2 2 2 2 2 2
44 1 3 2 3 4 4 3 1 4 2 4 3 44

F k k k k k m C k k k k k m C           

     2 2 2 2 2 2
45 2 1 1 2 3 3 2 4 4

01
TG bF

k k C k k C k k C
sk

       
 ,  

     2 2 2 2 2 2
46 1 2 2 1 3 3 1 4 4

01
cG bF

k k C k k C k k C
sk

       
  

     2 2 2 2 2 2 2 2
47 1 3 2 3 3 1 4 2 4 4bF k k k k C k k k k C         

       2 2 2 2 2 2 2 2 2 2 2 2
48 3 3 1 3 2 4 4 3 4 4 1 4 2 4 3 4

4

F
k k k k k m k S k k k k k m k S

m

            

     2 2 2 2 2 2 2
51 1 1 2 1 3 1 4 1k F k k k k k k S     , 52 0 , 53 0 , 54 0  

   2 2 2 2 2 2
55 1 2 1 3 1 4 1F k k k k k k C     , 56 0 ,  57 0 58, 0 , 61 0   

   2 2 2 2 2 2 2
62 2 2 1 2 3 2 4 2Fk k k k k k k S     , 63 0 , 64 0 , 65 0  

   2 2 2 2 2 2
66 2 1 2 3 2 4 2F k k k k k k C     , 67 680 , 0  

    2
3 2 4k     2 2 2 2 2 2 2 2 2 2 2

71 1 1 2 1 4 1 3 3 3 4 4 2 4 4 4
01

TG F
k k k k m S k k k m S k k k k m S

sk
         

  

        2 2 2 2 2 2 2 2 2 2 2 2
72 2 2 1 2 4 2 3 3 1 3 4 3 4 4 1 4 4 4

01
cG F

k k k k m S k k k k m S k k K k m S
sk

         
  

       2 2 2 2 2 2 2 2 2 2
73 3 3 1 3 2 3 4 3 4 1 4 2 4 4 4m F k k k k k m S k k k k k m S            

     2 2 2 2 2 2 2 2 2
74 4 3 1 3 2 3 4 1 4 2 4n m F k k k k C k k k k C         

         2 2 2 2 2 2 2 2 2
75 1 2 1 4 1 3 2 3 4 3 4 2 4 4 4

01
TG F

k k k m C k k k m C k k k m C
sk

          
  

        2 2 2 2 2 2 2 2 2
76 2 1 2 4 2 3 1 3 4 3 4 1 4 4 4

01
cG F

k k k m C k k k m C k k k m C
sk

          
  

        2 2 2 2 2 2 2 2 2 2
77 3 1 3 2 3 4 3 4 1 4 2 4 4 4F k k k k k m C k k k k k m C            

     2 2 2 2 2 2 2 2 2 2
78 3 3 1 3 2 3 4 1 4 2 4n F k k k k k S k k k k S         

     2 2 2 2 2 2 2 2 2
81 1 1 2 1 3 3 2 3 4 4 2 4

01
TG bF

k k k C k k k C k k k C
sk

       
  

     2 2 2 2 2 2 2 2 2
82 2 2 1 2 3 3 1 3 4 4 1 4

01
cG bF

k k k C k k k C k k k C
sk

        
  
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     2 2 2 2 2 2 2 2
83 3 3 1 3 2 3 4 1 4 2 4m bF k k k k C k k k k C         

       2 2 2 2 2 2 2 2 2 2 2 2
84 3 3 1 3 2 4 4 3 4 4 1 2 3 4 44F k k k k k k m S k k k k k k m S           

     2 2 2 2 2 2 2 2 2
85 1 1 2 1 3 3 2 3 4 4 2 4

01
TG bF

k k k S k k k S k k k S
sk

       
  

     2 2 2 2 2 2 2 2 2
86 2 2 1 2 3 3 1 3 4 4 1 4

01
cG bF

k k k S k k k S k k k S
sk

       
  

     2 2 2 2 2 2 2 2 2 2
87 3 3 1 3 2 3 4 4 1 4 2 4bF k k k k k S k k k k k S         

       2 2 2 2 2 2 2 2 2 2 2 2
88 3 3 1 3 2 4 4 3 4 4 1 4 2 3 4 4

4

F
k k k k k k m C k k k k k k m C

m
           

Appendix C: The Constants for the Problem 

    1 2 2 2 2
3 1 1 41 o

A T oG T

s sk k k k k


  
, 

   2 2
31 o

A
2 2 2
2 2 4

c oG c

s sk k k


  k k
 

 
   

   
2

3 4 4 2 2
3 42 2

1
4 3 4 3 4

i i i
i

k k m
A A k k m

m k k bn k k 

        
  4 4 4k k m 

 
   

   
2

3 4 4 2 2
4 32 2

1
4 3 4 3 4

i i i
i

k k m
A A k k m

m k k bn k k 

        
 4 3 4k k m 

 
Nomenclature  

. 

PC  
k

 specific heat at constant pressure 
  viscoelastic parameter 

 thermal Grashof number 
   density  o

GT  
G

t   time  
 , ,x y z  space coordina

  solute Grashof number 
tes  

tor 

c

P   Prandtl number 
V   velocity vec r

S   Schmidt number 
H   magnetic field intensity vector 

  ctor 
vector 

c

H   constant component of magnetic field 
B magnetic induction ve o

  electrical conductivity 
D   electric induction 

  magnetic permeability 
E   induced electric field vector 

h   induced magnetic field vector 
J   conduction electric density vector 

x-direction  

on parameter 

u   velocity of the fluid along the 
T   temperature 
c   concentration 
D   mass diffusivity of chemically reactive species 
K   chemical reacti
g   acceleration 
T

c
  temperature of the fluid away from the surface 

  concentration of the fluid away from the sur-
face 

   thermal conductivity 
   dynamic viscosity 
     , kinematics viscosity 

m   
1

o o 
 , magnetic diffusivity 

o   ation time thermal relax
2

o oH
  


 , Alfven velocity 

 H t  Heaviside unit step function 

 


