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ABSTRACT 

In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear 
differential equations which is called Blasius problem in fluid mechanics. The solutions of the Blasius problem for two 
cases are obtained by using these methods and their results are shown in table. 
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1. Introduction 

On the fluid mechanics of non-parallel flows are called 
Blasius flows which is an important problem is interested 
in recently by authors [1-10]. In addition, this non-linear 
third order ordinary differential equation on a half-infi- 
nite interval is solved by using perturbation method [11], 
transformation of independent variable and finite differ-
ence method [12], homotopy analysis method [13-16], 
Adomian’s method [16-18], differential transform method 
[19,20]. 

In generally, it is considered the two-dimensional flow 
over a semi-infinite flat plain, is governed by 
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with the boundary conditions 
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where the prime denotes the derivatives with respect to a  

non-dimensional variable , 
U
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  is a non-dimensional function related  

to the stream function  , x y , where U is the velocity 
at infinity;  is the kinematic viscosity coefficient; x and 
y are the two independent coordinates. 

In this work, when 1 2   and 0  , in Equation 
(1.1), we obtain the following equation which is called 

Blasius (1908) equation [1]: 
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with the boundary conditions as 
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The physical character of boundary layer apparently 
needs close and far away solution to match as was done 
by Blasius. So, to obtain the solution of this problem, we 
consider the boundary conditions as:  

For inner case 5.5    0 0  ; boundary conditions 
are; 
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For inner-outer case 4 5.5   ; boundary 
conditions are; 

 0 m  
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For outer case 5.5 8   ; boundary con-
ditions are; 

 0 m  

   
   

, 1

, ,  are constants
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The paper is organized as follows: Blasius problem is 
solved by using ADM in &2; by using DTM in &3 and 
also, by using Taylor Series Method in &4, then it is 
given some concluding remarks in &5.  
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2. Solution of Blasius Problem by Adomian’s 
Decomposition Method (ADM) 

For solving the following equation of the form 

u f Nu                 (2.1) 

where  is non-linear mapping, X is Banach 
space, f is known function, by using Adomian’s decom-
position method is taken that the solution u can be fol-
lowing convergent series form: 

:N X X
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                  (2.2) 

with un  X for all n. An is a polynomial depending on u0, 
u1, ···, un, An  X for all n, are obtained from the equality; 
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In putting the Equations (2.2) and (2.3) into the Equa-
tion (2.1), it gives 
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to determine the so-called Adomian’s polynomials An 
from un, where  is a scalar parameter 
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where  shows the kth Fréchet derivative of N 
at . 

 0
kD N u

u X0

To demonstrate Adomian’s solution of the Blasius  

problem, the differential operator    
3

3

d
.
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N


 .  and  

the inverse operator    1 . . dN 3      are treated. 
Operating with N−1 on Equation (1.3), then it gives: 
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For inner case: f0 determined from the boundary con-
ditions (1.5) and than the other components determined 
from Equation (2.11) as follows [16-18]: 
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For outer case: Similarly, f0 determined from Equations 
(1.7) and than f1 determined from Equation (2.11), so on: 
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3. Solution of Blasius Problem by  
Differential Transform Method (DTM) 

where a and b are any arbitrary constants. Then, we ob-
tain the following equation: 

In this study, similarly [19], it is applied DTM for the 
Equation (1.3): 
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where  F k  shows the differential transform of  f  . 
For inner case: (1.5) boundary conditions (BCs) are 

transformed 

     0 1 0 and let 2F F F   c         (3.2) 

where c is an arbitrary constant. Then, we get the fol-
lowing equation: 
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(3.3) For inner-outer case: From (1.6) boundary conditions, 
4 < 0 < 5 taking the interval of 0 is found a, b, and c 
constants, is obtained similar result as in [19]. 

4. Solution of Blasius Problem by Taylor  
Series (TS) 

For outer case: (1.7) boundary conditions (BCs) are 
transformed 

Taylor’s series method is used for solving Blasius prob-
lem. This method assumes that the solution  f   and 
derivative of  f   can be taken power series as      0 ,  1 1 and 2F a F F b         (3.4) 

 
Table 1. Solutions of Blasius problem. 

INNER INNER-OUTER OUTER (f 1) 
x 

Taylor ADM DTM Taylor ADM DTM Taylor ADM DTM 

0.0 0 0 0 0 0 0 0 0 0 

0.5 0.0415 0.0415 0.0415 0.0417 0.0415 0.0417 0.0543 0.0556 0.0543 

1.0 0.1656 0.1656 0.1656 0.1662 0.1656 0.1662 0.1087 0.1111 0.1087 

1.5 0.3702 0.3701 0.3702 0.3715 0.3701 0.3715 0.1630 0.1667 0.1630 

2.0 0.6502 0.6500 0.6501 0.6525 0.6500 0.6525 0.2174 0.2222 0.2174 

2.5 0.9965 0.9963 0.9965 0.9999 0.9963 0.9999 0.2717 0.2778 0.2717 

3.0 1.3971 1.3968 1.3971 1.4019 1.3968 1.4019 0.3261 0.3333 0.3261 

3.5 1.8442 1.8377 1.8381 1.8442 1.8377 1.8381 0.3804 0.3889 0.3804 

4.0 2.3065 2.3057 2.3063 2.3140 2.3057 2.3137 0.4348 0.4444 0.4348 

4.5 2.7902 2.7901 2.7930 2.7989 2.7901 2.8002 0.4891 0.5000 0.4891 

5.0 3.2422 3.2833 3.3284 3.2506 3.2833 3.3348 0.5435 0.5435 0.5435 

5.5 3.2049 3.7806 4.4050 3.1968 3.7806 3.4011 0.5978 0.5556 0.5978 
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Then Equation (4.1) is substituting into Equation (1.3);  
For inner case: With the boundary conditions (1.5), it 

gives  
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with the definition 
 

!

! !
r
k

k k
C

r k r r

 
    

. 

c = 0.332 [1],  
c = 0.332057 [21], 
c = 0.333338 (this paper). 
For outer case: Under the boundary conditions (1.7), it 

gives 
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5. Conclusion 

In this study, some of the semi analytical methods were 
applied by author in the non-linear Blasius problem 
which names are Adomian decomposition method, dif-

ferential transform method, and Taylor series method. It 
was obtained their results for two cases by using these 
methods. Their results were presented in the Table 1. 
The results are shown that all of these methods are pow-
erful and efficient technique for finding semi analytical 
solutions for Blasius problem in the fluid mechanics. 
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