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ABSTRACT

In this paper, the Adomian methods, differential transform methods, and Taylor series methods are applied to non-linear
differential equations which is called Blasius problem in fluid mechanics. The solutions of the Blasius problem for two
cases are obtained by using these methods and their results are shown in table.
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1. Introduction

On the fluid mechanics of non-parallel flows are called
Blasius flows which is an important problem is interested
in recently by authors [1-10]. In addition, this non-linear
third order ordinary differential equation on a half-infi-
nite interval is solved by using perturbation method [11],
transformation of independent variable and finite differ-
ence method [12], homotopy analysis method [13-16],
Adomian’s method [16-18], differential transform method
[19,20].

In generally, it is considered the two-dimensional flow
over a semi-infinite flat plain, is governed by

£ (n)+at (1) £ (n)+ B[ 1-(1' () |0,

(1.1)
1 €[0,0)
with the boundary conditions
f (0) = O(Which means solid Wall)
f'(0) = O(Which means no slip at the wall) (1.2)

f’(o0)=1(which means layer solutions merges

into the inviscid solution)

where the prime denotes the derivatives with respect to a

non-dimensional variable 7, =Yy /i and
VX

tn) -2

JvUx

to the stream function  (X,y), where U is the velocity

at infinity; v is the kinematic viscosity coefficient; X and
y are the two independent coordinates.

In this work, when « =1/2 and B =0, in Equation

(1.1), we obtain the following equation which is called

is a non-dimensional function related
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Blasius (1908) equation [1]:

f"’(ﬂ)% f(n)f"(n)=0, nef0,0) (13)

with the boundary conditions as
f(0)=f'(0)=0 (adhesion condition)

() <1 (1.4)
The physical character of boundary layer apparently
needs close and far away solution to match as was done
by Blasius. So, to obtain the solution of this problem, we
consider the boundary conditions as:
For inner case 77 <5.5 (77, =0); boundary conditions
are;

f(0)=f'(0)=0
f"(0)=c, (c isa constant)

(1.5)

For inner-outer case 4 <7 <5.5 (770 = m); boundary
conditions are;

finner (770) = fouter (770
filgner (770) = fo:,lter (770) (16)
fi:ner (770) = fouter (770

For outer case 5.5<7<8 (1, =m); boundary con-
ditions are;
f(m)=a, f'(m)=1
f”(m)=b, (a,b are constants)

(1.7)

The paper is organized as follows: Blasius problem is
solved by using ADM in &2; by using DTM in &3 and
also, by using Taylor Series Method in &4, then it is
given some concluding remarks in &S5.
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2. Solution of Blasius Problem by Adomian’s
Decomposition Method (ADM)

For solving the following equation of the form
u=f+Nu (2.1)

where N:X — X is non-linear mapping, X is Banach
space, f is known function, by using Adomian’s decom-
position method is taken that the solution u can be fol-
lowing convergent series form:

u=>u, (2.2)

n=0

with u, € X for all n. A, is a polynomial depending on uy,
Ui, -, Up, Ay € X for all n, are obtained from the equality;

NU:N{ZUJZZ'% (2.3)

In putting the Equations (2.2) and (2.3) into the Equa-
tion (2.1), it gives

Su,=Ff+> A (2.4)
where 7 7

u, = f

u = A (Up)

u, = A (UOsul) 2.5

Uy = Ah (uoaula”"un)

to determine the so-called Adomian’s polynomials A,
from u,, where 7 is a scalar parameter

a(n)= L', @)
n=0
and
Nu(n)=>n"A, 2.7
n=0
then
Azid—n[Nu( )] n=0,1,2,--- (2.8)
n'dn" A e :
Thus,
A =[Nu(n)]
1 d
A i Nu(n)] _, = DNu (7). = DN (u, )y,
1 d 1, )
A, T [Nu(ry)]”_o = (DN )u,u, +5;D°N (u)u;
2.9)
where D“N(u,) shows the k™ Fréchet derivative of N
at U, e X.

To demonstrate Adomian’s solution of the Blasius
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3

problem, the differential operator N():%() and
n

the inverse operator N™'(.)= f I J.(.)dr]3 are treated.
Operating with N™' on Equation (1.3), then it gives:

3 3
Nl{d E}: N~ {—lfd—z} (2.10)
dn 2 dp
an = f0+ fn+1
n=0
where
df 1 ,d*f
fo=f — —n’
o= F+n g )+ ()
. £ (2.11)
f =N'|-—=f =N"'

For inner case: f, determined from the boundary con-
ditions (1.5) and than the other components determined
from Equation (2.11) as follows [16-18]:

1
fy(n)=c

!
f - _ 2— 5
()= 557
11
fz(ﬂ)=C3ﬁﬂ8
4375 4
B0 =-¢"¢1

Z fn = clnz _CZLﬂS +C3£778

= 2 2.5 4.8!
o 375 s 63861 12988937
8.11! 8.14! 32.17!
, o7 2808008815 ;111004027896 .
64.20! 128.23!

2.12)

For outer case: Similarly, f, determined from Equations
(1.7) and than f; determined from Equation (2.11), so on:

f, (n):a—m+%bm2 +gn2 —bmn +7

(bzm —2b) \

|
f(n)=—5 5o+

2,2 2.3
ba—bm+brn bam—2bm2+bm
2 ), 3,

+
23! g 221

bam* bm®* b*m*) bam’® bm* b*m’
- - + + - +
4 3.4 2.4! 2.3 23! 4!

(2.13)
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3. Solution of Blasius Problem by
Differential Transform Method (DTM)

In this study, similarly [19], it is applied DTM for the
Equation (1.3):

F(k+3)

> (k-ms1)(k-m+2)F(m)F (k-m+2) (D)

0

2(k+1)(k+2)(k+3)

where F (k) shows the differential transform of f (7).
For inner case: (1.5) boundary conditions (BCs) are
transformed

F(0)=F(1)=0andlet F(2)=c (32)

where C is an arbitrary constant. Then, we get the fol-
lowing equation:

0 0 [4
—— —— ——

Faner = i F(k)n“ =F(0)+F(1)n+F(2)n* +--

=0
2 2 750
P e W S L PR
TS T T T
(ST o T
141 171
LITITI8230 5y 606167920206,
20! 231
310344559360578 5
+ C ’7 —_—

26!

3.3)

For outer case: (1.7) boundary conditions (BCs) are
transformed
F(0)=a, F(I)=1andF(2)=b (3.4)

where a and b are any arbitrary constants. Then, we ob-
tain the following equation:
I b

N K — —
fouer = 2, F(7 = FO) +FO)7+FQ2) 7"+
k=0
ab 1
=a+n+by’ ——n’ +—Db(a’ -2)y*
nby’ ==+ ob(al =2)n
1
-——b(a’-6a+8b);’
480 ( )77

JrLb(a4 128’ +40ab +12)n°

5760

—-—1——b(a5—20a3+128a2b+60a—176b)n7
80640

+-——1———b(a6—30a4+336a3b+180a2
1290240

+740b” ~1344ab—120)"

“—J——wd—@£+wm%+@m3
23224320

—6144a’h +7488ab’ —840a+4128b) 7’ +---

3.5)

For inner-outer case: From (1.6) boundary conditions,
4 < 77 < 5 taking the interval of 7, is found a, b, and ¢
constants, is obtained similar result as in [19].

4. Solution of Blasius Problem by Taylor
Series (TS)

Taylor’s series method is used for solving Blasius prob-
lem. This method assumes that the solution f(?]) and
derivative of f(77) can be taken power series as

Table 1. Solutions of Blasius problem.

INNER INNER-OUTER OUTER (f1)

§ Taylor ADM DTM Taylor ADM DTM Taylor ADM DTM
0.0 0 0 0 0 0 0 0 0 0

0.5 0.0415 0.0415 0.0415 0.0417 0.0415 0.0417 0.0543 0.0556 0.0543
1.0 0.1656 0.1656 0.1656 0.1662 0.1656 0.1662 0.1087 0.1111 0.1087
1.5 0.3702 0.3701 0.3702 0.3715 0.3701 0.3715 0.1630 0.1667 0.1630
2.0 0.6502 0.6500 0.6501 0.6525 0.6500 0.6525 0.2174 0.2222 0.2174
2.5 0.9965 0.9963 0.9965 0.9999 0.9963 0.9999 0.2717 0.2778 0.2717
3.0 1.3971 1.3968 1.3971 1.4019 1.3968 1.4019 0.3261 0.3333 0.3261
3.5 1.8442 1.8377 1.8381 1.8442 1.8377 1.8381 0.3804 0.3889 0.3804
4.0 2.3065 2.3057 2.3063 2.3140 2.3057 2.3137 0.4348 0.4444 0.4348
4.5 2.7902 2.7901 2.7930 2.7989 2.7901 2.8002 0.4891 0.5000 0.4891
5.0 3.2422 3.2833 3.3284 3.2506 3.2833 3.3348 0.5435 0.5435 0.5435
5.5 3.2049 3.7806 4.4050 3.1968 3.7806 3.4011 0.5978 0.5556 0.5978
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- T ¢
f(ﬂ)—%li?on:o n! f
k n-1
N1 n (m)
f 1
(77) kl—l;?o;(n_l)l
g 4.1)
f"(n7) = li (")
('7) kTolonZ_z(n_z)v
Kk n-3
fm :1~ 77 f(n)
(n) kﬂé(n—3)!

Then Equation (4.1) is substituting into Equation (1.3);
For inner case: With the boundary conditions (1.5), it
gives

_ < _l ! A]CHH 3n+2
”’”‘%{ 2) (3n+2)!'7 (4.2)
where
1, n=0,1
A = Efgr_ljpﬁ\qm 1o 4.3)

with the definition C; = [k] ok :
r) (k—r)tr!
c=0.332[1],
¢ =10.332057 [21],
¢ = 0.333338 (this paper).
For outer case: Under the boundary conditions (1.7), it
gives

f"(m)=—ab/2
£ (m)=(a’o-2b)/2?
f*(m)=—(a’b-6ab+4b)/2’

£ (m)=(a*b—12a’b+4ab+12b+16ab*) /2*
£ (m)=—(a’b-20a’h+4a’b+60ab
+60a’h” —32b—56b°) /25 (4.4)
£ (m)=(a’b—30a‘b+4a’h+180a’b+180a’h’
~72ab—696ab’ ~120b+240b° ) /2°
£ (m)=—(a’b-42a’0+4a’b+420a’0 + 692a'b’
~120a%h —4392a%h> — 720ab + 1328ab>
+1152b+1632b* +1024ab’ )/27

5. Conclusion

In this study, some of the semi analytical methods were
applied by author in the non-linear Blasius problem
which names are Adomian decomposition method, dif-

Copyright © 2012 SciRes.

ferential transform method, and Taylor series method. It
was obtained their results for two cases by using these
methods. Their results were presented in the Table 1.
The results are shown that all of these methods are pow-
erful and efficient technique for finding semi analytical
solutions for Blasius problem in the fluid mechanics.
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