

An Application of Eulerian Graph to PI on $M_n(C)$

Songfa You, Hongyan Zhao, Yijun Feng, Ming Cao

School of Mathematics and Computer Science, Hubei University, Wuhan, China Email: yousongfa@163.com

Received April 25, 2012; revised May 31, 2012; accepted June 6, 2012

ABSTRACT

We obtain a new class of polynomial identities on the ring of $n \times n$ matrices over any commutative ring with 1 by using the Swan's graph theoretic method [1] in the proof of Amitsur-Levitzki theorem. Let Γ be an Eulerian graph with k vertices and d edges. Further let $n \ge 1$ be an integer and assume that $d \ge 2kn$. We proof that

 $\sum_{\pi \in \Pi(\Gamma)} \operatorname{sgn}(\pi) x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(d)} = 0 \text{ is an PI on } M_n(C). \text{ Standard and Chang [2] Giambruno-Sehgal [3] polynomial}$

identities are the special examples of our conclusions.

Keywords: Eulerian Graph; Eulerian Path; Admissible; Polynomial Identity

1. Introduction

Let Γ be a finite directed graph with multiple edges allowed, and let $V(\Gamma) = \{1, \dots, k\}$ denote the vertex set of Γ and $E(\Gamma) = \{e_1, \dots, e_d\}$ the edges set of Γ . Let σ and τ be the functions from $E(\Gamma)$ to $V(\Gamma)$ defined by $(\sigma(e_s), \tau(e_s)) = (i, j)$ where e_s is an edge from vertex *i* to vertex *j*. For a vertex $i \in V(\Gamma)$ we put

$$\phi_{+}(i) = \left| \left\{ e_{s} \left| \sigma(e_{s}) = i \right\} \right|, \phi_{-}(i) = \left| \left\{ e_{s} \left| \tau(e_{s}) = i \right\} \right| \right\}$$

and

$$\gamma(i) = \max\left\{\phi_{+}(i), \phi_{-}(i)\right\}$$

We say that $e_{\pi(1)}e_{\pi(2)}\cdots e_{\pi(N)}$ is an Eulerian path of Γ if π is an element of Sym(*d*) (the symmetric group acting on the set $\{1, \dots, d\}$ and $\tau(e_{\pi(i)}) = \sigma(e_{\pi(i+1)})$ for $i = 1, \dots, d-1$.

It is well known that a connected graph Γ has an Eulerin path starting at vertex p and ending at vertex q if and only if one of the following two conditions applies:

1) p = q and $\phi_+(i) = \phi_-(i)$ for each $i = 1, \dots, k$;

2)
$$p \neq q$$
 and $\phi_+(p) = \phi_-(q) + 1$, $\phi_-(q) = \phi_+(q) + 1$
and $\phi_+(i) = \phi_-(i)$ for each $i \in \{1, \dots, k\} \setminus \{p, q\}$.

A directed connected graph $\Gamma_{p,q}$ with fixed vertices p and q is called Eulerian if either condition 1) or 2) is satisfied. We note that if $\Gamma_{p,q}$ is an Eulerian graph of type (*b*), then the vertices p, q are uniquely determined, but in the other case we may choose any vertex p = q. For an Eulerian graph $\Gamma_{p,q}$ denote by

 $\Pi(\Gamma_{p,q}) = \left\{ \pi \in Sym(d) \middle| e_{\pi(1)} \cdots e_{\pi(d)} \text{ is an Eulerian path of} \right\}$

 $\Gamma_{p,q}$ starting at vertex p and ending at vertex q.

2. Main Results

Let Γ be an Eulerian graph with *d* edges e_1, e_2, \dots, e_d and distinguished points *p* and *q*. the polynomial $f_{\Gamma}(X)$ associated with Γ is defined as follows:

$$f_{\Gamma}(X) = \sum_{\pi \in \Pi(\Gamma)} \operatorname{sgn}(\pi) x_{\pi(1)} x_{\pi(2)} \cdots x_{\pi(d)}$$

Thus $f_{\Gamma}(X)$ is a multilinear polynomial in the set $X = \{x_1, \dots, x_d\}$ of non-commuting indeterminates.

Let $n \ge 1$ be an integer, *C* a commutative ring with 1 and $T: X \to \{E_{uv} | 1 \le u, v \le n\}$ a set map where the E_{uv} 's are the standard matrix units over *C*. It is clear that *T* can be viewed as a substitution. we shall define a directed graph $\overline{\Gamma}_T$ induced from Γ by *T*. First consider the directed graph on the vertex set $V \times \{1, 2, \dots, n\}$ with edge set $\overline{e_1}, \dots, \overline{e_d}$ where $\sigma(\overline{e_r}) = (\sigma(e_r), u)$,

edge set $\overline{e_1}, \dots, \overline{e_d}$ where $\sigma(\overline{e_r}) = (\sigma(e_r), u)$, $\tau(\overline{e_r}) = (\tau(e_r), v)$ and $x_r^T = E_{uv}$. Now we define $\overline{\Gamma}_s$ by restricting the vertex set to $\bigcup_{r=1}^d \{\sigma(\overline{e_r}), \tau(\overline{e_r})\}$. We note that the graph so obtained need by no means be connected let alone Eulerian. If it is Eulerian however, by construction $\overline{\Gamma}_T$ has at most $\sum_{i=1}^k \min\{n, \gamma(i)\}$ vertices, where $\gamma(i) = \max\{\phi_+(i), \phi_-(i)\}, i.e.,$

$$\gamma(i) = \phi_+(i) = \phi_-(i)$$
 for all $i \in V \setminus \{p, q\}$ and

 $\gamma(p) = \phi_+(p), \ \gamma(q) = \phi_-(q)$. Those elements of $\Pi(\Gamma)$ which do lift to an Eulerian path of $\overline{\Gamma}_T$ will be called admissible (with respect to *T*). It is clear that $\pi \in \Pi(\Gamma)$ is admissible if and only if $\overline{e}_{\pi(1)} \cdots \overline{e}_{\pi(d)}$ is an Eulerian path of $\overline{\Gamma}_T$. For the remainder of this section, we introduce Swan's theorem and our main results.

Swan [1]. Let Γ be an Eulerian graph with *d* edges and *k* vertices satisfying $d \ge 2k$. Then $\Pi(\Gamma)$ has the same number of odd and even permutations (with respect to the fixed order)

Theorem 1. Let Γ be an Eulerian graph with vertex set $V = \{1, 2, \dots, k\}$ and *d* edges. Further let $n \ge 1$ be an integer such that

$$d \ge 2\left(\sum_{i=1}^{i} \min\left\{n, \gamma(i)\right\}\right).$$

Then $f_{\Gamma}(X) = 0$ is a polynomial identity on the ring $M_n(C)$ of $n \times n$ matrices over a commutative ring C with 1

Corollary 2. Let Γ be an Eulerian graph with k vertices and d edges. Further let $n \ge 1$ be an integer and assume that $d \ge 2kn$. Then $f_{\Gamma}(X) = 0$ is a polynomial identity on $M_n(C)$.

3. Proof of Theorem 1

Since $f_{\Gamma}(X)$ is multilinear, it suffices to show that $f_{\Gamma}(X^{T}) = 0$ for any substitution *T* of $n \times n$ matrix units over *C*. Fix such an *T* and put $x_{r}^{T} = E_{u(r)v(r)}$, $1 \le r \le d$. Then

$$f_{\Gamma}\left(X^{T}\right) = \sum_{\pi \in \Pi(\Gamma)} \operatorname{sgn}\left(\pi\right) E_{u(\pi(1))v(\pi(1))} \cdots E_{u(\pi(d))v(\pi(d))} \quad (*)$$

Now consider $\overline{\Gamma}_T$. Clearly, and summand in (*) vanishes unless, for the given $\pi \in \Pi(\Gamma)$,

$$v(\pi(r)) = u(\pi(r+1))$$

for all $1 \le r \le N-1$, *i.e.*, if π is admissible. If so, on multiplying the matrix units, we obtain

$$\operatorname{sgn}(\pi) E_{u(\pi(1))v(\pi(d))}$$
.

It follows that

$$f_{\Gamma}\left(X^{T}\right) = \sum_{u,v} \left(\sum \operatorname{sgn}\left(\pi\right)\right) E_{uv} ,$$

where the inner sum is taken over all admissible permutations with $u(\pi(1)) = u$ and $v(\pi(d)) = v$. If no such admissible π exists, the inner sum is 0 by definition. We want to prove that this inner sum is 0 anyway. It is readily seen that for any choice of u and b, a sum and $\operatorname{sgn}(\pi)$ in the inner sum arises precisely of π lifts to an Eulerian path of $\overline{\Gamma}_T$ from (p, (u) to (q, v). Thus, on applying Swan's theorem to $\overline{\Gamma}_T$ with $|E(\overline{\Gamma}_T)| = d$ and

 $\left|V\left(\overline{\Gamma}_{T}\right)\right| \leq \sum_{i=1}^{k} \min\left\{n, \gamma\left(i\right)\right\}$, we find that the number of

even and odd admissible permutations π with

 $u(\pi(1)) = u$ and $v(\pi(d)) = v$ coincide whence the

inner sum is 0 for any choice of u and v. This completes the proof.

4. Applications

1) Let Γ be the Eulerian graph on one vertex with *d* loops. Then $\Pi(\Gamma) = \text{Sym}(d)$ and

$$f_{\Gamma}(X) = \sum_{\pi \in \operatorname{Sym}(d)} \operatorname{sgn}(\pi) x_{\pi(1)} \cdots x_{\pi(d)}$$

the standard polynomial [2] in d indeterminates.

More generally, let Γ be the Eulerian graph on k vertices with distinguished points p = q = 1 and the number $\alpha(i, j)$ of edges from vertex i to j:

$$\alpha(i, j) = \begin{cases} m & \text{if } j = i+1 \text{ and } 1 \le i \le k-1 \\ m & \text{if } i = k \text{ and } j = 1 \\ 0 & \text{otherwise} \end{cases}$$

Now clearly d = km and

$$\Pi(\Gamma) = \operatorname{sym}(m) \times \cdots \times \operatorname{sym}(m),$$

k times. On putting $\pi = \pi_1 \times \cdots \times \pi_k$ and labelling the indeterminates, corresponding to the edges from *i* to i+1 by $x_1^{(i)}, \dots, x_m^{(i)}$, from the corollary 2 it follows that

$$f_{\Gamma}(X) = \sum_{\pi \in \Pi(\Gamma)} \operatorname{sgn}(\pi) \left(\prod_{r=1}^{m} x_{\pi_{1}(r)}^{(1)} \cdots x_{\pi_{k}(r)}^{(k)} \right) = 0$$

is a polynomial identity on $M_n(C)$ [3] if $km = d \ge 2kn$, *i.e.*, if $m \ge 2n$.

2) For $\pi \in \Pi(\Gamma)$ we define a sequence $g(1), g(2), \dots, g(d+1)$ of staircase steps, and the staircase height $g(\pi) = \max \{g(1), g(2), \dots, g(d+1)\}$. We will construct a substitution *T*, such that π lifts to the unique convering directed path of $\overline{\Gamma}_s$ (*i.e.*, $\Pi(\overline{\Gamma}_s) = \{\pi\}$). First define a function $\pi^* : \{1, 2, \dots, d, d+1\} \to A$ by

$$\pi^* \left(1 \right) = \sigma \left(e_{\pi(1)} \right); \quad \pi^* \left(r \right) = \sigma \left(e_{\pi(r)} \right) = \tau \left(e_{\pi(r-1)} \right),$$
$$2 \le r \le d \ , \quad \pi^* \left(d+1 \right) = \tau \left(e_{\pi(d)} \right).$$

Next we define by recursion the sequence of pair $(g(r), w_r)$, $1 \le r \le d+1$, where g(r) is a natural number and w_r is a subset of $\{1, 2, \dots, d, d+1\}$. We put g(1) = 1 and $w_1 = \phi$. Having $(g(1), w_1), \dots, (g(r), w_r)$ in hand $(1 \le r \le d)$. There are three cases to consider:

a) $\pi^*(r+1) \neq \pi^*(t), \forall 1 \le t \le r$,

b) $\pi^*(r+1) = \pi^*(t), \pi^*(r+1) \neq \pi^*(s), \forall t+1 \le s \le r, t \in w_r,$ c) $\pi^*(r+1) = \pi^*(t), \pi^*(r+1) \neq \pi^*(s), \forall t+1 \le s \le r,$

c) π $(r+1) = \pi$ $(t), \pi$ $(r+1) \neq \pi$ $(s), \forall t+1 \le s \le r, t \notin w_r$.

We now put

$$g(r+1) = \begin{cases} 1 & \text{in case (1)} \\ g(t)+1 & \text{in case (2)} \\ g(t) & \text{in case (3),} \end{cases}$$

and

$$w_{r+1} = \begin{cases} w_r & \text{in case (1) and (2)} \\ w_r \cup \{t, t+1, \cdots, r, r+1\} & \text{in case (3).} \end{cases}$$

Let $n \ge g(r)$ for all $1 \le r \le d+1$, it is clear that $x_r^T = E_{g(r)g(r+1)}(1 \le r \le d)$ gives a substitution of $n \times n$ matrix units over C. Now

$$\begin{pmatrix} \pi^*(1), g(1) \end{pmatrix} \xrightarrow{\overline{e_{\pi(1)}}} \begin{pmatrix} \pi^*(2), g(2) \end{pmatrix} \rightarrow \cdots \rightarrow \\ \begin{pmatrix} \pi^*(d), g(d) \end{pmatrix} \xrightarrow{\overline{e_{\pi(d)}}} \begin{pmatrix} \pi^*(d+1), g(d+1) \end{pmatrix}$$

is the unique covering directed path of $\overline{\Gamma}_{s}$ from $(\pi^{*}(1), g(1))$ to $(\pi^{*}(d+1), g(d+1))$ [4-7]. Since the (g(1), g(d+1)) entry of the $n \times n$ matrix $f_{\Gamma}(X^{T})$ is $\operatorname{sgn}(\pi)$, we have

Theorem 3. Let Γ be an Eulerian graph and $\pi \in \Pi(\Gamma)$. If $n \ge g(\pi)$, then $f_{\Gamma}(X) = 0$ is not *a* polynomial identity on the ring $M_n(C)$ of $n \times n$ matrices over *a* commutative ring *C* with 1.

Remark. It is an obvious consequence of the above theorem that if $n \ge \min\{g(\pi) | \pi \in \Pi(\Gamma)\}$ is not the least integer $n \ge 1$ for which $f_{\Gamma}(X) = 0$ is not *a* polynomial identity on $M_n(C)$.

We note that, in general min $\{g(\pi) | \pi \in \Pi(\Gamma)\}$ is not the least integer $n \ge 1$ for which $f_{\Gamma}(X) = 0$ is not *a* polynomial identity on $M_n(C)$.

Let Γ be the Eulerian graph on one vertex *d* loops. It is easily see that

$$g(1) = g(2) = 1, g(3) = g(4) = 2, \dots,$$

 $g(2s+1) = g(2s+2) = s+1, \dots.$

Thus $g(\pi) = [d/2]+1$ for all $\pi \in sym(d)$ and the minimality assertion of the Amitsur-Levitzki theorem follows; the main part is an immediate consequence of the corollary.

Let Γ be the Eulerian graph on k vertices with distinguished points p = q = 1 and the number $\alpha(i, j)$ of edges from vertex i to j:

$$\alpha(i, j) = \begin{cases} m & \text{if } j = i+1 \text{ and } 1 \le i \le k-1 \\ m & \text{if } i = k \text{ and } j = 1 \\ 0 & \text{otherwise} \end{cases}$$

Analogously, for any $\pi \in \Pi(\Gamma)$ we have

$$g(1) = g(2) = \dots = g(k+1) = 1,$$

$$g(k+2) = g(k+3) = \dots = g(2k+2) = 2,$$

$$\dots g(s(k+1)+1) = g(s(k+1)+2) =$$

$$\dots = g((s+1)(k+1)) = s+1.$$

In consequence $g(\pi) = m - [(m-1)/(k+1)]$ for all $\pi \in \Pi(\Gamma)$.

For k = 2 we get the double Capelli polynomial; it is known, however, that in this case $m - \lfloor (m-1)/3 \rfloor$ is not the smallest *n* for which $f_{\Gamma}(X) = 0$ is not *a* polynomial identity on $M_n(C)$.

When $k = 3^{n}$ we use x, y and z instead of the symbols $x^{(1)}$, $x^{(2)}$, and $x^{(3)}$ respectively to denote the indeterminates of the triple Capelli polynomial and continue to write m for the number of edges from vertex i to i + 1. Thus the triple Capelli polynomial is

$$C_{M}(X,Y,Z) = \sum_{\pi \in \Pi(\Gamma)} \operatorname{sgn}(\pi) x_{\pi_{1}(1)} y_{\pi_{2}(1)} z_{\pi_{3}(1)} \cdots x_{\pi_{1}(m)} y_{\pi_{2}(m)} z_{\pi_{3}(m)}.$$

REFERENCES

- R. G. Swan, "An Application of Graph Theory to Algebra," *Proceedings of the American Mathematical Society*, Vol. 14, 1963, pp. 367-373.
- Q. Chang, "Some Consequences of the Standard Polynomial," *Proceedings of the American Mathematical Society*, Vol. 104, 1988, pp. 707-710. doi:10.1090/S0002-9939-1988-0964846-8
- [3] A. Giambruno and S. K. Sehgal, "On a Polynomial Identity for *n×n* Matrices," *Journal of Algebra*, Vol. 126, No. 2, 1989, pp. 451-453. <u>doi:10.1016/0021-8693(89)90312-8</u>
- [4] S. F. You, Y. M. Zheng and D. G. Hu, "Eulerian Graph and Polynomial Identities on Matrix Rings," *Advances in Math*, Vol. 32, 2003, pp. 425-428.
- [5] S. F. You, "The Primitivity of Extended Centroid Extension on Prime GPI-Rings," *Advances in Math*, Vol. 29, 2000, pp. 331-336.
- [6] S. F. You, "The Essential (One-Sided) Ideal of Semiprime PI-Rings," *Acta Mathematica Sinica*, Vol. 44, 2001, pp. 747-752.
- [7] S. F. You, M. Cao and Y. J. Feng, "Semiautomata and Near Rings," *Quantitative Logic and Soft Computing*, Vol. 5, 2012, pp. 428-431. doi:10.1142/9789814401531_0058