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ABSTRACT

We obtain a new class of polynomial identities on the ring of n x n matrices over any commutative ring with 1 by using
the Swan’s graph theoretic method [1] in the proof of Amitsur-Levitzki theorem. Let T' be an Eulerian graph with k
vertices and d edges. Further let n>1 be an integer and assume that d > 2kn . We proof that

> sgn(n) Xe()Xe(2) " Xo(a) =0 is an PI on M, (C). Standard and Chang [2] Giambruno-Sehgal [3] polynomial

nel'[(l")

identities are the special examples of our conclusions.
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1. Introduction

Let ' be a finite directed graph with multiple edges
allowed, and let V (') ={1,---,k} denote the vertex set of
I' and E(T)={e,---,e,} the edges setof I'.Let o
and 7 be the functions from E(T) to V(I') defined
by (G(es),f(es)) =(i,j) where e is an edge from ver-
tex i to vertex j. For a vertex i€V (I') we put

¢+(i)=‘{es a(es):i}‘,qz(i):‘{es T(es)=i}‘

and
y(i)=max{g,(i).4 (i)}

We say that e e, €,y is an Eulerian path of
I' if = is an element of Sym(d) (the symmetric group

acting on the set {1,---,d} and r(en(i)):o(en(m)) for

i=1,---,d-1.

It is well known that a connected graph I' has an
Eulerin path starting at vertex p and ending at vertex q if
and only if one of the following two conditions applies:

1) p=q and ¢ (i)=¢ (i) foreach i=1--,k;

2) p=q and ¢, (p)=¢ (a)+1, 4.(q)=4¢,(q)+1
and ¢, (i)=¢ (i) foreach ie{l,---,k}\{p,q}.

A directed connected graph I', . with fixed vertices
p and q is called Eulerian if either condition 1) or 2) is
satisfied. We note that if I'j, is an Eulerian graph of
type (b), then the vertices p, q are uniquely determined,

but in the other case we may choose any vertex p=(.
For an Eulerian graph I' , denote by
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H(Fp,q):{n € Sym(d)

I, , starting at vertex p and ending at vertex q}.

€1 Caa) is an Eulerian path of

2. Main Results

Let T' be an Eulerian graph with d edges e, e,, -, €,
and distinguished points p and g. the polynomial f (X))
associated with T" is defined as follows:
fr(X)= 2 sen(n) X Xa(2) """ Xa(a)
nell(T)

Thus f.(X) is a multilinear polynomial in the set
X ={X,---,Xy} of non-commuting indeterminates.

Let n>1 be an integer, C a commutative ring with 1
and T:X —>{Euv|1£u,V£ n} a set map where the
E,, ’s are the standard matrix units over C. It is clear that
T can be viewed as a substitution. we shall define a di-
rected graph T, induced from T by T. First consider
the directed graph on the vertex set V x {1, 2, n} with
edgeset §,--,& where o (e )=(c(e,).u),
(& )=(z(e).v) and X =E,, . Now we define I
by restricting the vertex set to Uj_, {o(§).z (&)} . We
note that the graph so obtained need by no means be
connected let alone Eulerian. If it is Eulerian however, by
construction T, has at most I, min {n,y(i)} ver-
tices, where (i)= max{¢+ (i).¢_(i)}. ie.,
7(i)=¢,(i)=¢_(i) forall ieV\{p,q} and
7(P)=¢.(p), 7(a)=¢_(q). Those elements of TI(T")
which do lift to an Eulerian path of I'; will be called
admissible (with respect to T). It is clear that 7 e H(F )
is admissible if and only if &, &, is an Eulerian
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path of T, . For the remainder of this section, we intro-
duce Swan’s theorem and our main results.

Swan [1]. Let T" be an Eulerian graph with d edges
and k vertices satisfying d >2k . Then IT(T ) has the
same number of odd and even permutations (with respect
to the fixed order)

Theorem 1. Let ' be an Eulerian graph with vertex
set V = {1,2, -,k} and d edges. Further let n>1 be
an integer such that

d> Z[Zmin{n,y(i)}j .
i1
Then f.(X)=0 isa polynomial identity on the ring
M,(C) of nxn matrices over a commutative ring C
with 1
Corollary 2. Let T' be an Eulerian graph with k ver-
tices and d edges. Further let n>1 be an integer and

assume that d >2kn. Then f.(X)=0 is a polyno-
mial identity on M (C).

3. Proof of Theorem 1

Since f.(X) is multilinear, it suffices to show that
fr(XT):O for any substitution T of nxn matrix

units over C. Fix such an T and put X/ = Eupr) >
1<r<d. Then

fr(XT)I 2 Sgn(”)Eu(n(l))v(m))"'Eu(nw))v(n(d)) )

nel'[(l')

Now consider I:T . Clearly, and summand in (*) van-
ishes unless, for the given n e H(F) ,

v(x(r))=u(x(r+1)

for all 1<r<N-1, i.e, if nm is admissible. If so, on
multiplying the matrix units, we obtain

sgn(n) Eu(n(l))v(n(d)) :
It follows that

fo (X7) = X (Xsen(m)Enr
u\v
where the inner sum is taken over all admissible permu-
tations with u(n(l)) =u and V(n(d)) =v. If no such
admissible 7 exists, the inner sum is 0 by definition.
We want to prove that this inner sum is 0 anyway. It is
readily seen that for any choice of u and b, a sum and
sgn(n) in the inner sum arises precisely of m lifts to
an Eulerian path of I'; from (p, (U) to (g, V). Thus, on

applying Swan’s theorem to T, with |E (l_"T )| =d and
|V (l:T )| Szk:min{n,}/(i)}, we find that the number of
i=1

even and odd admissible permutations @ with
u (n(l)) =u and v(n(d )) =V coincide whence the
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inner sum is 0 for any choice of u and v. This completes
the proof.

4. Applications
1) Let T be the Eulerian graph on one vertex with d
loops. Then IT(I')=Sym(d) and

f(X)= X Sgn(n)xn(l) " Xaa)

neSym(d)

the standard polynomial [2] in d indeterminates.

More generally, let T" be the Eulerian graph on k ver-
tices with distinguished points p=0g=1 and the num-
ber (i, j) of edges from vertex i to j:

m if j=i+land1<i<k-1
a(i,j)=<m ifi=kand j=1
0 otherwise

Now clearly d =km and
II(C) = sym(m)x---

k times. On putting m=m, x---xm, and labelling the
indeterminates, corresponding to the edges from i to

xsym(m),

i1 by X0l

ama

from the corollary 2 it follows that

)

is a polynomial identity on M, (C) [3]if km=d > 2kn,
ie,if m>2n.

2) For meTI(T") we define a sequence g(1),9(2),--,
g (d +1) of staircase steps, and the staircase height
g(m)=max{g(1),9(2),-,9(d +1)}. We will construct
a substitution T, such that m lifts to the unique conver-
ing directed path of Ty (i.e., H(l:s)z{n} ). First de-
2,-,d,d+1} > A by

h(X)= 3 sen() [T -

nell(T)

fine a function =" : {1,

Next we define by recursion the sequence of pair
(g(r) w ) , 1<r<d+1, where g(r) is a natural

> Wy
number and W, is a subset of {l,2,---,d,d + 1} . We put

g(1)=1 and w, =¢. Having (g(1),w,),--,(g(r),w,)

inhand (1<r<d). There are three cases to consider:

a) n*(r+1)¢n (t),vi<t<r,

b) n'(r+1)=n"(t), " (r+1)=a"(s), Vt+1<s<r,
tew,,

¢) n(r+l)=n"(t),n"(r+1)=x"(s), Vt+l<s<r,

tew,.
We now put
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1 in case (1)

g(r+1)=4g(t)+1 incase(2)
g (t) in case (3),
and
in case (1) and (2)

WI'
W =
o w U{t L

Let n>g(r) for all 1<r<d+1, it is clear that
X = Eqgran (IS7<d) gives a substitution of nxn
matrix units over C. Now

(2 (1).9(1))—2(x" (2).9(2)) > >
(n°(d).g(d))—2>(x" (d +1).g(d +1))
is the unique covering directed path of T’y from
(7" (1),9(1)) to (a"(d+1),g(d+1)) [4-7]. Since the
(g(1),g(d +1)) entry of the nxn matrix fr(XT) is
sgn(m), we have

Theorem 3. Let ' be an Eulerian graph and
nell(T). If n>g(n), then f.(X)=0 is nota poly-
nomial identity on the ring M, (C) of nxn matrices
over @ commutative ring C with 1.

Remark. It is an obvious consequence of the above

theorem that if n> min{g (n)| ne H(F)} is not the least

,r,r+1} in case (3).

integer n>1 for which f.(X)=0 is nota polynomial
identity on M (C)

We note that in general mm{g( )|n eII(T){ is not
the least integer n>1 for which f.(X)=0 1is not a
polynomial identity on M, (C).

Let T" be the Eulerian graph on one vertex d loops. It
is easily see that

9(1)=9(2)=1.9(3)=g(4)=2,
g(2s+1)=0(25+2)=s+1,--

Thus g(m)=[d/2]+1 for all mesym(d) and the
minimality assertion of the Amitsur-Levitzki theorem
follows; the main part is an immediate consequence of
the corollary.

Let ' be the Eulerian graph on k vertices with dis-
tinguished points p=q=1 and the number a(i, j) of
edges from vertex i to j:

m if j=i+land1<i<k-1
a(i,j)=<m ifi=kand j=1

0 otherwise
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Analogously, for any mell (F) we have

9(1)=9g(2)=--=g(k+1)=1,
g(k+2)=g(k+3)=--=g(2k+2)=2,
g( k+1)+1)=g(s(k+1)+2)=

=g((s+1)(k+1))=s+1.

In consequence ¢(m)=m-— [( 1)/(k +1)} for all
nell(T).

For k=2 we get the double Capelli polynomial; it is
known, however, that in this case m—|(m-1) / 3] is not
the smallest n for which f.(X)=0 isnota polynomial
identity on M (C).

When k=3 we use X, y and z instead of the symbols
X(l), X(z), and x° respectively to denote the indeter-
minates of the triple Capelli polynomial and continue to
write m for the number of edges from vertex i to i + 1.
Thus the triple Capelli polynomial is

Cu (X,Y,2)
= 2 s ()X, Yoy () Zey) " Xy ) Vs m) ()
neﬂ(r)
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