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ABSTRACT 

In this paper, we investigate empirically the relationship between object-oriented design metrics and testability of 
classes. We address testability from the point of view of unit testing effort. We collected data from three open source 
Java software systems for which JUnit test cases exist. To capture the testing effort of classes, we used metrics to quan- 
tify the corresponding JUnit test cases. Classes were classified, according to the required unit testing effort, in two 
categories: high and low. In order to evaluate the relationship between object-oriented design metrics and unit testing 
effort of classes, we used logistic regression methods. We used the univariate logistic regression analysis to evaluate the 
individual effect of each metric on the unit testing effort of classes. The multivariate logistic regression analysis was 
used to explore the combined effect of the metrics. The performance of the prediction models was evaluated using Re- 
ceiver Operating Characteristic analysis. The results indicate that: 1) complexity, size, cohesion and (to some extent) 
coupling were found significant predictors of the unit testing effort of classes and 2) multivariate regression models 
based on object-oriented design metrics are able to accurately predict the unit testing effort of classes. 
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1. Introduction 

Software testability is an important software quality at- 
tribute. IEEE [1] defines testability as the degree to 
which a system or component facilitates the establish- 
ment of test criteria and the performance of tests to de- 
termine whether those criteria have been met. ISO [2] 
defines testability (characteristic of maintainability) as 
attributes of software that bear on the effort needed to 
validate the software product.  

Software testability is, in fact, a complex notion. In- 
deed, software testability is not an intrinsic property of a 
software artifact and cannot be measured simply such as 
size, complexity or coupling. According to Baudry et al. 
[3,4], software testability is influenced by many factors 
including controllability, observability and the global test 
cost. Yeh et al. [5] argue also that diverse factors such as 
control flow, data flow, complexity and size contribute to 
testability. Zhao [6] states that testability is an elusive 
concept, and it is difficult to get a clear view on all the 
potential factors that can affect it. Dealing with software 
testability raises several questions such as [7,8]: Why is 
one class easier to test than another? What makes a class 
hard to test? What contributes to the testability of a class? 
How can we quantify this notion? In addition, according  

to Baudry et al. testability becomes crucial in the case of 
object-oriented (OO) software systems where control 
flows are generally not hierarchical, but diffuse and dis- 
tributed over whole architecture [3,4]. 

Software metrics can be useful in assessing software 
quality attributes and supporting various software engi- 
neering activities [9-12]. In particular, metrics can be 
used to assess (predict) software testability and better 
manage the testing effort. Having quantitative data on the 
testability of a software can, in fact, be used to guide the 
decision-making of software development managers 
seeking to produce high-quality software. Particularly, it 
can help software managers, developers and testers to [7, 
8]: plan and monitor testing activities, determine the 
critical parts of the code on which they have to focus to 
ensure software quality, and in some cases use this data 
to review the code. One effective way to deal with this 
important issue is to develop prediction models based on 
metrics that can be used to identify critical parts of soft- 
ware requiring a (relative) high testing effort. There is a 
real need is this area. 

A large number of OO metrics were proposed in lit-
erature [13]. Some of these metrics related to different 
OO software attributes (such as size, complexity, coupl- 
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ing, cohesion and inheritance) were already used in re-
cent years to assess (predict) testability of OO software 
systems [7,8,14-20]. Software testability has been add- 
ressed from different point of views. According to Gupta 
et al. [8], none of the OO metrics is alone sufficient to 
give an overall reflection of software testability. Soft- 
ware testability is, indeed, affected by many different 
factors as pointed out by several researchers [3-6,21,22]. 
Moreover, even if there is a common belief (and empi- 
rical evidence) that several of these metrics (attributes) 
have an impact on testability of classes, few empirical 
studies have been conducted to examine their combined 
effect (impact), particularly when taking into account 
different levels of testing effort. As far as we know, this 
issue has not been empirically investigated. 

The aim of this paper is to investigate empirically the 
relationship between OO design metrics, specifically, the 
Chidamber and Kemerer (CK) metrics suite [23,24] and 
testability of classes taking into account different levels 
of testing effort. We also include the well-known (size 
related) LOC (Lines of Code) metric as a “baseline”. The 
question we attempt to answer is how accurately do the 
OO metrics (separately and when used together) predict 
(high) testing effort. We addressed testability of classes 
from the perspective of unit testing effort. We performed 
an empirical analysis using data collected from three 
open source Java software systems for which JUnit test 
cases exist. To capture the testing effort of classes, we 
used the suite of test case metrics introduced by Bruntink 
et al. [7,17] to quantify the corresponding JUnit test 
cases. These metrics were used, in fact, to classify the 
classes (in terms of required testing effort) in two catego- 
ries: high and low.  

In order to evaluate the relationship between OO de- 
sign metrics and unit testing effort of classes, we used 
logistic regression methods. We used the univariate lo- 
gistic regression method to evaluate the individual effect 
of each metric on the unit testing effort of classes. The 
multivariate logistic regression method was used to in- 
vestigate the potential of the combined effect of the met- 
rics. The performance of the prediction models was 
evaluated using Receiver Operating Characteristic (ROC) 
analysis. In summary, the results indicate that complexity, 
size, cohesion and (to some extent) coupling were found 
significant predictors of the unit testing effort of classes. 
Moreover, the results show that multivariate regression 
models based on OO metrics are able to accurately pre- 
dict the unit testing effort of classes. In addition, we ex- 
plored the applicability of the prediction models by ex- 
amining to what extent a prediction model built using 
data from one system can be used to predict the testing 
effort of classes of another system. 

The rest of this paper is organized as follows: A brief 
summary of related work on software testability is given 

in Section 2. Section 3 introduces the OO design metrics 
investigated in the study. Section 4 presents the selected 
systems, describes the data collection, introduces the test 
case metrics we used to quantify the JUnit test cases and 
presents the empirical study we performed to investigate 
the relationship between OO design metrics and unit 
testing effort of classes. Finally, Section 5 concludes the 
paper and outlines directions for future work. 

2. Software Testability 

Software testability has been addressed in literature from 
different point of views. Fenton et al. [10] define soft- 
ware testability as an external attribute. Freedman intro- 
duces testability measures for software components based 
on two factors: observability and controllability [25]. 
Voas defines testability as the probability that a test case 
will fail if a program has a fault [26]. Voas and Miller 
[27] propose a testability metric based on inputs and 
outputs domains of a software component, and the PIE 
(Propagation, Infection and Execution) technique to ana- 
lyze software testability [28]. Binder [29] defines test- 
ability as the relative ease and expense of revealing soft- 
ware faults. He argues that software testability is based 
on six factors: representation, implementation, built-in 
text, test suite, test support environment and software 
process capability. Khoshgoftaar et al. investigate the 
relationship between static software product measures 
and testability [30,31]. Software testability is considered 
as a probability predicting whether tests will detect a 
fault. McGregor et al. [32] investigate testability of OO 
software systems and introduce the visibility component 
measure (VC). Bertolino et al. [33] investigate testability 
and its use in dependability assessment. They adopt a 
definition of testability as a conditional probability, dif- 
ferent from the one proposed by Voas et al. [26], and 
derive the probability of program correctness using a 
Bayesian inference procedure. Le Traon et al. [34-36] 
propose testability measures for data flow designs. Pe- 
trenko et al. [37] and Karoui et al. [38] address testability 
in the context of communication software. Sheppard et al. 
[22] focus on formal foundation of testability metrics. 
Jungmayr [39] investigates testability measurement based 
on static dependencies within OO systems. He takes an 
integration testing point of view.  

Gao et al. [40,41] consider testability from the per- 
spective of component-based software construction. The 
definition of component testability is based on five fac- 
tors: understandability, obervability, controllability, trace- 
ability and testing support capability. According to Gao 
et al. [41], software testability is related to testing effort 
reduction and software quality. Nguyen et al. [42] focus 
on testability analysis based on data flow designs in the 
context of embedded software. Baudry et al. [3,4,21] 
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address testability measurement (and improvement) of 
OO designs. They focus on design patterns as coherent 
subsets in the architecture. Chowdhary [43] focuses on 
why it is so difficult to practice testability in the real 
world. He discusses the impact of testability on design 
and lay down guidelines to ensure testability considera- 
tion during software development. Khan et al. [44] focus 
on testability of classes at the design level. They deve- 
loped a model to predict testability of classes from UML 
class diagrams. Kout et al. [45] adapted this model to the 
code level (Java programs) and evaluated it on two case 
studies. Briand et al. [46] propose an approach where 
instrumented contracts are used to increase testability. A 
case study showed that contract assertions detect a large 
percentage of failures depending on the level of precision 
of the contract definitions. 

Bruntink et al. [7,17] investigate factors of testability 
of OO software systems. Testability is investigated from 
the perspective of unit testing. Gupta et al. [8] use fuzzy 
techniques to combine some OO metrics values into a 
single overall value called testability index. The pro- 
posed approach has been evaluated on simple examples 
of Java classes. Singh et al. [18] used OO metrics and 
neural networks to predict testing effort. The testing ef- 
fort is measured in terms of lines of code added or 
changed during the life cycle of a defect. In [19], Singh 
et al. attempt to predict testability of Eclipse at the pack- 
age level. Badri et al. [14] performed a similar study to 
that conducted by Bruntink et al. [7] using two open 
source Java software systems in order to explore the rela- 
tionship between lack of cohesion metrics and testability 
of classes. In [15], Badri et al. investigated the capability 
of lack of cohesion metrics to predict testability using 
logistic regression methods. More recently, Badri et al. 
[16,47] investigate the effect of control flow of the unit 
testing effort of classes. 

3. Object-Oriented Design Metrics 

We present, in this section, the summary of the OO de- 
sign metrics we selected for the empirical study. These 
metrics have been selected for study because they have 
received considerable attention from researchers and are 
also being increasingly adopted by practitioners. Further- 
more, these metrics have been incorporated into several 
development tools. We selected in total seven metrics. 
Six of these metrics (CBO, LCOM, DIT, NOC, WMC 
and RFC) were proposed by Chidamber and Kemerer in 
[23,24]. We also include in our study the well-known 
LOC metric. We give in what follows a brief definition 
of each metric. 

Coupling between Objects: The CBO metric counts for 
a class the number of other classes to which it is cou- 
pled (and vice versa). 

Lack of Cohesion in Methods: The LCOM metric 
measures the dissimilarity of methods in a class. It is 
defined as follows: LCOM = |P| − |Q|, if |P| > |Q|, where 
P is the number of pairs of methods that do not share a 
common attribute and Q the number of pairs of methods 
sharing a common attribute. If the difference is negative, 
LCOM is set to 0. 

Depth of Inheritance Tree: The DIT metric of a class 
is given by the length of the (longest) inheritance path 
from the root of the inheritance hierarchy to the class on 
which it is measured (number of ancestor classes). 

Number of Children: The NOC metric measures the 
number of immediate subclasses of the class in a hierar- 
chy. 

Weighted Methods per Class: The WMC metric gives 
the sum of complexities of the methods of a given class, 
where each method is weighted by its cyclomatic com- 
plexity. Only methods specified in the class are consi- 
dered. 

Response for Class: The RFC metric for a class is de- 
fined as the set of methods that can be executed in re- 
sponse to a message received by an object of the class. 

Lines of Code per class: The LOC metric counts for a 
class its number of lines of code.  

4. Empirical Analysis 

This study aims at investigating empirically the relation- 
ship between OO design metrics and testability of classes 
in terms of required unit testing effort. We considered in 
each of the used systems only the classes for which JUnit 
test cases exist. We noticed that developers usually name 
the JUnit test case classes by adding the prefix (or suffix) 
“Test” or “TestCase” into the name of the classes (and in 
few cases interfaces) for which JUnit test cases were de- 
veloped. Only classes that have such name matching 
mechanism with the test case class name are included in 
the analysis. This approach has already been adopted in 
other studies [48].  

JUnit is a simple Framework for writing and running 
automated unit tests for Java classes. A typical usage of 
JUnit is to test each class Cs of the program by means of 
a dedicated test case class Ct. However, by analyzing the 
JUnit test case classes of the subject systems, we noticed 
that in some cases there is no one-to-one relationship 
between JUnit classes and tested classes. This has also 
been noted in other previous studies [49,50]. In these 
cases, several JUnit test cases correspond in fact to a 
same tested class.  

For each selected software class Cs, we calculated the 
values of OO metrics. We also used the suite of test case 
metrics (Section 4.3) to quantify the corresponding JUnit 
test case (cases) Ct. The OO metrics and the test case 
metrics have been computed using the Borland Together 
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tool1. The selected classes of the subject systems have 
been categorized according to the required testing effort. 
We used the test case metrics to quantify the JUnit test 
cases and identify the classes which required a (relative) 
high testing effort. In order to simplify the process of 
testing effort categorization, we provide only two cate- 
gorizations: classes which required a high testing effort 
and classes which required a (relatively) low testing ef- 
fort. 

5763 methods, with a total of roughly 68,000 lines of 
code. The Apache POI (http://poi.apache. org/) project’s 
mission is to create and maintain Java APIs for mani- 
pulating various file formats based upon the Office Open 
XML standards (OOXML) and Microsoft’s OLE 2 
Compound Document format (OLE2). This system con- 
sists of 1540 classes, that are comprised of 4463 attri- 
butes and 14,084 methods, with a total of roughly 136,000 
lines of code. Moreover, we can also observe from Table 
1, and this for each system, that JUnit test cases were not 
developed for all classes. The number of selected soft- 
ware classes for which JUnit test cases were developed 
varies from one system to another. In total, our experi- 
ments will be performed on 688 classes and corre- 
sponding JUnit test cases.  

4.1. Selected Systems 

Three open source Java software systems from different 
domains were selected for the study: ANT, JFREECH- 
ART (JFC) and POI. Table 1 summarizes some of their 
characteristics. It gives, for each system, the total number 
of software classes, the total number of attributes, the 
total number of methods, the total number of lines of 
code, the number of selected software classes (for which 
JUnit test cases were developed), and the total number of 
lines of code of selected software classes (for which 
JUnit test cases were developed). ANT (www.apache.org) 
is a Java library and command-line tool whose mission is 
to drive processes described in build files as targets and 
extension points dependent upon each other. This system 
consists of 713 classes that are comprised of 2491 attri- 
butes and 5365 methods, with a total of roughly 64,000 
lines of code. JFC (http://www.jfree.org/jfreechart) is a 
free chart library for Java platform. This system consists 
of 496 classes that are comprised of 1550 attributes and 

4.2. Descriptive Statistics 

Table 2 shows the descriptive statistics for all the OO 
metrics considered in the study. We give, for illustration, 
only the descriptive statistics corresponding to system 
ANT. We give in fact two tables of descriptive statistics 
(labeled I and II). The table labeled (I) indicates the de-
scriptive statistics for OO metrics and this for all classes 
of the system. The table labeled (II) indicates the de-
scriptive statistics for OO metrics only for selected 
classes for which JUnit test cases were developed. More- 
over, the metric LCOM is not computed for classes hav- 
ing no attributes. This is why the number of observations 
(Table 2: ANT(I) and ANT(II)) corresponding to the 

 
Table 1. Some characteristics of the used systems. 

 #Classes #Att #Meth #LOC #TClasses #TLOC 

ANT 713 2491 5365 64062 111 17609 

JFC 496 1550 5763 68312 226 53115 

POI 1540 4463 14084 136005 351 51734 

 
Table 2. Descriptive statistics for OO metrics. 

ANT I Obs. Min Max Mean Sigma ANT II Obs. Min Max Mean Sigma 

CBO 713 0 41 6.59 7.15 CBO 111 0 39 10.49 8.57 

DIT 713 0 6 2.20 1.37 DIT 111 1 6 2.68 1.34 

NOC 713 0 238 1.52 11.81 NOC 111 0 45 0.71 4.33 

LCOM 506 0 3621 76.23 263.78 LCOM 98 0 3621 155.93 454.19 

RFC 713 0 550 51.20 46.44 RFC 111 15 444 78.65 59.83 

WMC 713 0 245 17.10 23.64 WMC 111 1 178 31.31 31.11 

LOC 713 1 1252 89.85 130.07 LOC 111 5 846 158.64 154.20 
                         
1http://www.borland.com/ 
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metric LCOM is different from the number of observa- 
tions corresponding to the other OO metrics. 

From Table 2 (ANT (I) and ANT (II)), we can see that 
classes for which JUnit test cases were developed are 
relatively large and complex classes. The mean values of 
the metrics LOC, RFC and WMC of Table 2-ANT(II) 
(respectively 158.64, 78.65 and 31.31), are all greater 
than the mean values of the same metrics in Table 
2-ANT(I) (respectively 89.85, 51.20 and 17.10). This is a 
plausible finding. The testers actually focus on large and 
complex classes. We can also observe that mean value of 
coupling (CBO metric) in the case of selected classes for 
which JUnit test cases were developed (Table 2- 
ANT(II): 10.49) is geater than the mean value of coup- 
ling of all classes of ANT (Table 2-ANT(I): 6.59), sug- 
gesting that the coupling in the case of classes for which 
JUnit test cases were developed is relatively high. De- 
scriptive statistics of JFC and POI follow exactly the 
same trend. 

4.3. Test Case Metrics 

In order to quantify a JUnit test class (Ct) corresponding 
to a software class (Cs), we used the following two met-
rics [7,17]: 1) TLoc: This metric gives the number of 
lines of code of a test class Ct. It is used to indicate the 
size of the test suite corresponding to a software class Cs; 
2) TAss: This metric gives the number of invocations of 
JUnit assert methods that occur in the code of a test class 
Ct. JUnit assert methods are, in fact, used by the testers to 
compare the expected behavior of the class under test to 
its current behavior. This metric is used to indicate an-
other perspective of the size of a test suite. It is directly 
related to the construction of the test cases.  

These metrics have been introduced by Bruntink et al. 
in [7,17] to indicate the size of a test suite. Bruntink et al. 
based, in fact, the definition of these metrics on the work 
of Binder [29]. They used, particularly, an adapted ver- 
sion of the fish bone diagram developed by Binder [29] 
to identify factors of testability. The used test case me- 
trics reflect different source code factors [7,17]: factors 
that influence the number of test cases required to test the 
classes of a system, and factors that influence the effort 
required to develop each individual test case. These two 
categories have been referred as test case generation and 
test case construction factors. We assume that the effort 
necessary to write a test class Ct corresponding to a soft- 
ware class Cs is proportional to the characteristics mea- 
sured by the test case (TC) metrics. 

4.4. Correlation Analysis 

In this section, we present the first step of the empirical 
study we performed to explore the relationship between 
OO metrics (ms) and test case metrics (mt). We per- 

formed statistical tests using correlation. We used a 
non-parametric measure of correlation in order to test the 
correlation between ms and mt metrics. We used the 
Spearman’s correlation coefficient. This technique, based 
on ranks of the observations, is widely used for measur- 
ing the degree of linear relationship between two vari- 
ables (two sets of ranked data). It measures how tightly 
the ranked data clusters around a straight line. Spear- 
man’s correlation coefficient will take a value between 
−1 and +1. A positive correlation is one in which the 
ranks of both variables increase together. A negative 
correlation is one in which the ranks of one variable in- 
crease as the ranks of the other variable decrease. A cor- 
relation of +1 or −1 will arise if the relationship between 
the ranks is exactly linear. A correlation close to zero 
means that there is no linear relationship between the 
ranks. We used the XLSTAT2 tool to perform the analy- 
sis. 

For each selected class Cs and corresponding JUnit test 
case (s) Ct, we have a total of 14 pairs of metrics <ms, 
mt>. We analyzed the collected data set by calculating 
the Spearman’s correlation coefficient rs for each pair of 
metrics. Table 3 summarizes the results of the correla- 
tion analysis. It shows, for each of the selected systems 
and between each distinct pair of metrics <ms, mt>, the 
obtained values for the Spearman’s correlation coeffi- 
cient. The obtained Spearman’s correlation coefficients 
that are significant are set in boldface. The chosen sig- 
nificance level is α = 0.05. This means that for the corre- 
sponding pairs of metrics there exist a correlation at the 
95% confidence level. We discuss briefly, in what fol- 
lows, the obtained results. The main purpose of this study 
is, in fact, to evaluate the ability of the selected OO met- 
rics (separately and when used together) to predict (using 
logistic regression methods) the testing effort of classes. 

The coupling metric CBO measures dependencies on  
 

Table 3. Correlation values between OO and TC metrics. 

ANT JFC POI 
 

TAss TLoc TAss TLoc TAss TLoc

CBO 0.135 0.394 0.261 0.305 0.280 0.392

DIT −0.203 0.006 0.069 0.166 −0.100 −0.327

NOC 0.034 0.048 0.224 0.106 0.011 0.025

LCOM 0.347 0.434 0.439 0.388 0.155 0.040

RFC 0.071 0.342 0.197 0.257 0.365 0.237

WMC 0.391 0.566 0.453 0.450 0.400 0.398

LOC 0.391 0.582 0.414 0.437 0.397 0.397

2http://www.xlstat.com/
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external classes and methods. The fact that a class de- 
pends on other classes will probably influence its testing 
effort. From the obtained correlation values, between the 
CBO metric and the test case metrics, we can observe 
that the CBO metric is significantly correlated to the 
metric TLoc in the three subject systems. This metric is 
significantly correlated to the test case metric TAss in 
only two systems (JFC and POI). The observed correla- 
tion values between the metric CBO and the metric TLoc 
are higher than the correlation values (when significant) 
between the CBO metric and the test case metric TAss. 

The cohesion metric LCOM is, in fact, a lack of cohe-
sion metric (inverse cohesion measure). From the ob-
tained correlation values, we can observe that the metric 
LCOM is significantly correlated to the two test case 
metrics for ANT and JFC. In the case of ANT and JFC, 
the metric LCOM is, overall, better correlated with the 
test case metrics than the metric CBO. The number of 
methods in a class influences its cohesion (lack of cohe-
sion value) and the number of methods of the corre-
sponding test class, which is related to the characteristics 
measured by the used test case metrics.  

The inheritance metrics DIT and NOC are, overall, not 
as correlated to the used test case metrics as the metrics 
CBO and LCOM. The obtained correlations values are, 
overall, relatively low (when significant). Theoretically, 
if we consider that inherited methods have to be retested 
in any subclass, the depth of inheritance tree is likely to 
be correlated with at least TLoc metric. These results 
may, however, be affected by the testing strategies used 
by the developers (or the adopted style while writing test 
cases). The relative low use of inheritance in the case of 
the subject systems may also explain why the inheritance 
metrics are not as correlated to the test case metrics as 
the other OO metrics. Moreover, the used test case met- 
rics are measured at the class level (unit testing). This 
may also affect the results. The inheritance metrics 
would probably have a significant influence on testability 
at other levels. 

The complexity metric WMC is significantly corre- 
lated to the test case metrics in all the selected systems. 
Also, we can see from Table 3 that the obtained correla- 
tion values for the metric WMC are, overall, higher than 
those obtained with the other OO metrics (except for the 
pair <LOC, TLoc> for ANT). The highest correlation 
value of the metric WMC is observed with the test case 
metric TLoc (for ANT), which is a plausible result 
knowing the strong relationship between size and com- 
plexity. The size metric LOC is significantly correlated 
to the test case metrics in the used systems (same trend as 
WMC). These results are, in fact, plausible. A large class, 
containing a large number of methods in particular, will 
require a high testing effort. The RFC metric is signifi- 
cantly correlated to the test case metrics in JFC and POI. 

In ANT, it is significantly correlated to TLoc. 
We also calculated the Spearman’s correlation coeffi-

cient rs for each pair of OO metrics <ms, ms> (Table 4) 
and for each pair of test case metrics <mt, mt> (Table 5). 
The correlation coefficients shown in bold are significant 
(at α = 0.05 level). The global observation that we can 
make from Table 4 is that the OO metrics are (at least 
for most) correlated between themselves, in particular, 
the metrics CBO, LCOM, LOC, RFC and WMP, which 
are related to the OO software attributes: coupling, cohe- 
sion, size and complexity. The inheritance metrics DIT 
and NOC are, in general, weakly correlated (when the 
correlation values are significant) to the other OO met- 
rics. From Table 5, the global observation that we can  
 

Table 4. Correlation values between OO metrics. 

ANT CBO DIT NOC LCOM RFC WMC LOC

CBO 1 0.185 0.029 0.652 0.832 0.818 0.873

DIT  1 −0.076 −0.029 0.494 0.115 0.113

NOC   1 0.310 0.066 0.140 0.078

LCOM    1 0.670 0.819 0.780

RFC     1 0.782 0.812

WMC      1 0.960

LOC       1 

JFC CBO DIT NOC LCOM RFC WMC LOC

CBO 1 0.575 0.276 0.644 0.862 0.693 0.792

DIT  1 0.071 0.349 0.762 0.291 0.376

NOC   1 0.336 0.268 0.296 0.294

LCOM    1 0.549 0.757 0.740

RFC     1 0.640 0.742

WMC      1 0.966

LOC       1 

POI CBO DIT NOC LCOM RFC WMC LOC

CBO 1 −0.209 0.113 0.259 0.626 0.511 0.556

DIT  1 −0.122 0.093 0.218 −0.114 −0.108

NOC   1 0.092 0.069 0.060 0.081

LCOM    1 0.518 0.543 0.534

RFC     1 0.714 0.725

WMC      1 0.923

LOC       1 
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Table 5. Correlation values between test case metrics. 

ANT JFC POI 
 

TAss TLoc TAss TLoc TAss TLoc

TAss 1 0.769 1 0.842 1 0.716

TLoc  1  1  1 

 
make is that the test case metrics are also correlated be- 
tween themselves. 

4.5. Evaluating the Effect of OO Metrics on the  
Testing Effort Using Logistic Regression  
Analysis 

We present, in this section, the empirical study we con-
ducted in order to evaluate the individual and combined 
effect of OO metrics on testability of classes in terms of 
unit testing effort. We used both the univariate and mul-
tivariate logistic regression analysis. The univariate re-
gression analysis is used to find the individual effect of 
each OO metric, identifying which metrics are signifi-
cantly related to the testing effort of classes. The multi-
variate regression analysis is used to investigate the 
combined effect of OO metrics on testability, indicating 
which metrics may play a more dominant role in pre-
dicting the testing effort of classes 

4.5.1. Dependent and Independent Variables 
We used logistic regression to explore empirically the 
relationship between OO metrics (independent variables) 
and testability of classes in terms of unit testing effort 
(dependent variable). We used the test case metrics TLoc 
and TAss to identify the classes which required a (rela-
tive) high testing effort. In order to simplify the process 
of testing effort categorization, we provide only two 
categorizations: classes which required a high testing 
effort and classes which required a (relative) low testing 
effort.  

Category 1: includes the JUnit test classes for which 
the two following conditions are satisfied: 1) large num- 
ber of lines of code (corresponding TLoc ≥ mean value 
of TLoc); and 2) large number of invocations of JUnit 
assert methods (corresponding TAss ≥ mean value of 
TAss). We affect the value 1 to the corresponding 
classes. 

Category 2: includes all the other JUnit test classes. 
We affect the value 0 to the corresponding classes. 

Table 6 summarizes the distribution of classes accord- 
ing to the adopted categorization.  

4.5.2. Hypotheses 
The study tested seven hypotheses, which relate the se- 
lected metrics to the testing effort. For each source code  

Table 6. Distribution of classes. 

 1 0 

ANT 38.74% 61.26% 

JFC 37.17% 62.83% 

POI 35.04% 64.96% 

 
metric ms, the hypothesis was: 

A class with a high ms value is more likely to require a 
high testing effort than a class with a low ms value. 

The null hypothesis was: 
A class with a high ms value is no more likely to re- 

quire a high testing effort than a class with a low ms 
value. 

4.5.3. Logistic Regression Analysis: Research  
Methodology 

Logistic Regression (LR) is a standard statistical model- 
ing method in which the dependent variable can take on  
only one of two different values. It is suitable for build- 
ing software quality classification models. It is used to 
predict the dependent variable from a set of independent 
variables to determine the percent of variance in the de- 
pendent variable explained by the independent variables 
[9,51,52]. This technique has been widely applied to the 
prediction of fault-prone classes [20,52-56]. LR is of two 
types: Univariate LR and Multivariate LR. A multivari- 
ate LR model is based on the following equation:  

 
 
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1

1
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














          (1) 

The Xis are the independent variables and the (normal- 
ized) bis are the estimated regression coefficients (ap- 
proximated contribution) corresponding to the indepen- 
dent variables Xis. The larger the absolute value of the 
coefficient, the stronger the impact of the independent 
variable on the probability of detecting a high testing 
effort. P is the probability of detecting a class with a high 
testing effort. The univariate regression analysis is, in 
fact, a special case of the multivariate regression analysis, 
where there is only one independent variable (one OO 
metric). The p-value (related to the statistical hypothesis) 
is the probability of the coefficient being different from 
zero by chance and is also an indicator of the accuracy of 
the coefficient estimate. To decide whether a metric is a 
statistically significant predictor of testing effort, we use 
the α = 0.05 significance level to assess the p-value. R2 
(Nagelkerke) is defined as the proportion of the total 
variance in the dependent variable that is explained by 
the model. The higher R2 is, the higher the effect of the 
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independent variables, and the more accurate the model. 

4.5.4. Model Evaluation 
In order to evaluate the performance of the predicted 
models, we used the ROC (Receiver Operating Charac-
teristic) analysis. Indeed, precision and recall, which are 
traditional evaluation criteria used to evaluate the predic-
tion accuracy of logistic regression models are subject to 
change as the selected threshold changes. The ROC 
curve, which is defined as a plot of sensitivity on the 
y-coordinate versus its 1-specificity on the x-coordinate, 
is an effective method of evaluating the performance of 
prediction models [57]. The optimal choice of the cutoff 
point that maximizes both sensitivity and specificity can 
be selected from the ROC curve. This will allow avoid-
ing an arbitrary selection of the cutoff. In order to evalu-
ate the performance of the models, we used particularly 
the AUC (Area Under the Curve) measure. It is a com-
bined measure of sensitivity and specificity. It allows 
appreciating the model without subjective selection of 
the cutoff value. The larger the AUC measure, the better 
the model is at classifying classes. A perfect model that 
correctly classifies all classes has an AUC measure of 1. 
An AUC value close to 0.5 corresponds to a poor model. 
An AUC value greater than 0.7 corresponds to a good 
model [58]. Furthermore, if a prediction model is built on 
one data set (used as training set) and evaluated on the 
same data set (used as testing set), then the accuracy of 
the model will be artificially inflated [59]. A common 
way to obtain a more realistic assessment of the predic- 

tive ability of the models is to use cross validation (k-fold 
cross-validation), which is a procedure in which the data 
set is partitioned in k subsamples (groups of observa-
tions). The regression model is built using k − 1 groups 
and its prediction evaluated on the last group. This proc-
ess is repeated k times. Each time, a different subsample 
is used to evaluate the model, and the remaining subsam-
ples are used as training data to build the model. We 
performed, in our study, a 10-fold cross-validation. 

4.5.5. Univariate LR Analysis: Results and Discussion 
In this section, we present the results obtained using the 
univariate LR analysis. The results, summarized in Table 
7, show that: For system ANT, the b-coefficients of the 
metrics LCOM, WMC and LOC (respectively 0.946, 
0.582 and 0.596) are significantly different from zero 
according to their p-values. The metrics LOC, WMC and 
LCOM have (respectively) the highest (and significant) 
R2 values (respectively 0.2529, 0.2394 and 0.1455). The 
metrics NOC, DIT, RFC and CBO have (respectively) 
the lowest b and R2 coefficients values. The metric CBO 
was, however, significant at 0.05 significance level. Ac- 
cording to these results, the metrics LOC, WMC and 
LCOM are (more) significantly related to the testing ef-
fort compared to the other OO metrics. The AUC values 
(WMC: 0.798, LOC: 0.793 and LCOM: 0.73) confirm 
that univariate LR models based on the metrics WMC, 
LOC and LCOM are more predictive of testing effort 
than the other OO metrics. The metrics LOC and WMC 
have the highest R2 (and AUC values), which shows that  

 
Table 7. Results for univariate LR analysis. 

  CBO DIT NOC LCOM RFC WMC LOC 

R2 8.67% 0.31% 0.20% 14.55% 3.86% 23.94% 25.29% 

2Log 0.007 0.617 0.686 0.001 0.074 <0.0001 <0.0001 

b 0.296 −0.054 −0.048 0.946 0.199 0.582 0.596 

p-value 0.009 0.618 0.707 0.015 0.091 <0.0001 <0.0001 

ANT 

AUC 0.67 0.549 0.551 0.73 0.656 0.798 0.793 

  CBO DIT NOC LCOM RFC WMC LOC 

R2 11.14% 0.46% 5.13% 13.49% 0.69% 26.96% 13.49% 

2Log <0.0001 0.384 0.003 <0.0001 0.285 <0.0001 <0.0001 

b 0.341 0.066 0.344 1.156 0.081 0.870 1.156 

p-value <0.0001 0.384 0.045 0.002 0.283 <0.0001 0.002 

JFC 

AUC 0.663 0.547 0.598 0.746 0.611 0.79 0.746 

  CBO DIT NOC LCOM RFC WMC LOC 

R2 12.94% 11.23% 0.00% 4.82% 10.29% 15.26% 10.94% 

2Log <0.0001 <0.0001 0.973 0.001 <0.0001 <0.0001 <0.0001 

b 0.420 −0.361 −0.002 0.343 0.409 0.552 0.414 

p-value <0.0001 <0.0001 0.973 0.010 <0.0001 <0.0001 <0.0001 

POI 

AUC 0.682 0.664 0.533 0.529 0.623 0.686 0.684 
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these metrics are the best predictors of the testing effort. 
For system JFC, we can observe also the same trends. 
The metrics WMC, LOC and LCOM have (respectively) 
the highest (and significant) R2 values (respectively 
0.2696, 0.1349 and 0.1349). Here also, the AUC values 
(WMC: 0.79, LOC: 0.746 and LCOM: 0.746) confirm 
that univariate LR models based on the metrics WMC, 
LOC and LCOM are more predictive of testing effort 
than the metrics DIT, NOC, RFC and CBO. The WMC 
metric has the highest R2 (and AUC value), which shows 
that it is (here also) the best predictor of testing effort. 
The LOC metric has the second highest R2 (and AUC 
value). Moreover, in this case also the metric CBO was 
significant (at 0.01). The AUC value of the metric CBO 
is almost the same as that obtained for system ANT. For 
system POI, even if the results show that the b and R2 
coefficients values for the OO metrics (except NOC) are 
significant, the AUC values of the univariate models are 
all lower than 0.7. The metrics WMC, CBO and DIT 
have the highest (and significant) R2 values (respectively 
0.1526, 0.1294 and 0.1123). These results, based on the 
data set we used and particularly data collected from 

ANT and JFC systems, suggest that the metrics WMC, 
LOC, LCOM and CBO (to some extent) are significant 
predictors of testing effort. Hence, we can reasonably 
support the hypothesis of each of these metrics. These 
metrics are related respectively to: complexity, size, co- 
hesion and coupling. 

4.5.6. Multivariate LR Analysis: Results and  
Discussion 

We present, in this section, the results of the multivariate 
LR analysis. The main objective was to explore the po- 
tential of OO design metrics, when used in combination, 
to predict the unit testing effort of classes. Indeed, the 
multivariate LR analysis here is not intended to be used 
to build the best prediction model combining the OO 
source code metrics because, in this case, other metrics 
also have to be considered (for example, other coupling 
or size metrics). Such a model is out of the scope of this 
paper. 

We performed, in this step, two different experiments. 
The first experiment includes all the selected metrics 
(Table 8 MLR-I), in contrast to the second experiment  

 
Table 8. Results for multivariate LR analysis. 

MLR-I ANT JFC POI 

R2 34.73% 38.23% 27.31% 

2log 0.000 <0.0001 <0.0001 

 b p-value b p-value b p-value 

CBO −0.382 0.206 0.218 0.311 0.191 0.217 

DIT 0.271 0.145 0.162 0.198 −0.307 0.000 

NOC −0.065 0.704 0.095 0.46 0.052 0.465 

LCOM 0.545 0.296 −1.109 0.000 −0.305 0.105 

RFC −0.962 0.066 −0.617 0.003 0.151 0.513 

WMC −0.226 0.723 2.333 0.000 0.392 0.180 

LOC 1.663 0.022 −0.698 0.156 0.081 0.746 

AUC 0.848 0.834 0.773 

MLR-II ANT JFC POI 

R2 25.69% 37.32% 27.27% 

2log 0.002 <0.0001 <0.0001 

 b p-value b p-value b p-value 

CBO −0.209 0.432 0.152 0.459 0.196 0.203 

DIT 0.068 0.677 0.188 0.129 −0.304 0.000 

NOC −0.108 0.591 0.123 0.335 −0.307 0.109 

LCOM 0.105 0.798 −1.036 0.000 0.051 0.472 

RFC 0.923 0.008 −0.682 0.001 0.155 0.501 

WMC −0.351 0.389 1.633 <0.0001 0.466 0.013 

AUC 0.78 0.832 0.772 
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which excludes the metric LOC (Table 8 MLR-II). This 
will allow us to compare the performance of the predic- 
tion model MLR-II which is based on the CK metrics 
only, with the performance of the prediction model 
MLR-I which is based on all the considered metrics. 
Moreover, as mentioned in Section 4.2 (descriptive sta-
tistics), the metric LCOM is not computed for all classes. 
The classes for which LCOM is not computed and the 
corresponding JUnit test cases have been excluded from 
our measurements (multivariate LR). So, the models 
MLR-I and MLR-II were built using data collected from 
only classes (and the corresponding JUnit test cases) for 
which LCOM is computed. The number of considered 
classes differ from one system to another (ANT: 98, JFC: 
219 and POI: 313). 

In the first experiment, we used all the OO metrics to 
build the multivariate regression model. Table 8 MLR-I 
summarizes the results of the multivariate analysis. From 
Table 8 MLR-I, it can be seen that for ANT the AUC 
value is 0.848, which is higher than the AUC values ob- 
tained with the univariate LR analysis. It is also the 
highest value of AUC obtained in this experiment. More- 
over, the R2 value increases (34.73%). This shows that 
the combined effect of the metrics is higher. The results 
also show that the metric LOC has the highest (and sig- 
nificant) contribution (impact of the metric on the prob- 
ability of detecting a high testing effort). For JFC, we can 
see that the AUC value is 0.834, which is higher (here 
also) than the AUC values obtained with the univariate 
LR analysis. Moreover, the R2 value, as in the case of 
ANT, increases (38.23%). The results show that the met- 
rics WMC, LCOM and RFC have the highest (and sig- 
nificant) contributions. For POI, we can see that the AUC 
value is 0.773, which is higher (here also) than the AUC 
values obtained with the univariate LR analysis. More- 
over, the results (combined effect of the metrics) are sig- 
nificant in contrast to the results of the univariate analy- 
sis (individual effect of the metrics). The R2 value, as in 
the case of ANT and JFC, increases (27.31%). The R2 
value in this case is relatively high than all the R2 values 
obtained in the case of univariate analysis. This shows 
once again that the combined effect of the metrics is 
more significant than when the metrics are considered 
individually.  

In the second experiment, we used only the CK met- 
rics to build the multivariate regression model. Table 8 
MLR-II summarizes the results of the multivariate analy- 
sis. From Table 8 MLR-II, we can observe that the re- 
sults have (overall) the same trend as those obtained 
during the first experiment. The results are significant for 
the three systems ANT, JFC and POI. From Table 8 
MLR-II, it can be seen that for ANT the AUC value is 
0.780, which is slightly less than the AUC values of the 
univariate models based on the metrics WMC and LOC 

(respectively 0.798 and 0.793), and greater than the AUC 
values of the univariate models based on the metrics 
CBO, DIT, NOC, LCOM and RFC. Moreover, the R2 
value (25.69%) increased slightly compared to the R2 
value of the univariate model based on the metric LOC 
(25.29%, which was the highest R2 value obtained in the 
univariate analysis for ANT). The results also show that 
the metric RFC has the highest (and significant) contri- 
bution (impact of the metric on the probability of detect- 
ing a high testing effort). For JFC, we can see that the 
AUC value is 0.832, which is higher than the AUC val- 
ues obtained with the univariate LR analysis. Moreover, 
the R2 value increases (37.32%). The results show that 
the metrics WMC, LCOM and RFC have the highest 
(and significant) contributions. For POI, we can see that 
the AUC value is 0.772, which is higher (here also) than 
the AUC values obtained with the univariate LR analysis. 
Moreover, the results (combined effect of the metrics) 
are significant in contrast to the results of the univariate 
analysis (individual effect of the metrics). The R2 value, 
as in the case of ANT and JFC, increases (27.27%). The 
R2 value in this case also is relatively high than all the R2 
values obtained in the case of univariate LR analysis. 
This shows once again that the combined effect of the 
metrics is more significant than when the metrics are 
considered individually. In the case of POI, the results 
show that the metrics WMC and DIT have the highest 
(and significant) contributions (as for MLR-I). 

The accuracies of the models MLR-I and MLR-II are, 
overall, comparable. Indeed, as we can see from Table 8, 
the AUC values of the models are almost identical in the 
two systems JFC and POI. This is true also for the R2 
values. This can be explained by the fact that size is (in- 
directly) captured by most of the considered metrics 
(WMC, RFC, LCOM and CBO), which may also be ob- 
served from the correlation values between these metrics 
in Table 4. The correlation values between, in particular, 
the metrics WMC and LOC are almost perfect (in the 
three systems). This explains also why the contributions 
of these two metrics, in Table 8 MLR-I, vary from one 
system to another. In the case of system ANT, the per- 
formance of the multivariate model MLR-I is, however, 
better that the performance of the multivariate model 
MLR-II. The AUC and R2 values of the model MLR-I 
(respectively 0.848 and 34.73) are greater than the AUC 
and R2 values of the model MLR-II (respectively 0.780 
and 25.69). In summary, the multivariate analysis shows 
that the combined effect of the metrics is more signifi- 
cant than when the metrics are considered individually. 
Moreover, it shows also, when the results are significant, 
that, overall, the metrics WMC, RFC, LCOM and LOC 
have the highest contributions. These metrics are respec- 
tively related to: complexity, coupling, cohesion and size. 
This confirms somewhere the results of the univariate 
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analysis. Furthermore, in order to obtain a more realistic 
assessment of the predictive abilities of the models, we 
performed in our study a 10-fold cross-validation (MLR 
models). We used the R3 tool.  

4.5.7. Applicability of the Prediction Models 
In addition, we explored to what extent a prediction 
model built using data from one of the three used sys-
tems can be used to predict the testing effort of classes of 
the two other systems. Indeed, the practical purpose of 
building software prediction models (reliability, fault- 
proneness, testing effort, etc.) is to apply them to soft- 
ware systems. Knowing that we have collected data sets 
from three different systems, we evaluated each model 
Mi, constructed using data from a system Si, on data from 
another system Sj (i # j). As mentioned previously, the 
three used systems are from different domains and have 
different characteristics. Moreover, they have been de- 
veloped by different teams. We used, in fact, the data 
from a system as the training data set and the data from 
another system as the testing data set. Usually, the data 
set with the largest number of observations is designated 
as the training data set and the remaining system data 
sets as the testing sets [59]. So, in our study, we per- 
formed the following tests: 1) we applied the prediction 
model built using the data set of POI (referenced as MPOI) 
for predicting the testing effort of classes of JFC and 
ANT; and 2) we applied the prediction model built using 
the data set of JFC (referenced as MJFC) to predict the 
testing effort of classes of ANT.  

The results of a prediction model depend on the cho- 
sen value of the threshold. Indeed, if the predicted testing 
effort of a class is above the chosen value, the class is 
classified as requiring a high testing effort. Moreover, the 
value of the threshold may vary from one system to an- 
other because of differences between systems. To avoid 
an arbitrary selection of the cutoff, and as a first attempt 
to assess the applicability of the prediction models, we 
explored in each test different values of threshold. We 
used here also the ROC analysis to evaluate the per-
formance of the models. The obtained AUC values are 
0.69, 0.67 and 0.71 respectively for applying MPOI for 
predicting the testing effort of classes of JFC and ANT 
and for applying MJFC to predict the testing effort of 
classes of ANT. The models do not show, in fact, a 
strong difference. Their prediction performance is, over-
all, acceptable. The results indicate that the LR predic-
tion models built using the OO metrics seem viable. 
They show, at least, that the metrics when combined of-
fer a promising potential for predicting the testing effort 
of classes. Further investigations are, however, needed to 

make more general conclusions. 

4.6. Threats to Validity 

The achieved results are based on the data set we col- 
lected from the analyzed systems. We analyzed a total of 
688 classes and corresponding JUnit test cases. Even if 
we believe that the analyzed set of data is large enough to 
allow obtaining significant results, we do not claim that 
our results can be generalized to all systems. The study 
should be, indeed, replicated on a large number of OO 
software systems to increase the generality of our find- 
ings. In fact, there are a number of limitations that may 
affect the results of the study or limit their interpretation 
and generalization.  

First, the JUnit test cases used in our study were de- 
veloped for large and complex classes. This is true for 
the three subject systems. It would be interesting to rep- 
licate this study using systems for which JUnit test cases 
have been developed for a maximum number of classes. 
This will allow observing the performance of the metrics 
(individually and used in combination) for different types 
of classes (small, medium and large). Second, it is also 
possible that facts such as the development style used by 
the developers for writing test cases may affect the re- 
sults or produce different results for specific applications. 
We observed, for example, that in some cases the deve- 
loped JUnit classes do not cover all the methods of the 
corresponding software classes. As the OO metrics are 
source code metrics and are computed using the com- 
plete code of the classes, this may bias the results. Fi- 
nally, another important threat to validity is from the 
identification of the relationship between the JUnit test 
cases and tested classes. We noticed, in fact, by analyz- 
ing the code of the JUnit test cases of the investigated 
systems that, in some cases, there is no one-to-one rela- 
tionship between JUnit test cases and tested classes. In 
these cases, several JUnit test cases have been related to 
a same tested class. Even if we followed a systematic 
approach for associating the JUnit test cases to the cor- 
responding tested classes, unfortunately we have not 
been able to do that for all classes. This may also affect 
the results of our study, or produce different results from 
one system to another. 

5. Conclusions and Future Work 

The paper investigated empirically the relationship be- 
tween OO metrics and testability of classes in terms of 
required testing effort. Testability has been investigated 
from the perspective of unit testing. We performed an 
empirical analysis using data collected from three Java 
software systems for which JUnit test cases exist. To 
capture testability of classes, we used different metrics to 
quantify the corresponding JUnit test cases. The metrics 

3http://www.r-project.org/ 
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related to the JUnit test cases were used, in fact, to clas- 
sify the classes in two categories in terms of required 
testing effort: high and low.  

In order to evaluate the relationship between OO met- 
rics and unit testing effort of classes, we performed sta- 
tistical analysis using correlation and logistic regression 
methods. We used the univariate logistic regression 
analysis to evaluate the individual effect of the selected 
metrics on the testing effort of classes. We used the mul- 
tivariate logistic regression analysis to evaluate their 
combined effect. The performance of the predicted mo- 
dels was evaluated using Receiver Operating Characte- 
ristic analysis. We also included in our study the well- 
known LOC metric as a “baseline”. Univariate regression 
analysis, based on the data set we used, suggests that 
univariate LR models based on the metrics WMC, LOC, 
LCOM and CBO (also to some extent) are significant 
predictors of unit testing effort. Moreover, the results 
show that multivariate regression models based on OO 
metrics are able to accurately predict the unit testing ef- 
fort of classes. The multivariate analysis shows that, 
overall, the metrics WMC, RFC, LCOM and LOC have 
the highest effect on the testing effort. In summary, the 
metrics that were found significant predictors of the test- 
ing effort (in the univariate analysis and in the multivari- 
ate analysis as having a relatively high effect) are related 
to the important OO attributes: size, complexity, cohe- 
sion and coupling.  

In addition, we explored the applicability of the pre- 
diction models by examining to what extent a prediction 
model built using data from one system can be used to 
predict the testing effort of classes of another system. 
The results clearly show that the prediction models were 
able to achieve acceptable levels of performance in the 
classification of classes according to the predicted testing 
effort. We hope these findings will help to a better under- 
standing of what contributes to testability of classes in 
OO systems, and particularly the relationship between 
OO attributes (metrics) and testability of classes. The 
performed study should be replicated using many other 
OO software systems in order to draw more general con- 
clusions. The findings in this paper should be viewed as 
exploratory and indicative rather than conclusive. More- 
over, knowing that software testability is affected by 
many different factors, it would be interesting to extend 
the used suite of test case metrics to better reflect the 
testing effort.  

As future work, we plan to: extend the used test case 
metrics to better reflect the testing effort, use other OO 
metrics to improve the performance of the prediction 
models, use other methods (such as machine learning 
methods) to explore the individual and combined effect 
of the metrics on testability of classes, explore other ap- 
proaches for testing effort rating (ranking) and finally 

replicate the study on other OO software systems to be 
able to give generalized results. 
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