
Journal of Software Engineering and Applications, 2012, 5, 513-526
http://dx.doi.org/10.4236/jsea.2012.57060 Published Online July 2012 (http://www.SciRP.org/journal/jsea)

513

Empirical Analysis of Object-Oriented Design Metrics for
Predicting Unit Testing Effort of Classes

Mourad Badri, Fadel Toure

Software Engineering Research Laboratory, Department of Mathematics and Computer Science, University of Quebec, Trois-
Rivières, Canada.
Email: {Mourad.Badri, Fadel.Toure}@uqtr.ca

Received April 16th, 2012; revised May 29th, 2012; accepted June 10th, 2012

ABSTRACT

In this paper, we investigate empirically the relationship between object-oriented design metrics and testability of
classes. We address testability from the point of view of unit testing effort. We collected data from three open source
Java software systems for which JUnit test cases exist. To capture the testing effort of classes, we used metrics to quan-
tify the corresponding JUnit test cases. Classes were classified, according to the required unit testing effort, in two
categories: high and low. In order to evaluate the relationship between object-oriented design metrics and unit testing
effort of classes, we used logistic regression methods. We used the univariate logistic regression analysis to evaluate the
individual effect of each metric on the unit testing effort of classes. The multivariate logistic regression analysis was
used to explore the combined effect of the metrics. The performance of the prediction models was evaluated using Re-
ceiver Operating Characteristic analysis. The results indicate that: 1) complexity, size, cohesion and (to some extent)
coupling were found significant predictors of the unit testing effort of classes and 2) multivariate regression models
based on object-oriented design metrics are able to accurately predict the unit testing effort of classes.

Keywords: Software Testability; Unit Testing; Testing Effort; Metrics; Relationship; Prediction and Empirical Analysis

1. Introduction

Software testability is an important software quality at-
tribute. IEEE [1] defines testability as the degree to
which a system or component facilitates the establish-
ment of test criteria and the performance of tests to de-
termine whether those criteria have been met. ISO [2]
defines testability (characteristic of maintainability) as
attributes of software that bear on the effort needed to
validate the software product.

Software testability is, in fact, a complex notion. In-
deed, software testability is not an intrinsic property of a
software artifact and cannot be measured simply such as
size, complexity or coupling. According to Baudry et al.
[3,4], software testability is influenced by many factors
including controllability, observability and the global test
cost. Yeh et al. [5] argue also that diverse factors such as
control flow, data flow, complexity and size contribute to
testability. Zhao [6] states that testability is an elusive
concept, and it is difficult to get a clear view on all the
potential factors that can affect it. Dealing with software
testability raises several questions such as [7,8]: Why is
one class easier to test than another? What makes a class
hard to test? What contributes to the testability of a class?
How can we quantify this notion? In addition, according

to Baudry et al. testability becomes crucial in the case of
object-oriented (OO) software systems where control
flows are generally not hierarchical, but diffuse and dis-
tributed over whole architecture [3,4].

Software metrics can be useful in assessing software
quality attributes and supporting various software engi-
neering activities [9-12]. In particular, metrics can be
used to assess (predict) software testability and better
manage the testing effort. Having quantitative data on the
testability of a software can, in fact, be used to guide the
decision-making of software development managers
seeking to produce high-quality software. Particularly, it
can help software managers, developers and testers to [7,
8]: plan and monitor testing activities, determine the
critical parts of the code on which they have to focus to
ensure software quality, and in some cases use this data
to review the code. One effective way to deal with this
important issue is to develop prediction models based on
metrics that can be used to identify critical parts of soft-
ware requiring a (relative) high testing effort. There is a
real need is this area.

A large number of OO metrics were proposed in lit-
erature [13]. Some of these metrics related to different
OO software attributes (such as size, complexity, coupl-

Copyright © 2012 SciRes. JSEA

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 514

ing, cohesion and inheritance) were already used in re-
cent years to assess (predict) testability of OO software
systems [7,8,14-20]. Software testability has been add-
ressed from different point of views. According to Gupta
et al. [8], none of the OO metrics is alone sufficient to
give an overall reflection of software testability. Soft-
ware testability is, indeed, affected by many different
factors as pointed out by several researchers [3-6,21,22].
Moreover, even if there is a common belief (and empi-
rical evidence) that several of these metrics (attributes)
have an impact on testability of classes, few empirical
studies have been conducted to examine their combined
effect (impact), particularly when taking into account
different levels of testing effort. As far as we know, this
issue has not been empirically investigated.

The aim of this paper is to investigate empirically the
relationship between OO design metrics, specifically, the
Chidamber and Kemerer (CK) metrics suite [23,24] and
testability of classes taking into account different levels
of testing effort. We also include the well-known (size
related) LOC (Lines of Code) metric as a “baseline”. The
question we attempt to answer is how accurately do the
OO metrics (separately and when used together) predict
(high) testing effort. We addressed testability of classes
from the perspective of unit testing effort. We performed
an empirical analysis using data collected from three
open source Java software systems for which JUnit test
cases exist. To capture the testing effort of classes, we
used the suite of test case metrics introduced by Bruntink
et al. [7,17] to quantify the corresponding JUnit test
cases. These metrics were used, in fact, to classify the
classes (in terms of required testing effort) in two catego-
ries: high and low.

In order to evaluate the relationship between OO de-
sign metrics and unit testing effort of classes, we used
logistic regression methods. We used the univariate lo-
gistic regression method to evaluate the individual effect
of each metric on the unit testing effort of classes. The
multivariate logistic regression method was used to in-
vestigate the potential of the combined effect of the met-
rics. The performance of the prediction models was
evaluated using Receiver Operating Characteristic (ROC)
analysis. In summary, the results indicate that complexity,
size, cohesion and (to some extent) coupling were found
significant predictors of the unit testing effort of classes.
Moreover, the results show that multivariate regression
models based on OO metrics are able to accurately pre-
dict the unit testing effort of classes. In addition, we ex-
plored the applicability of the prediction models by ex-
amining to what extent a prediction model built using
data from one system can be used to predict the testing
effort of classes of another system.

The rest of this paper is organized as follows: A brief
summary of related work on software testability is given

in Section 2. Section 3 introduces the OO design metrics
investigated in the study. Section 4 presents the selected
systems, describes the data collection, introduces the test
case metrics we used to quantify the JUnit test cases and
presents the empirical study we performed to investigate
the relationship between OO design metrics and unit
testing effort of classes. Finally, Section 5 concludes the
paper and outlines directions for future work.

2. Software Testability

Software testability has been addressed in literature from
different point of views. Fenton et al. [10] define soft-
ware testability as an external attribute. Freedman intro-
duces testability measures for software components based
on two factors: observability and controllability [25].
Voas defines testability as the probability that a test case
will fail if a program has a fault [26]. Voas and Miller
[27] propose a testability metric based on inputs and
outputs domains of a software component, and the PIE
(Propagation, Infection and Execution) technique to ana-
lyze software testability [28]. Binder [29] defines test-
ability as the relative ease and expense of revealing soft-
ware faults. He argues that software testability is based
on six factors: representation, implementation, built-in
text, test suite, test support environment and software
process capability. Khoshgoftaar et al. investigate the
relationship between static software product measures
and testability [30,31]. Software testability is considered
as a probability predicting whether tests will detect a
fault. McGregor et al. [32] investigate testability of OO
software systems and introduce the visibility component
measure (VC). Bertolino et al. [33] investigate testability
and its use in dependability assessment. They adopt a
definition of testability as a conditional probability, dif-
ferent from the one proposed by Voas et al. [26], and
derive the probability of program correctness using a
Bayesian inference procedure. Le Traon et al. [34-36]
propose testability measures for data flow designs. Pe-
trenko et al. [37] and Karoui et al. [38] address testability
in the context of communication software. Sheppard et al.
[22] focus on formal foundation of testability metrics.
Jungmayr [39] investigates testability measurement based
on static dependencies within OO systems. He takes an
integration testing point of view.

Gao et al. [40,41] consider testability from the per-
spective of component-based software construction. The
definition of component testability is based on five fac-
tors: understandability, obervability, controllability, trace-
ability and testing support capability. According to Gao
et al. [41], software testability is related to testing effort
reduction and software quality. Nguyen et al. [42] focus
on testability analysis based on data flow designs in the
context of embedded software. Baudry et al. [3,4,21]

Copyright © 2012 SciRes. JSEA

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 515

address testability measurement (and improvement) of
OO designs. They focus on design patterns as coherent
subsets in the architecture. Chowdhary [43] focuses on
why it is so difficult to practice testability in the real
world. He discusses the impact of testability on design
and lay down guidelines to ensure testability considera-
tion during software development. Khan et al. [44] focus
on testability of classes at the design level. They deve-
loped a model to predict testability of classes from UML
class diagrams. Kout et al. [45] adapted this model to the
code level (Java programs) and evaluated it on two case
studies. Briand et al. [46] propose an approach where
instrumented contracts are used to increase testability. A
case study showed that contract assertions detect a large
percentage of failures depending on the level of precision
of the contract definitions.

Bruntink et al. [7,17] investigate factors of testability
of OO software systems. Testability is investigated from
the perspective of unit testing. Gupta et al. [8] use fuzzy
techniques to combine some OO metrics values into a
single overall value called testability index. The pro-
posed approach has been evaluated on simple examples
of Java classes. Singh et al. [18] used OO metrics and
neural networks to predict testing effort. The testing ef-
fort is measured in terms of lines of code added or
changed during the life cycle of a defect. In [19], Singh
et al. attempt to predict testability of Eclipse at the pack-
age level. Badri et al. [14] performed a similar study to
that conducted by Bruntink et al. [7] using two open
source Java software systems in order to explore the rela-
tionship between lack of cohesion metrics and testability
of classes. In [15], Badri et al. investigated the capability
of lack of cohesion metrics to predict testability using
logistic regression methods. More recently, Badri et al.
[16,47] investigate the effect of control flow of the unit
testing effort of classes.

3. Object-Oriented Design Metrics

We present, in this section, the summary of the OO de-
sign metrics we selected for the empirical study. These
metrics have been selected for study because they have
received considerable attention from researchers and are
also being increasingly adopted by practitioners. Further-
more, these metrics have been incorporated into several
development tools. We selected in total seven metrics.
Six of these metrics (CBO, LCOM, DIT, NOC, WMC
and RFC) were proposed by Chidamber and Kemerer in
[23,24]. We also include in our study the well-known
LOC metric. We give in what follows a brief definition
of each metric.

Coupling between Objects: The CBO metric counts for
a class the number of other classes to which it is cou-
pled (and vice versa).

Lack of Cohesion in Methods: The LCOM metric
measures the dissimilarity of methods in a class. It is
defined as follows: LCOM = |P| − |Q|, if |P| > |Q|, where
P is the number of pairs of methods that do not share a
common attribute and Q the number of pairs of methods
sharing a common attribute. If the difference is negative,
LCOM is set to 0.

Depth of Inheritance Tree: The DIT metric of a class
is given by the length of the (longest) inheritance path
from the root of the inheritance hierarchy to the class on
which it is measured (number of ancestor classes).

Number of Children: The NOC metric measures the
number of immediate subclasses of the class in a hierar-
chy.

Weighted Methods per Class: The WMC metric gives
the sum of complexities of the methods of a given class,
where each method is weighted by its cyclomatic com-
plexity. Only methods specified in the class are consi-
dered.

Response for Class: The RFC metric for a class is de-
fined as the set of methods that can be executed in re-
sponse to a message received by an object of the class.

Lines of Code per class: The LOC metric counts for a
class its number of lines of code.

4. Empirical Analysis

This study aims at investigating empirically the relation-
ship between OO design metrics and testability of classes
in terms of required unit testing effort. We considered in
each of the used systems only the classes for which JUnit
test cases exist. We noticed that developers usually name
the JUnit test case classes by adding the prefix (or suffix)
“Test” or “TestCase” into the name of the classes (and in
few cases interfaces) for which JUnit test cases were de-
veloped. Only classes that have such name matching
mechanism with the test case class name are included in
the analysis. This approach has already been adopted in
other studies [48].

JUnit is a simple Framework for writing and running
automated unit tests for Java classes. A typical usage of
JUnit is to test each class Cs of the program by means of
a dedicated test case class Ct. However, by analyzing the
JUnit test case classes of the subject systems, we noticed
that in some cases there is no one-to-one relationship
between JUnit classes and tested classes. This has also
been noted in other previous studies [49,50]. In these
cases, several JUnit test cases correspond in fact to a
same tested class.

For each selected software class Cs, we calculated the
values of OO metrics. We also used the suite of test case
metrics (Section 4.3) to quantify the corresponding JUnit
test case (cases) Ct. The OO metrics and the test case
metrics have been computed using the Borland Together

Copyright © 2012 SciRes. JSEA

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes

Copyright © 2012 SciRes. JSEA

516

tool1. The selected classes of the subject systems have
been categorized according to the required testing effort.
We used the test case metrics to quantify the JUnit test
cases and identify the classes which required a (relative)
high testing effort. In order to simplify the process of
testing effort categorization, we provide only two cate-
gorizations: classes which required a high testing effort
and classes which required a (relatively) low testing ef-
fort.

5763 methods, with a total of roughly 68,000 lines of
code. The Apache POI (http://poi.apache. org/) project’s
mission is to create and maintain Java APIs for mani-
pulating various file formats based upon the Office Open
XML standards (OOXML) and Microsoft’s OLE 2
Compound Document format (OLE2). This system con-
sists of 1540 classes, that are comprised of 4463 attri-
butes and 14,084 methods, with a total of roughly 136,000
lines of code. Moreover, we can also observe from Table
1, and this for each system, that JUnit test cases were not
developed for all classes. The number of selected soft-
ware classes for which JUnit test cases were developed
varies from one system to another. In total, our experi-
ments will be performed on 688 classes and corre-
sponding JUnit test cases.

4.1. Selected Systems

Three open source Java software systems from different
domains were selected for the study: ANT, JFREECH-
ART (JFC) and POI. Table 1 summarizes some of their
characteristics. It gives, for each system, the total number
of software classes, the total number of attributes, the
total number of methods, the total number of lines of
code, the number of selected software classes (for which
JUnit test cases were developed), and the total number of
lines of code of selected software classes (for which
JUnit test cases were developed). ANT (www.apache.org)
is a Java library and command-line tool whose mission is
to drive processes described in build files as targets and
extension points dependent upon each other. This system
consists of 713 classes that are comprised of 2491 attri-
butes and 5365 methods, with a total of roughly 64,000
lines of code. JFC (http://www.jfree.org/jfreechart) is a
free chart library for Java platform. This system consists
of 496 classes that are comprised of 1550 attributes and

4.2. Descriptive Statistics

Table 2 shows the descriptive statistics for all the OO
metrics considered in the study. We give, for illustration,
only the descriptive statistics corresponding to system
ANT. We give in fact two tables of descriptive statistics
(labeled I and II). The table labeled (I) indicates the de-
scriptive statistics for OO metrics and this for all classes
of the system. The table labeled (II) indicates the de-
scriptive statistics for OO metrics only for selected
classes for which JUnit test cases were developed. More-
over, the metric LCOM is not computed for classes hav-
ing no attributes. This is why the number of observations
(Table 2: ANT(I) and ANT(II)) corresponding to the

Table 1. Some characteristics of the used systems.

 #Classes #Att #Meth #LOC #TClasses #TLOC

ANT 713 2491 5365 64062 111 17609

JFC 496 1550 5763 68312 226 53115

POI 1540 4463 14084 136005 351 51734

Table 2. Descriptive statistics for OO metrics.

ANT I Obs. Min Max Mean Sigma ANT II Obs. Min Max Mean Sigma

CBO 713 0 41 6.59 7.15 CBO 111 0 39 10.49 8.57

DIT 713 0 6 2.20 1.37 DIT 111 1 6 2.68 1.34

NOC 713 0 238 1.52 11.81 NOC 111 0 45 0.71 4.33

LCOM 506 0 3621 76.23 263.78 LCOM 98 0 3621 155.93 454.19

RFC 713 0 550 51.20 46.44 RFC 111 15 444 78.65 59.83

WMC 713 0 245 17.10 23.64 WMC 111 1 178 31.31 31.11

LOC 713 1 1252 89.85 130.07 LOC 111 5 846 158.64 154.20

1http://www.borland.com/

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 517

metric LCOM is different from the number of observa-
tions corresponding to the other OO metrics.

From Table 2 (ANT (I) and ANT (II)), we can see that
classes for which JUnit test cases were developed are
relatively large and complex classes. The mean values of
the metrics LOC, RFC and WMC of Table 2-ANT(II)
(respectively 158.64, 78.65 and 31.31), are all greater
than the mean values of the same metrics in Table
2-ANT(I) (respectively 89.85, 51.20 and 17.10). This is a
plausible finding. The testers actually focus on large and
complex classes. We can also observe that mean value of
coupling (CBO metric) in the case of selected classes for
which JUnit test cases were developed (Table 2-
ANT(II): 10.49) is geater than the mean value of coup-
ling of all classes of ANT (Table 2-ANT(I): 6.59), sug-
gesting that the coupling in the case of classes for which
JUnit test cases were developed is relatively high. De-
scriptive statistics of JFC and POI follow exactly the
same trend.

4.3. Test Case Metrics

In order to quantify a JUnit test class (Ct) corresponding
to a software class (Cs), we used the following two met-
rics [7,17]: 1) TLoc: This metric gives the number of
lines of code of a test class Ct. It is used to indicate the
size of the test suite corresponding to a software class Cs;
2) TAss: This metric gives the number of invocations of
JUnit assert methods that occur in the code of a test class
Ct. JUnit assert methods are, in fact, used by the testers to
compare the expected behavior of the class under test to
its current behavior. This metric is used to indicate an-
other perspective of the size of a test suite. It is directly
related to the construction of the test cases.

These metrics have been introduced by Bruntink et al.
in [7,17] to indicate the size of a test suite. Bruntink et al.
based, in fact, the definition of these metrics on the work
of Binder [29]. They used, particularly, an adapted ver-
sion of the fish bone diagram developed by Binder [29]
to identify factors of testability. The used test case me-
trics reflect different source code factors [7,17]: factors
that influence the number of test cases required to test the
classes of a system, and factors that influence the effort
required to develop each individual test case. These two
categories have been referred as test case generation and
test case construction factors. We assume that the effort
necessary to write a test class Ct corresponding to a soft-
ware class Cs is proportional to the characteristics mea-
sured by the test case (TC) metrics.

4.4. Correlation Analysis

In this section, we present the first step of the empirical
study we performed to explore the relationship between
OO metrics (ms) and test case metrics (mt). We per-

formed statistical tests using correlation. We used a
non-parametric measure of correlation in order to test the
correlation between ms and mt metrics. We used the
Spearman’s correlation coefficient. This technique, based
on ranks of the observations, is widely used for measur-
ing the degree of linear relationship between two vari-
ables (two sets of ranked data). It measures how tightly
the ranked data clusters around a straight line. Spear-
man’s correlation coefficient will take a value between
−1 and +1. A positive correlation is one in which the
ranks of both variables increase together. A negative
correlation is one in which the ranks of one variable in-
crease as the ranks of the other variable decrease. A cor-
relation of +1 or −1 will arise if the relationship between
the ranks is exactly linear. A correlation close to zero
means that there is no linear relationship between the
ranks. We used the XLSTAT2 tool to perform the analy-
sis.

For each selected class Cs and corresponding JUnit test
case (s) Ct, we have a total of 14 pairs of metrics <ms,
mt>. We analyzed the collected data set by calculating
the Spearman’s correlation coefficient rs for each pair of
metrics. Table 3 summarizes the results of the correla-
tion analysis. It shows, for each of the selected systems
and between each distinct pair of metrics <ms, mt>, the
obtained values for the Spearman’s correlation coeffi-
cient. The obtained Spearman’s correlation coefficients
that are significant are set in boldface. The chosen sig-
nificance level is α = 0.05. This means that for the corre-
sponding pairs of metrics there exist a correlation at the
95% confidence level. We discuss briefly, in what fol-
lows, the obtained results. The main purpose of this study
is, in fact, to evaluate the ability of the selected OO met-
rics (separately and when used together) to predict (using
logistic regression methods) the testing effort of classes.

The coupling metric CBO measures dependencies on

Table 3. Correlation values between OO and TC metrics.

ANT JFC POI

TAss TLoc TAss TLoc TAss TLoc

CBO 0.135 0.394 0.261 0.305 0.280 0.392

DIT −0.203 0.006 0.069 0.166 −0.100 −0.327

NOC 0.034 0.048 0.224 0.106 0.011 0.025

LCOM 0.347 0.434 0.439 0.388 0.155 0.040

RFC 0.071 0.342 0.197 0.257 0.365 0.237

WMC 0.391 0.566 0.453 0.450 0.400 0.398

LOC 0.391 0.582 0.414 0.437 0.397 0.397

2http://www.xlstat.com/

Copyright © 2012 SciRes. JSEA

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 518

external classes and methods. The fact that a class de-
pends on other classes will probably influence its testing
effort. From the obtained correlation values, between the
CBO metric and the test case metrics, we can observe
that the CBO metric is significantly correlated to the
metric TLoc in the three subject systems. This metric is
significantly correlated to the test case metric TAss in
only two systems (JFC and POI). The observed correla-
tion values between the metric CBO and the metric TLoc
are higher than the correlation values (when significant)
between the CBO metric and the test case metric TAss.

The cohesion metric LCOM is, in fact, a lack of cohe-
sion metric (inverse cohesion measure). From the ob-
tained correlation values, we can observe that the metric
LCOM is significantly correlated to the two test case
metrics for ANT and JFC. In the case of ANT and JFC,
the metric LCOM is, overall, better correlated with the
test case metrics than the metric CBO. The number of
methods in a class influences its cohesion (lack of cohe-
sion value) and the number of methods of the corre-
sponding test class, which is related to the characteristics
measured by the used test case metrics.

The inheritance metrics DIT and NOC are, overall, not
as correlated to the used test case metrics as the metrics
CBO and LCOM. The obtained correlations values are,
overall, relatively low (when significant). Theoretically,
if we consider that inherited methods have to be retested
in any subclass, the depth of inheritance tree is likely to
be correlated with at least TLoc metric. These results
may, however, be affected by the testing strategies used
by the developers (or the adopted style while writing test
cases). The relative low use of inheritance in the case of
the subject systems may also explain why the inheritance
metrics are not as correlated to the test case metrics as
the other OO metrics. Moreover, the used test case met-
rics are measured at the class level (unit testing). This
may also affect the results. The inheritance metrics
would probably have a significant influence on testability
at other levels.

The complexity metric WMC is significantly corre-
lated to the test case metrics in all the selected systems.
Also, we can see from Table 3 that the obtained correla-
tion values for the metric WMC are, overall, higher than
those obtained with the other OO metrics (except for the
pair <LOC, TLoc> for ANT). The highest correlation
value of the metric WMC is observed with the test case
metric TLoc (for ANT), which is a plausible result
knowing the strong relationship between size and com-
plexity. The size metric LOC is significantly correlated
to the test case metrics in the used systems (same trend as
WMC). These results are, in fact, plausible. A large class,
containing a large number of methods in particular, will
require a high testing effort. The RFC metric is signifi-
cantly correlated to the test case metrics in JFC and POI.

In ANT, it is significantly correlated to TLoc.
We also calculated the Spearman’s correlation coeffi-

cient rs for each pair of OO metrics <ms, ms> (Table 4)
and for each pair of test case metrics <mt, mt> (Table 5).
The correlation coefficients shown in bold are significant
(at α = 0.05 level). The global observation that we can
make from Table 4 is that the OO metrics are (at least
for most) correlated between themselves, in particular,
the metrics CBO, LCOM, LOC, RFC and WMP, which
are related to the OO software attributes: coupling, cohe-
sion, size and complexity. The inheritance metrics DIT
and NOC are, in general, weakly correlated (when the
correlation values are significant) to the other OO met-
rics. From Table 5, the global observation that we can

Table 4. Correlation values between OO metrics.

ANT CBO DIT NOC LCOM RFC WMC LOC

CBO 1 0.185 0.029 0.652 0.832 0.818 0.873

DIT 1 −0.076 −0.029 0.494 0.115 0.113

NOC 1 0.310 0.066 0.140 0.078

LCOM 1 0.670 0.819 0.780

RFC 1 0.782 0.812

WMC 1 0.960

LOC 1

JFC CBO DIT NOC LCOM RFC WMC LOC

CBO 1 0.575 0.276 0.644 0.862 0.693 0.792

DIT 1 0.071 0.349 0.762 0.291 0.376

NOC 1 0.336 0.268 0.296 0.294

LCOM 1 0.549 0.757 0.740

RFC 1 0.640 0.742

WMC 1 0.966

LOC 1

POI CBO DIT NOC LCOM RFC WMC LOC

CBO 1 −0.209 0.113 0.259 0.626 0.511 0.556

DIT 1 −0.122 0.093 0.218 −0.114 −0.108

NOC 1 0.092 0.069 0.060 0.081

LCOM 1 0.518 0.543 0.534

RFC 1 0.714 0.725

WMC 1 0.923

LOC 1

Copyright © 2012 SciRes. JSEA

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 519

Table 5. Correlation values between test case metrics.

ANT JFC POI

TAss TLoc TAss TLoc TAss TLoc

TAss 1 0.769 1 0.842 1 0.716

TLoc 1 1 1

make is that the test case metrics are also correlated be-
tween themselves.

4.5. Evaluating the Effect of OO Metrics on the
Testing Effort Using Logistic Regression
Analysis

We present, in this section, the empirical study we con-
ducted in order to evaluate the individual and combined
effect of OO metrics on testability of classes in terms of
unit testing effort. We used both the univariate and mul-
tivariate logistic regression analysis. The univariate re-
gression analysis is used to find the individual effect of
each OO metric, identifying which metrics are signifi-
cantly related to the testing effort of classes. The multi-
variate regression analysis is used to investigate the
combined effect of OO metrics on testability, indicating
which metrics may play a more dominant role in pre-
dicting the testing effort of classes

4.5.1. Dependent and Independent Variables
We used logistic regression to explore empirically the
relationship between OO metrics (independent variables)
and testability of classes in terms of unit testing effort
(dependent variable). We used the test case metrics TLoc
and TAss to identify the classes which required a (rela-
tive) high testing effort. In order to simplify the process
of testing effort categorization, we provide only two
categorizations: classes which required a high testing
effort and classes which required a (relative) low testing
effort.

Category 1: includes the JUnit test classes for which
the two following conditions are satisfied: 1) large num-
ber of lines of code (corresponding TLoc ≥ mean value
of TLoc); and 2) large number of invocations of JUnit
assert methods (corresponding TAss ≥ mean value of
TAss). We affect the value 1 to the corresponding
classes.

Category 2: includes all the other JUnit test classes.
We affect the value 0 to the corresponding classes.

Table 6 summarizes the distribution of classes accord-
ing to the adopted categorization.

4.5.2. Hypotheses
The study tested seven hypotheses, which relate the se-
lected metrics to the testing effort. For each source code

Table 6. Distribution of classes.

 1 0

ANT 38.74% 61.26%

JFC 37.17% 62.83%

POI 35.04% 64.96%

metric ms, the hypothesis was:

A class with a high ms value is more likely to require a
high testing effort than a class with a low ms value.

The null hypothesis was:
A class with a high ms value is no more likely to re-

quire a high testing effort than a class with a low ms
value.

4.5.3. Logistic Regression Analysis: Research
Methodology

Logistic Regression (LR) is a standard statistical model-
ing method in which the dependent variable can take on
only one of two different values. It is suitable for build-
ing software quality classification models. It is used to
predict the dependent variable from a set of independent
variables to determine the percent of variance in the de-
pendent variable explained by the independent variables
[9,51,52]. This technique has been widely applied to the
prediction of fault-prone classes [20,52-56]. LR is of two
types: Univariate LR and Multivariate LR. A multivari-
ate LR model is based on the following equation:

 
 

 
1

1
1, ,

1

i n
i ii

i n
i ii

a b X

n a b X

e
P X X

e

















 (1)

The Xis are the independent variables and the (normal-
ized) bis are the estimated regression coefficients (ap-
proximated contribution) corresponding to the indepen-
dent variables Xis. The larger the absolute value of the
coefficient, the stronger the impact of the independent
variable on the probability of detecting a high testing
effort. P is the probability of detecting a class with a high
testing effort. The univariate regression analysis is, in
fact, a special case of the multivariate regression analysis,
where there is only one independent variable (one OO
metric). The p-value (related to the statistical hypothesis)
is the probability of the coefficient being different from
zero by chance and is also an indicator of the accuracy of
the coefficient estimate. To decide whether a metric is a
statistically significant predictor of testing effort, we use
the α = 0.05 significance level to assess the p-value. R2
(Nagelkerke) is defined as the proportion of the total
variance in the dependent variable that is explained by
the model. The higher R2 is, the higher the effect of the

Copyright © 2012 SciRes. JSEA

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes

Copyright © 2012 SciRes. JSEA

520

independent variables, and the more accurate the model.

4.5.4. Model Evaluation
In order to evaluate the performance of the predicted
models, we used the ROC (Receiver Operating Charac-
teristic) analysis. Indeed, precision and recall, which are
traditional evaluation criteria used to evaluate the predic-
tion accuracy of logistic regression models are subject to
change as the selected threshold changes. The ROC
curve, which is defined as a plot of sensitivity on the
y-coordinate versus its 1-specificity on the x-coordinate,
is an effective method of evaluating the performance of
prediction models [57]. The optimal choice of the cutoff
point that maximizes both sensitivity and specificity can
be selected from the ROC curve. This will allow avoid-
ing an arbitrary selection of the cutoff. In order to evalu-
ate the performance of the models, we used particularly
the AUC (Area Under the Curve) measure. It is a com-
bined measure of sensitivity and specificity. It allows
appreciating the model without subjective selection of
the cutoff value. The larger the AUC measure, the better
the model is at classifying classes. A perfect model that
correctly classifies all classes has an AUC measure of 1.
An AUC value close to 0.5 corresponds to a poor model.
An AUC value greater than 0.7 corresponds to a good
model [58]. Furthermore, if a prediction model is built on
one data set (used as training set) and evaluated on the
same data set (used as testing set), then the accuracy of
the model will be artificially inflated [59]. A common
way to obtain a more realistic assessment of the predic-

tive ability of the models is to use cross validation (k-fold
cross-validation), which is a procedure in which the data
set is partitioned in k subsamples (groups of observa-
tions). The regression model is built using k − 1 groups
and its prediction evaluated on the last group. This proc-
ess is repeated k times. Each time, a different subsample
is used to evaluate the model, and the remaining subsam-
ples are used as training data to build the model. We
performed, in our study, a 10-fold cross-validation.

4.5.5. Univariate LR Analysis: Results and Discussion
In this section, we present the results obtained using the
univariate LR analysis. The results, summarized in Table
7, show that: For system ANT, the b-coefficients of the
metrics LCOM, WMC and LOC (respectively 0.946,
0.582 and 0.596) are significantly different from zero
according to their p-values. The metrics LOC, WMC and
LCOM have (respectively) the highest (and significant)
R2 values (respectively 0.2529, 0.2394 and 0.1455). The
metrics NOC, DIT, RFC and CBO have (respectively)
the lowest b and R2 coefficients values. The metric CBO
was, however, significant at 0.05 significance level. Ac-
cording to these results, the metrics LOC, WMC and
LCOM are (more) significantly related to the testing ef-
fort compared to the other OO metrics. The AUC values
(WMC: 0.798, LOC: 0.793 and LCOM: 0.73) confirm
that univariate LR models based on the metrics WMC,
LOC and LCOM are more predictive of testing effort
than the other OO metrics. The metrics LOC and WMC
have the highest R2 (and AUC values), which shows that

Table 7. Results for univariate LR analysis.

 CBO DIT NOC LCOM RFC WMC LOC

R2 8.67% 0.31% 0.20% 14.55% 3.86% 23.94% 25.29%

2Log 0.007 0.617 0.686 0.001 0.074 <0.0001 <0.0001

b 0.296 −0.054 −0.048 0.946 0.199 0.582 0.596

p-value 0.009 0.618 0.707 0.015 0.091 <0.0001 <0.0001

ANT

AUC 0.67 0.549 0.551 0.73 0.656 0.798 0.793

 CBO DIT NOC LCOM RFC WMC LOC

R2 11.14% 0.46% 5.13% 13.49% 0.69% 26.96% 13.49%

2Log <0.0001 0.384 0.003 <0.0001 0.285 <0.0001 <0.0001

b 0.341 0.066 0.344 1.156 0.081 0.870 1.156

p-value <0.0001 0.384 0.045 0.002 0.283 <0.0001 0.002

JFC

AUC 0.663 0.547 0.598 0.746 0.611 0.79 0.746

 CBO DIT NOC LCOM RFC WMC LOC

R2 12.94% 11.23% 0.00% 4.82% 10.29% 15.26% 10.94%

2Log <0.0001 <0.0001 0.973 0.001 <0.0001 <0.0001 <0.0001

b 0.420 −0.361 −0.002 0.343 0.409 0.552 0.414

p-value <0.0001 <0.0001 0.973 0.010 <0.0001 <0.0001 <0.0001

POI

AUC 0.682 0.664 0.533 0.529 0.623 0.686 0.684

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 521

these metrics are the best predictors of the testing effort.
For system JFC, we can observe also the same trends.
The metrics WMC, LOC and LCOM have (respectively)
the highest (and significant) R2 values (respectively
0.2696, 0.1349 and 0.1349). Here also, the AUC values
(WMC: 0.79, LOC: 0.746 and LCOM: 0.746) confirm
that univariate LR models based on the metrics WMC,
LOC and LCOM are more predictive of testing effort
than the metrics DIT, NOC, RFC and CBO. The WMC
metric has the highest R2 (and AUC value), which shows
that it is (here also) the best predictor of testing effort.
The LOC metric has the second highest R2 (and AUC
value). Moreover, in this case also the metric CBO was
significant (at 0.01). The AUC value of the metric CBO
is almost the same as that obtained for system ANT. For
system POI, even if the results show that the b and R2
coefficients values for the OO metrics (except NOC) are
significant, the AUC values of the univariate models are
all lower than 0.7. The metrics WMC, CBO and DIT
have the highest (and significant) R2 values (respectively
0.1526, 0.1294 and 0.1123). These results, based on the
data set we used and particularly data collected from

ANT and JFC systems, suggest that the metrics WMC,
LOC, LCOM and CBO (to some extent) are significant
predictors of testing effort. Hence, we can reasonably
support the hypothesis of each of these metrics. These
metrics are related respectively to: complexity, size, co-
hesion and coupling.

4.5.6. Multivariate LR Analysis: Results and
Discussion

We present, in this section, the results of the multivariate
LR analysis. The main objective was to explore the po-
tential of OO design metrics, when used in combination,
to predict the unit testing effort of classes. Indeed, the
multivariate LR analysis here is not intended to be used
to build the best prediction model combining the OO
source code metrics because, in this case, other metrics
also have to be considered (for example, other coupling
or size metrics). Such a model is out of the scope of this
paper.

We performed, in this step, two different experiments.
The first experiment includes all the selected metrics
(Table 8 MLR-I), in contrast to the second experiment

Table 8. Results for multivariate LR analysis.

MLR-I ANT JFC POI

R2 34.73% 38.23% 27.31%

2log 0.000 <0.0001 <0.0001

 b p-value b p-value b p-value

CBO −0.382 0.206 0.218 0.311 0.191 0.217

DIT 0.271 0.145 0.162 0.198 −0.307 0.000

NOC −0.065 0.704 0.095 0.46 0.052 0.465

LCOM 0.545 0.296 −1.109 0.000 −0.305 0.105

RFC −0.962 0.066 −0.617 0.003 0.151 0.513

WMC −0.226 0.723 2.333 0.000 0.392 0.180

LOC 1.663 0.022 −0.698 0.156 0.081 0.746

AUC 0.848 0.834 0.773

MLR-II ANT JFC POI

R2 25.69% 37.32% 27.27%

2log 0.002 <0.0001 <0.0001

 b p-value b p-value b p-value

CBO −0.209 0.432 0.152 0.459 0.196 0.203

DIT 0.068 0.677 0.188 0.129 −0.304 0.000

NOC −0.108 0.591 0.123 0.335 −0.307 0.109

LCOM 0.105 0.798 −1.036 0.000 0.051 0.472

RFC 0.923 0.008 −0.682 0.001 0.155 0.501

WMC −0.351 0.389 1.633 <0.0001 0.466 0.013

AUC 0.78 0.832 0.772

Copyright © 2012 SciRes. JSEA

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 522

which excludes the metric LOC (Table 8 MLR-II). This
will allow us to compare the performance of the predic-
tion model MLR-II which is based on the CK metrics
only, with the performance of the prediction model
MLR-I which is based on all the considered metrics.
Moreover, as mentioned in Section 4.2 (descriptive sta-
tistics), the metric LCOM is not computed for all classes.
The classes for which LCOM is not computed and the
corresponding JUnit test cases have been excluded from
our measurements (multivariate LR). So, the models
MLR-I and MLR-II were built using data collected from
only classes (and the corresponding JUnit test cases) for
which LCOM is computed. The number of considered
classes differ from one system to another (ANT: 98, JFC:
219 and POI: 313).

In the first experiment, we used all the OO metrics to
build the multivariate regression model. Table 8 MLR-I
summarizes the results of the multivariate analysis. From
Table 8 MLR-I, it can be seen that for ANT the AUC
value is 0.848, which is higher than the AUC values ob-
tained with the univariate LR analysis. It is also the
highest value of AUC obtained in this experiment. More-
over, the R2 value increases (34.73%). This shows that
the combined effect of the metrics is higher. The results
also show that the metric LOC has the highest (and sig-
nificant) contribution (impact of the metric on the prob-
ability of detecting a high testing effort). For JFC, we can
see that the AUC value is 0.834, which is higher (here
also) than the AUC values obtained with the univariate
LR analysis. Moreover, the R2 value, as in the case of
ANT, increases (38.23%). The results show that the met-
rics WMC, LCOM and RFC have the highest (and sig-
nificant) contributions. For POI, we can see that the AUC
value is 0.773, which is higher (here also) than the AUC
values obtained with the univariate LR analysis. More-
over, the results (combined effect of the metrics) are sig-
nificant in contrast to the results of the univariate analy-
sis (individual effect of the metrics). The R2 value, as in
the case of ANT and JFC, increases (27.31%). The R2
value in this case is relatively high than all the R2 values
obtained in the case of univariate analysis. This shows
once again that the combined effect of the metrics is
more significant than when the metrics are considered
individually.

In the second experiment, we used only the CK met-
rics to build the multivariate regression model. Table 8
MLR-II summarizes the results of the multivariate analy-
sis. From Table 8 MLR-II, we can observe that the re-
sults have (overall) the same trend as those obtained
during the first experiment. The results are significant for
the three systems ANT, JFC and POI. From Table 8
MLR-II, it can be seen that for ANT the AUC value is
0.780, which is slightly less than the AUC values of the
univariate models based on the metrics WMC and LOC

(respectively 0.798 and 0.793), and greater than the AUC
values of the univariate models based on the metrics
CBO, DIT, NOC, LCOM and RFC. Moreover, the R2
value (25.69%) increased slightly compared to the R2
value of the univariate model based on the metric LOC
(25.29%, which was the highest R2 value obtained in the
univariate analysis for ANT). The results also show that
the metric RFC has the highest (and significant) contri-
bution (impact of the metric on the probability of detect-
ing a high testing effort). For JFC, we can see that the
AUC value is 0.832, which is higher than the AUC val-
ues obtained with the univariate LR analysis. Moreover,
the R2 value increases (37.32%). The results show that
the metrics WMC, LCOM and RFC have the highest
(and significant) contributions. For POI, we can see that
the AUC value is 0.772, which is higher (here also) than
the AUC values obtained with the univariate LR analysis.
Moreover, the results (combined effect of the metrics)
are significant in contrast to the results of the univariate
analysis (individual effect of the metrics). The R2 value,
as in the case of ANT and JFC, increases (27.27%). The
R2 value in this case also is relatively high than all the R2
values obtained in the case of univariate LR analysis.
This shows once again that the combined effect of the
metrics is more significant than when the metrics are
considered individually. In the case of POI, the results
show that the metrics WMC and DIT have the highest
(and significant) contributions (as for MLR-I).

The accuracies of the models MLR-I and MLR-II are,
overall, comparable. Indeed, as we can see from Table 8,
the AUC values of the models are almost identical in the
two systems JFC and POI. This is true also for the R2
values. This can be explained by the fact that size is (in-
directly) captured by most of the considered metrics
(WMC, RFC, LCOM and CBO), which may also be ob-
served from the correlation values between these metrics
in Table 4. The correlation values between, in particular,
the metrics WMC and LOC are almost perfect (in the
three systems). This explains also why the contributions
of these two metrics, in Table 8 MLR-I, vary from one
system to another. In the case of system ANT, the per-
formance of the multivariate model MLR-I is, however,
better that the performance of the multivariate model
MLR-II. The AUC and R2 values of the model MLR-I
(respectively 0.848 and 34.73) are greater than the AUC
and R2 values of the model MLR-II (respectively 0.780
and 25.69). In summary, the multivariate analysis shows
that the combined effect of the metrics is more signifi-
cant than when the metrics are considered individually.
Moreover, it shows also, when the results are significant,
that, overall, the metrics WMC, RFC, LCOM and LOC
have the highest contributions. These metrics are respec-
tively related to: complexity, coupling, cohesion and size.
This confirms somewhere the results of the univariate

Copyright © 2012 SciRes. JSEA

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 523

analysis. Furthermore, in order to obtain a more realistic
assessment of the predictive abilities of the models, we
performed in our study a 10-fold cross-validation (MLR
models). We used the R3 tool.

4.5.7. Applicability of the Prediction Models
In addition, we explored to what extent a prediction
model built using data from one of the three used sys-
tems can be used to predict the testing effort of classes of
the two other systems. Indeed, the practical purpose of
building software prediction models (reliability, fault-
proneness, testing effort, etc.) is to apply them to soft-
ware systems. Knowing that we have collected data sets
from three different systems, we evaluated each model
Mi, constructed using data from a system Si, on data from
another system Sj (i # j). As mentioned previously, the
three used systems are from different domains and have
different characteristics. Moreover, they have been de-
veloped by different teams. We used, in fact, the data
from a system as the training data set and the data from
another system as the testing data set. Usually, the data
set with the largest number of observations is designated
as the training data set and the remaining system data
sets as the testing sets [59]. So, in our study, we per-
formed the following tests: 1) we applied the prediction
model built using the data set of POI (referenced as MPOI)
for predicting the testing effort of classes of JFC and
ANT; and 2) we applied the prediction model built using
the data set of JFC (referenced as MJFC) to predict the
testing effort of classes of ANT.

The results of a prediction model depend on the cho-
sen value of the threshold. Indeed, if the predicted testing
effort of a class is above the chosen value, the class is
classified as requiring a high testing effort. Moreover, the
value of the threshold may vary from one system to an-
other because of differences between systems. To avoid
an arbitrary selection of the cutoff, and as a first attempt
to assess the applicability of the prediction models, we
explored in each test different values of threshold. We
used here also the ROC analysis to evaluate the per-
formance of the models. The obtained AUC values are
0.69, 0.67 and 0.71 respectively for applying MPOI for
predicting the testing effort of classes of JFC and ANT
and for applying MJFC to predict the testing effort of
classes of ANT. The models do not show, in fact, a
strong difference. Their prediction performance is, over-
all, acceptable. The results indicate that the LR predic-
tion models built using the OO metrics seem viable.
They show, at least, that the metrics when combined of-
fer a promising potential for predicting the testing effort
of classes. Further investigations are, however, needed to

make more general conclusions.

4.6. Threats to Validity

The achieved results are based on the data set we col-
lected from the analyzed systems. We analyzed a total of
688 classes and corresponding JUnit test cases. Even if
we believe that the analyzed set of data is large enough to
allow obtaining significant results, we do not claim that
our results can be generalized to all systems. The study
should be, indeed, replicated on a large number of OO
software systems to increase the generality of our find-
ings. In fact, there are a number of limitations that may
affect the results of the study or limit their interpretation
and generalization.

First, the JUnit test cases used in our study were de-
veloped for large and complex classes. This is true for
the three subject systems. It would be interesting to rep-
licate this study using systems for which JUnit test cases
have been developed for a maximum number of classes.
This will allow observing the performance of the metrics
(individually and used in combination) for different types
of classes (small, medium and large). Second, it is also
possible that facts such as the development style used by
the developers for writing test cases may affect the re-
sults or produce different results for specific applications.
We observed, for example, that in some cases the deve-
loped JUnit classes do not cover all the methods of the
corresponding software classes. As the OO metrics are
source code metrics and are computed using the com-
plete code of the classes, this may bias the results. Fi-
nally, another important threat to validity is from the
identification of the relationship between the JUnit test
cases and tested classes. We noticed, in fact, by analyz-
ing the code of the JUnit test cases of the investigated
systems that, in some cases, there is no one-to-one rela-
tionship between JUnit test cases and tested classes. In
these cases, several JUnit test cases have been related to
a same tested class. Even if we followed a systematic
approach for associating the JUnit test cases to the cor-
responding tested classes, unfortunately we have not
been able to do that for all classes. This may also affect
the results of our study, or produce different results from
one system to another.

5. Conclusions and Future Work

The paper investigated empirically the relationship be-
tween OO metrics and testability of classes in terms of
required testing effort. Testability has been investigated
from the perspective of unit testing. We performed an
empirical analysis using data collected from three Java
software systems for which JUnit test cases exist. To
capture testability of classes, we used different metrics to
quantify the corresponding JUnit test cases. The metrics

3http://www.r-project.org/

Copyright © 2012 SciRes. JSEA

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 524

related to the JUnit test cases were used, in fact, to clas-
sify the classes in two categories in terms of required
testing effort: high and low.

In order to evaluate the relationship between OO met-
rics and unit testing effort of classes, we performed sta-
tistical analysis using correlation and logistic regression
methods. We used the univariate logistic regression
analysis to evaluate the individual effect of the selected
metrics on the testing effort of classes. We used the mul-
tivariate logistic regression analysis to evaluate their
combined effect. The performance of the predicted mo-
dels was evaluated using Receiver Operating Characte-
ristic analysis. We also included in our study the well-
known LOC metric as a “baseline”. Univariate regression
analysis, based on the data set we used, suggests that
univariate LR models based on the metrics WMC, LOC,
LCOM and CBO (also to some extent) are significant
predictors of unit testing effort. Moreover, the results
show that multivariate regression models based on OO
metrics are able to accurately predict the unit testing ef-
fort of classes. The multivariate analysis shows that,
overall, the metrics WMC, RFC, LCOM and LOC have
the highest effect on the testing effort. In summary, the
metrics that were found significant predictors of the test-
ing effort (in the univariate analysis and in the multivari-
ate analysis as having a relatively high effect) are related
to the important OO attributes: size, complexity, cohe-
sion and coupling.

In addition, we explored the applicability of the pre-
diction models by examining to what extent a prediction
model built using data from one system can be used to
predict the testing effort of classes of another system.
The results clearly show that the prediction models were
able to achieve acceptable levels of performance in the
classification of classes according to the predicted testing
effort. We hope these findings will help to a better under-
standing of what contributes to testability of classes in
OO systems, and particularly the relationship between
OO attributes (metrics) and testability of classes. The
performed study should be replicated using many other
OO software systems in order to draw more general con-
clusions. The findings in this paper should be viewed as
exploratory and indicative rather than conclusive. More-
over, knowing that software testability is affected by
many different factors, it would be interesting to extend
the used suite of test case metrics to better reflect the
testing effort.

As future work, we plan to: extend the used test case
metrics to better reflect the testing effort, use other OO
metrics to improve the performance of the prediction
models, use other methods (such as machine learning
methods) to explore the individual and combined effect
of the metrics on testability of classes, explore other ap-
proaches for testing effort rating (ranking) and finally

replicate the study on other OO software systems to be
able to give generalized results.

6. Acknowledgements

This project was financially supported by NSERC (Na-
tional Sciences and Engineering Research Council of
Canada).

REFERENCES
[1] IEEE, “IEEE Standard Glossary of Software Engineering

Terminology,” IEEE CSP, New York, 1990.

[2] ISO/IEC 9126, “Software Engineering Product Quality,”
1991.

[3] B. Baudry, B. Le Traon and G. Sunyé, “Testability
Analysis of a UML Class Diagram,” 9th International
Software Metrics Symposium, Sydney, 3-5 September
2003.

[4] B. Baudry, Y. Le Traon, G. Sunyé and J. M. Jézéquel,
“Measuring and Improving Design Patterns Testability,”
9th International Software Metrics Symposium, Sydney,
3-5 September 2003.

[5] P. L. Yeh and J. C. Lin, “Software Testability Measure-
ment Derived From Data Flow Analysis,” 2nd Euromicro
Conference on Software Maintenance and Reengineering,
Florence, 8-11 March 1998.

[6] L. Zhao, “A New Approach for Software Testability
Analysis,” 28th International Conference on Software
Engineering, Shanghai, 20-28 May 2006.

[7] M. Bruntink and A. V. Deursen, “Predicting Class Test-
ability Using Object-Oriented Metrics,” 4th International
Workshop on Source Code Analysis and Manipulation,
Chicago, 15-16 September 2004.
doi:10.1109/SCAM.2004.16

[8] V. Gupta, K. K. Aggarwal and Y. Singh, “A Fuzzy Ap-
proach for Integrated Measure of Object-Oriented Soft-
ware Testability,” Journal of Computer Science, Vol. 1,
No. 2, 2005, pp. 276-282.
doi:10.3844/jcssp.2005.276.282

[9] V. R. Basili, L. C. Briand and W. Melo, “A Validation of
Object-Oriented Design Metrics as Quality Indicators,”
IEEE Transactions on Software Engineering, Vol. 22, No.
10, 1996, pp. 751-761. doi:10.1109/32.544352

[10] N. Fenton and S. L. Pfleeger, “Software Metrics: A Rig-
orous and Practical Approach,” PWS Publishing Com-
pany, Boston, 1997.

[11] R. S. Pressman, “Software Engineering, A Practitioner’s
Approach,” 6th Edition, McGraw Hill, New York, 2005.

[12] I. Sommervile, “Software Engineering,” 9th Edition, Ad-
dison Wesley, New York, 2011.

[13] B. Henderson-Sellers, “Object-Oriented Metrics Meas-
ures of Complexity,” Prentice-Hall, Upper Saddle River,
1996.

[14] L. Badri, M. Badri and F. Touré, “Exploring Empirically
the Relationship between Lack of Cohesion and Testabil-
ity in Object-Oriented Systems,” In: T.-H. Kim, et al.,

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1109/SCAM.2004.16
http://dx.doi.org/10.3844/jcssp.2005.276.282
http://dx.doi.org/10.1109/32.544352

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes 525

Eds., Advances in Software Engineering, Communica-
tions in Computer and Information Science, Vol. 117,
Springer, Berlin, 2010.

[15] L. Badri, M. Badri and F. Touré, “An Empirical Analysis
of Lack of Cohesion Metrics for Predicting Testability of
Classes,” International Journal of Software Engineering
and Its Applications, Vol. 5, No. 2, 2011, pp. 69-85.

[16] M. Badri and F. Touré, “Empirical Analysis for Investi-
gating the Effect of Control Flow Dependencies on Test-
ability of Classes,” 23rd International Conference on
Software Engineering and Knowledge Engineering, Mi-
ami Beach, 7-9 July 2011.

[17] M. Bruntink and A. V. Deursen, “An Empirical Study
into Class Testability,” Journal of Systems and Software,
Vol. 79, No. 9, 2006, pp. 1219-1232.
doi:10.1016/j.jss.2006.02.036

[18] Y. Singh, A. Kaur and R. Malhota, “Predicting Testability
Effort Using Artificial Neural Network,” Proceedings of
the World Congress on Engineering and Computer Sci-
ence, San Francisco, 22-24 October 2008.

[19] Y. Singh and A. Saha, “Predicting Testability of Eclipse:
A Case Study,” Journal of Software Engineering, Vol. 4,
No. 2, 2010, pp. 122-136. doi:10.3923/jse.2010.122.136

[20] Y. Singh, A. Kaur and R. Malhota, “Empirical Validation
of Object-Oriented Metrics for Predicting Fault Proneness
Models,” Software Quality Journal, Vol. 18, No. 1, 2010,
pp. 3-35. doi:10.1007/s11219-009-9079-6

[21] B. Baudry, Y. Le Traon and G. Sunyé, “Improving the
Testability of UML Class Diagrams,” Proceedings of In-
ternational Workshop on Testability Analysis, Rennes, 2
November 2004.

[22] J. W. Sheppard and M. Kaufman, “Formal Specification
of Testability Metrics,” IEEE AUTOTESTCON, Phila-
delphia, 20-23 August 2001.

[23] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for
OO Design,” IEEE Transactions on Software Engineer-
ing, Vol. 20, No. 6, 1994, pp. 476-493.
doi:10.1109/32.295895

[24] S. R. Chidamber, D. P. Darcy and C. F. Kemerer, “Mana-
gerial Use of Metrics for Object-Oriented Software: An
Exploratory Analysis,” IEEE Transactions on Software
Engineering, Vol. 24, No. 8, 1998, pp. 629-637.
doi:10.1109/32.707698

[25] R. S. Freedman, “Testability of Software Components,”
IEEE Transactions on Software Engineering, Vol. 17, No.
6, 1991, pp. 553-564. doi:10.1109/32.87281

[26] J. M. Voas, “PIE: A Dynamic Failure-Based Technique,”
IEEE Transactions on Software Engineering, Vol. 18, No.
8, 1992, pp. 717-727. doi:10.1109/32.153381

[27] J. Voas and K. W. Miller, “Semantic Metrics for Software
Testability,” Journal of Systems and Software, Vol. 20,
No. 3, 1993, pp. 207-216.
doi:10.1016/0164-1212(93)90064-5

[28] J. M. Voas and K. W. Miller, “Software Testability: The
New Verification,” IEEE Software, Vol. 12, No. 3, 1995,
pp. 17-28. doi:10.1109/52.382180

[29] R. V. Binder, “Design for Testability in Object-Oriented

Systems,” Communications of the ACM, Vol. 37, No. 9,
1994, pp. 87-101. doi:10.1145/182987.184077

[30] T. M. Khoshgoftaar and R. M. Szabo, “Detecting Pro-
gram Modules with Low Testability,” 11th International
Conference on Software Maintenance, Nice, 16 October
1995.

[31] T. M. Khoshgoftaar, E. B. Allen and Z. Xu, “Predicting
Testability of Program Modules Using a Neural Net-
work,” 3rd IEEE Symposium on Application-Specific
Systems and SE Technology, Richardson, 24-25 March
2000, pp. 57-62.

[32] J. McGregor and S. Srinivas, “A Measure of Testing Ef-
fort,” Proceedings of the Conference on OO Technologies,
Toronto, 17-21 June 1996.

[33] A. Bertolino and L. Strigini, “On the Use of Testability
Measures for Dependability Assessment,” IEEE Transac-
tions on Software Engineering, Vol. 22, No. 2, 1996, pp.
97-108. doi:10.1109/32.485220

[34] Y. Le Traon and C. Robach, “Testability Analysis of
Co-Designed Systems,” Proceedings of the 4th Asian Test
Symposium, ATS. IEEE CS, Washington, 1995.

[35] Y. Le Traon and C. Robach, “Testability Measurements
for Data Flow Design,” Proceedings of the 4th Interna-
tional Software Metrics Symposium, New Mexico, 5-7
November 1997. doi:10.1109/METRIC.1997.637169

[36] Y. Le Traon, F. Ouabdessalam and C. Robach, “Analyz-
ing Testability on Data Flow Designs,” ISSRE’00, 2000.

[37] A. Petrenko, R. Dssouli and H. Koenig, “On Evaluation
of Testability of Protocol Structures,” IFIP, Rueil-Mal-
maison, 1993.

[38] K. Karoui and R. Dssouli, “Specification Transformations
and Design for Testability,” Proceedings of the IEEE
Global Telecommunications Conference, London, 18-22
November 1996, pp. 680-685.

[39] S. Jungmayr, “Testability Measurement and Software
Dependencies,” Proceedings of the 12th International
Workshop on Software Measurement, Magdeburg, 7-9
October 2002.

[40] J. Gao, J. Tsao and Y. Wu, “Testing and Quality Assur-
ance for Component-Based Software,” Artech House
Publisher, London, 2003.

[41] J. Gao and M. C. Shih, “A Component Testability Model
for Verification and Measurement,” COMPSAC IEEE,
2005.

[42] T. B. Nguyen, M. Delaunay and C. Robach, “Testability
Analysis Applied to Embedded Data-Flow Software,”
Proceedings of the 3rd International Conference on
Quality Software, Dallas, 6-7 November 2003, pp. 4-11.
doi:10.1109/QSIC.2003.1319121

[43] V. Chowdhary, “Practicing Testability in the Real World,”
International Conference on Software Testing, Verifica-
tion and Validation, IEEE CSP, Washington, 21-25 March
2009, pp. 260-268.

[44] R. A. Khan and K. Mustafa, “Metric Based Testability
Model for Object-Oriented Design (MTMOOD),” ACM
SIGSOFT Software Engineering Notes, Vol. 34, No. 2,
2009, pp. 1-6. doi:10.1145/1507195.1507204

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1016/j.jss.2006.02.036
http://dx.doi.org/10.3923/jse.2010.122.136
http://dx.doi.org/10.1007/s11219-009-9079-6
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/32.707698
http://dx.doi.org/10.1109/32.87281
http://dx.doi.org/10.1109/32.153381
http://dx.doi.org/10.1016/0164-1212(93)90064-5
http://dx.doi.org/10.1109/52.382180
http://dx.doi.org/10.1145/182987.184077
http://dx.doi.org/10.1109/32.485220
http://dx.doi.org/10.1109/METRIC.1997.637169
http://dx.doi.org/10.1109/QSIC.2003.1319121
http://dx.doi.org/10.1145/1507195.1507204

Empirical Analysis of Object-Oriented Design Metrics for Predicting Unit Testing Effort of Classes

Copyright © 2012 SciRes. JSEA

526

[45] A. Kout, F. Toure and M. Badri, “An Empirical Analysis
of a Testability Model for Object-Oriented Programs,”
ACM SIGSOFT Software Engineering Notes, Vol. 36, No.
4, 2011, pp. 1-5. doi:10.1145/1988997.1989020

[46] L. C. Briand, Y. Labiche and H. Sun, “Investigating the
Use of Analysis Contracts to Improve the Testability of
Object-Oriented Code,” Software—Practice and Experi-
ence, Vol. 33, No. 7, 2003, pp. 637-672.
doi:10.1002/spe.520

[47] M. Badri and F. Touré, “Evaluating the Effect of Control
Flow on the Unit Testing Effort of Classes: An Empirical
Analysis,” Advances in Software Engineering, Vol. 2012,
2012, 13 p. doi:10.1155/2012/964064

[48] A. Mockus, N. Nagappan and T. T. Dinh-Trong, “Test
Coverage and Post-Verification Defects: A Multiple Case
Study,” 3rd International Symposium on Empirical Soft-
ware Engineering and Measurement, Lake Buena Vista,
15-16 October 2009. doi:10.1109/ESEM.2009.5315981

[49] B. Van Rompaey and S. Demeyer, “Establishing Trace-
ability Links between Unit Test Cases and Units under
Test,” Proceedings of the European Conference on Soft-
ware Maintenance and Reengineering, Kaiserslautern,
24-27 March 2009.

[50] A. Qusef, G. Bavota, R. Oliveto, A. De Lucia and D.
Binkley, “SCOTCH: Test-to-Code Traceability Using
Slicing and Conceptual Coupling,” International Confer-
ence on Software Maintenance, Williamsburg, 29 March
2011.

[51] K. K. Aggarwal, Y. Singh, K. Arvinder and M. Ruchika,
“Empirical Analysis for Investigating the Effect of Ob-
ject-Oriented Metrics on Fault Proneness: A Replicated
Case Study,” Software Process: Improvement and Prac-
tice, Vol. 16, No. 1, 2009, pp. 39-62.

doi:10.1002/spip.389

[52] Y. Zhou and H. Leung, “Empirical Analysis of Ob-
ject-Oriented Design Metrics for Predicting High and
Low Severity Faults,” IEEE Transactions on Software
Engineering, Vol. 32, No. 10, 2006, pp. 771-789.

[53] L. C. Briand, J. Daly and J. Wuest, “A Unified Frame-
work for Cohesion Measurement in Object-Oriented Sys-
tems,” Empirical Software Engineering—An Interna-
tional Journal, Vol. 3, No. 1, 1998, pp. 65-117.

[54] L. C. Briand, J. Wust, J. Daly and V. Porter, “Exploring
the Relationship between Design Measures and Software
Quality in Object-Oriented Systems,” Journal of Systems
and Software, Vol. 51, No. 3, 2000, pp. 245-273.
doi:10.1016/S0164-1212(99)00102-8

[55] T. Gyimothy, R. Ferenc and I. Siket, “Empirical Valida-
tion of Object-Oriented Metrics on Open Source Software
for Fault Prediction,” IEEE Transactions on Software en-
gineering, Vol. 3, No. 10, 2005, pp. 897-910.

[56] A. Marcus, D. Poshyvanyk and R. Ferenc, “Using the
Conceptual Cohesion of Classes for Fault Prediction in
Object-Oriented Systems,” IEEE Transactions on Soft-
ware Engineering, Vol. 34, No. 2, 2008, pp. 287-300.
doi:10.1109/TSE.2007.70768

[57] K. El Emam and W. Melo, “The Prediction of Faulty
Classes Using Object-Oriented Design Metrics,” National
Research Council of Canada NRC/ERB 1064, 1999.

[58] D. W. Hosmer and S. Lemeshow, “Applied Logistic Re-
gression,” Wiley, New York, 2000.
doi:10.1002/0471722146

[59] K. El Emam, “A Methodology for Validating Software
Product Metrics,” National Research Council of Canada
NRC/ERB 1076, 2000.

http://dx.doi.org/10.1145/1988997.1989020
http://dx.doi.org/10.1002/spe.520
http://www.hindawi.com/journals/ase/2012/964064/ref/
http://dx.doi.org/10.1109/ESEM.2009.5315981
http://dx.doi.org/10.1002/spip.389
http://dx.doi.org/10.1016/S0164-1212(99)00102-8
http://dx.doi.org/10.1109/TSE.2007.70768
http://dx.doi.org/10.1002/0471722146

